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Depression and Alzheimer’s disease (AD) are prevalent neuropsychiatric disorders 
with intriguing epidemiological overlaps. Their interrelation has recently garnered 
widespread attention. Empirical evidence indicates that depressive disorders 
significantly contribute to AD risk, and approximately a quarter of AD patients 
have comorbid major depressive disorder, which underscores the bidirectional 
link between AD and depression. A growing body of evidence substantiates 
pervasive sex differences in both AD and depression: both conditions exhibit 
a higher incidence among women than among men. However, the available 
literature on this topic is somewhat fragmented, with no comprehensive review 
that delineates sex disparities in the depression–AD correlation. In this review, 
we bridge these gaps by summarizing recent progress in understanding sex-
based differences in mechanisms, genetics, and therapeutic prospects for 
depression and AD. Additionally, we outline key challenges in the field, holding 
potential for improving treatment precision and efficacy tailored to male and 
female patients’ distinct needs.
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1 Introduction

Alzheimer’s disease (AD) is a leading neurodegenerative disorder, characterized by cognitive 
deficits, behavioral changes, and memory loss (Nebel et al., 2018; Depp et al., 2023). Recognized 
as a multifactorial disorder with diverse etiologies (Guo et al., 2022; Uras et al., 2023), emerging 
evidence highlights sex differences as a significant contributor to AD’s heterogeneity, influencing 
prevalence, disease progression, risk factors, and outcomes (Tremblay et al., 2023). Women, who 
represent about two-thirds of AD patients, exhibit a faster cognitive decline and higher 
susceptibility to AD (Hampel et al., 2018; Levine et al., 2021; Martinkova et al., 2021; Cui et al., 
2023). This increased vulnerability is partly due to women’s longer average lifespan compared to 
men’s (Hampel et al., 2018; Guo et al., 2022; Kommaddi et al., 2023). For instance, women outlive 
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men by approximately 4.5 years globally, with a higher number of 
women reaching the age of 85 and beyond (Zhu et al., 2021). This 
longevity contributes to their amplified risk of developing AD with age. 
However, age alone does not fully explain the higher incidence and 
lifetime risk of AD in women (Cui et al., 2023; Kommaddi et al., 2023). 
Therefore, exploring the genetics and mechanisms underlying sex 
differences in AD is crucial for developing sex-specific 
therapeutic strategies.

While AD predominantly impacts memory, nearly all patients 
exhibit psychological symptoms, including depression, which worsens 
with AD progression (Lyketsos et  al., 2011; Santos et  al., 2016). 
Depression is a prevalent and debilitating condition that impairs 
quality of life and imposes a significant socio-economic burden 
(Labonté et al., 2017; Malhi and Mann, 2018). Although it affects both 
sexes, women are twice as likely to suffer from depression, often 
experiencing more severe symptoms and functional impairments 
(Labonté et  al., 2017; Kundakovic and Rocks, 2022). Depressed 
individuals are over twice as likely to develop AD dementia compared 
to those without depression (Elser et al., 2023), underlining a notable 
link between the two conditions. Interestingly, both depression and 
AD are more common in women (Wang et al., 2022a), yet studies 
suggest that men with depression might be  at a higher risk of 
developing AD, and they are more likely to show depressive symptoms 
following AD onset (Fuhrer et  al., 2003; Dal Forno et  al., 2005; 
Underwood et al., 2019; Tremblay et al., 2023).

In this review, we  describe key progress in investigating sex 
differences in the mechanisms, genetics, and therapeutic approaches 
for depression and AD so far, along with current studies aimed at 
improving treatment precision and efficacy by identifying sex-specific 
traits of depression and AD, expediting their fate acquisition in 
precision medicine. We anticipate the course of this evolving line of 
research, which increasingly emphasizes sex variations in etiology and 
genetics. This enhanced focus holds promise for the eventual 
development of more efficacious and broadly relevant treatments for 
AD and depression in the future.

2 Sex differences in Alzheimer’s 
disease

2.1 Alzheimer’s disease

AD stands as the primary cause of dementia, rapidly becoming one 
of the most financially demanding, fatal, and burdensome conditions 
today and presents as a clinical syndrome characterized by progressive 
cognitive impairment that affects multiple domains or by 
neurobehavioral symptoms of sufficient severity to distinctly impact 
daily functioning (Scheltens et  al., 2021). Globally, AD affects 
approximately 50 million individuals, with its prevalence projected to 
increase by about 70% by the 2050s (Cui et al., 2023; Fronza et al., 2023). 
Most cases arise after age 65, termed late-onset AD, whereas cases before 
age 65 are less common, constituting about 5.5% and referred to as early-
onset AD (Long and Holtzman, 2019; Seath et al., 2023). Furthermore, 
AD is biologically defined by specific neuropathological features (Jack 
et al., 2018), including extracellular accumulation of β-amyloid (Aβ) in 
diffuse and neuritic plaque forms alongside the existence of 
intraneuronal neuropil threads and neurofibrillary tangles within 
dystrophic neurites consisting of polymerized hyperphosphorylated tau 

protein (Long and Holtzman, 2019). The amyloid cascade hypothesis 
proposed in 1992 by Hardy and Higgins suggests Aβ deposition in the 
brain initiates AD pathogenesis (Hardy and Higgins, 1992), with Aβ 
accumulating in cortical extracellular plaques approximately 10–30 years 
before dementia onset, contributing to subsequent the deposition of tau, 
synaptic loss, and cognitive decline (Long and Holtzman, 2019; Wang 
et al., 2022b). However, the hyperphosphorylated and aggregated tau 
protein may be the primary driving factor – and potentially the sole 
determinant – of neurodegeneration in AD (Aschenbrenner et al., 2018; 
Long and Holtzman, 2019; Wang et al., 2022b). These complexities 
contribute, at least in part, to the challenges in clinical intervention and 
diagnostics of patients with AD.

To date, four conventional Food and Drug Administration (FDA)-
approved drugs are available for treating cognitive performance and 
daily functioning in AD dementia: cholinesterase inhibitors (ChEIs) 
and anti-N-methyl-D-aspartate receptor modulators. However, these 
drugs confer benefits only during the initial year of treatment and 
have demonstrated limited long-term efficacy (Wang et al., 2022b). In 
2021, the FDA granted accelerated approval for aducanumab, an 
anti-Aβ drug designed for AD. However, this decision spurred intense 
debates over the insufficiency of evidence regarding its efficacy (Jaffe, 
2021; Zhang Y. et  al., 2023). More recently, lecanemab, another 
anti-Aβ drug, received full FDA approval (Mahase, 2023; Zhang 
Y. et al., 2023), with emerging evidence indicating a 27% reduction in 
cognitive decline rate over 18 months in treated AD patients (Høilund-
Carlsen et al., 2023). Despite these drugs’ proven beneficial effects in 
AD clinical trials, the risk of side effects, such as amyloid-related 
imaging abnormalities (ARIA), including hemosiderosis (ARIA-H), 
cerebral edema (ARIA-E), and cerebral microhemorrhage, should 
be  acknowledged (Jeremic et  al., 2023). Furthermore, as disease 
mechanisms become better defined, disease-modifying treatments 
such as anti-inflammatory agents, genetic modifications, and hormone 
therapies can target various factors to enhance cognitive function and 
halt disease progression (Long and Holtzman, 2019; Vegeto et al., 
2020; Wang et al., 2022b).

2.2 The role of sex differences in AD

Nearly two-thirds of AD patients are female, experiencing more 
pronounced cognitive impairment than males at an equivalent disease 
stage (Levine et  al., 2021; Zhu et  al., 2021; Lansdell et  al., 2023; 
Lutshumba et al., 2023). Although sex differences in AD dementia are 
evident, the underlying reasons remain unclear. Closing this 
knowledge gap is crucial, as comprehending mechanisms and genetics 
driving distinct susceptibility between AD-affected males and females 
informs personalized prevention and treatment strategies for this 
pervasive neurodegenerative concern (Lutshumba et  al., 2023). 
Therefore, this section provides current evidence on sex differences in 
AD, encompassing mechanisms, genetics, and therapeutic responses 
(Figure 1).

2.2.1 Sex differences in AD’s mechanisms and 
genetics

2.2.1.1 Sex hormones
Sex hormones, particularly estrogens and androgens, were found 

to significantly influence the sexual dimorphism observed in AD 

https://doi.org/10.3389/fnagi.2024.1301854
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnagi.2024.1301854

Frontiers in Aging Neuroscience 03 frontiersin.org

(Sochocka et al., 2023; Yeung et al., 2023). Another study also reported 
the role of sex hormones in creating distinct sex-based disparities in 
AD pathogenesis (Pike, 2017). These findings underline the 
significance of scrutinizing sex hormones in future AD research on 
sex differences.

2.2.1.1.1 Estrogen
Estrogens exert extensive neuroprotective effects in the adult 

brain, bolstering neural resilience and function while also specifically 
attenuating multiple aspects of AD-related neuropathology 
(Pike, 2017).

Additionally, estrogens play a vital role in the sexual differences 
observed in AD. Estrogen levels in women markedly decrease during 
menopause, and research by Karamitrou indicates that an earlier onset 
of menopause is associated with an increased risk of dementia (Uddin 
et al., 2020; Karamitrou et al., 2023; Mills et al., 2023). Menopausal 
reduction in β-estradiol can trigger S-nitrosylated C3 formation, 
resulting in synaptic phagocytosis, synapse loss, and ensuing cognitive 
decline in women with AD (Yang et  al., 2022). Studies have 
demonstrated that estrogens protect against cognitive impairment of 
AD resulting from a cholinergic deficit in women experiencing 
premature menopause in middle age (de Torre et al., 2022; Sochocka 
et  al., 2023). In addition, events that reduce lifetime exposure to 
estrogens are generally associated with an increased risk of AD among 

women. However, among men, estrogens do not show age-related 
reduction and are not significantly associated with the risk of AD 
(Pike, 2017).

2.2.1.1.2 Androgens
Testosterone, an androgen, acts as a key sex-related factor with a 

neuroprotective role by improving synaptic signaling, reducing Aβ 
deposition, and diminishing neuronal death (Bianchi, 2022; Kusters 
et al., 2023). Recent findings indicate minimal or insignificant effects 
of androgens in women, whereas higher androgen levels correlate with 
reduced AD risk in men (Kusters et al., 2023). Notably, aging men 
exhibit increased estrogen levels due to androgen aromatization, 
unlike women, providing enhanced cognitive protection in AD 
(Sumien et al., 2021). Overall, these studies offer fresh insights into 
men’s lower susceptibility to AD compared with those of women.

2.2.1.2 Brain structure
Previous experiments have shown marked differences between 

male and female brains (Zhu et  al., 2021), and therefore, delving 
deeper into the uneven impacts of sex on alterations in brain 
structures could furnish insights into the fundamental rationales and 
mechanisms underpinning the disparities in male and female brains 
while progressing through AD development. Men generally have 
larger total brain volumes and head sizes, which suggests a higher 

FIGURE 1

Sex differences related mechanisms and genetics in Alzheimer’s disease. This figure is about key discoveries regarding sex differences related 
mechanisms and genetics associated with Alzheimer’s disease.
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cerebral reserve capacity – the brain’s resilience to neuropathological 
damage – compared to women. This greater reserve may enable men 
to withstand more extensive pathological insults (Riley et al., 2002; 
Giedd et al., 2012; van Eijk et al., 2021). In addition, men with AD 
tend to experience less brain atrophy and subsequent memory loss 
compared to women with AD (Sandau et al., 2022). The connectivity 
between the hippocampus, brainstem, and precuneus cortex shows 
more strength in men than in women (Williamson et  al., 2022), 
intensifying female susceptibility to swift hippocampal atrophy and 
potential cognitive regression. Notably, the accumulation of 
phosphorylated tau in the entorhinal cortex occurs more rapidly and 
to a greater extent in women than in men, contributing to the elevated 
susceptibility of women to AD compared with that of men (Hu et al., 
2021; Chen X. L. et al., 2023), which indicates that the mechanisms 
that contribute to the entorhinal cortex’s notable susceptibility to AD 
could be closely connected to those responsible for the sex differences 
in AD pathogenesis.

2.2.1.3 Neuroinflammation
Neuroinflammation is widely acknowledged as a pivotal element 

in AD’s pathogenesis, contributing to neurodegeneration and 
cognitive impairment. It is predominantly attributed to central 
nervous system (CNS) immune cell dysfunction, particularly 
involving astrocytes and microglia. A large number of studies have 
explored the impact of sex on neuroinflammation in AD (Guillot-
Sestier et al., 2021; Singh, 2022; Cui et al., 2023; Tamburini et al., 
2023). Specifically, one study that explored sex differences in microglia 
using post-mortem tissue from male and female AD patients revealed 
a noteworthy increase in the count of dystrophic microglia in AD 
females (O'Neill et al., 2022). Another animal study concluded that 
gene upregulation linked to microglial activation was more prominent 
in female APP/PS1 mice compared with male mice and this difference 
in gene expression contributed to decreased microglial phagocytic 
activity and heightened amyloidosis in females (Guillot-Sestier et al., 
2021). Moreover, the study revealed that sex-related variations 
observed in animal models were also evident in human AD patient 
post-mortem brain tissues. Specifically, in the post-mortem brain 
tissue of female AD patients, there was a significant increase in 
amyloid plaque coverage in the cortical regions compared to male 
patients. In contrast, male patients showed more pronounced amyloid 
staining in their vasculature. Moreover, microglia from male AD 
patients predominantly exhibited an amoeboid shape with little 
morphological heterogeneity. In contrast, brain tissues from female 
AD patients demonstrated marked heterogeneity, with few amoeboid 
cells, some ramified cells, and numerous rod-shaped microglia 
(Guillot-Sestier et al., 2021). Furthermore, research demonstrated that 
female mice astrocytes displayed a more robust inflammatory 
response marked by elevated IL-6, IL-1β, and NF-κBIA levels, while 
male mice astrocytes showcased elevated anti-inflammatory cytokine 
IL-10 levels and increased survival (Lennol et al., 2021). Even though 
the majority of studies suggest amplified neuroinflammation in 
females, one study that employed Tau P301S transgenic mice unveiled 
more significant alterations in inflammatory induction and astrocyte 
activation in male mice than in female mice (Sun et al., 2020). In 
conclusion, these findings collectively confirm intensified microglial 
activation and increased inflammation in females with AD. However, 
the results of prior investigations pertaining to sex differences in 
astrocyte activation exhibit inconsistency. Specifically, male astrocyte 

activation has been concluded to display a greater increase compared 
with female astrocyte activation.

2.2.1.4 Sex differences in AD’ s genetics

2.2.1.4.1 Sex-specific genes in AD
Sex disparities significantly influence AD susceptibility, yet their 

distinct roles have been underexplored in AD genetics (Nebel et al., 
2018). Therefore, it is essential to identify the genetic factors that 
underlie sex differences in AD, as this can lead to personalized 
treatment and enhance the accuracy of disease risk assessment. The X 
chromosome constitutes 5% of the genome in both men and women 
(Davis et  al., 2021). A transcriptome analysis conducted on the 
prefrontal cortex of AD patients of both sexes unveiled that the gene 
expression of the X chromosome (29 genes) was significantly linked 
to cognitive alterations exclusively in women, whereas this association 
was not observed in men, wherein 19 genes of the X chromosome 
exhibited an association with decelerated cognitive decline among 
women (Davis et  al., 2021). Furthermore, one study identified 
ZBTB7C as a new sex-specific AD risk factor and through meticulous 
scrutiny found that the minor allele rs1944572 of ZBTB7C raised AD 
risk in women but safeguarded men (Prokopenko et  al., 2020). 
Notably, presenilin-1 (PSEN1) mutations cause most familial AD cases 
(Hurley et  al., 2023), and emerging findings indicate that female 
PSEN1 carriers exhibit a higher level of plasma neurofilament light 
(NFL), a biomarker representing neurodegeneration, compared with 
male carriers (Vila-Castelar et al., 2023), suggesting that women may 
experience a higher rate of neurodegeneration than men.

2.2.1.4.2 ApoE gene
The apolipoprotein E (ApoE) gene is the dominant and strongest 

genetic risk factor for AD, displaying sex differences in its association 
with the disease (Hohman et al., 2018; Zhang L. et al., 2023). More 
particularly, AD is more frequently developed in female carriers of 
ApoE-ε4 compared with age-matched males (Sandau et al., 2022). The 
ApoE gene, located on chromosome 19, consists of three common 
alleles that encode three protein isoforms: ApoE2, ApoE3, and ApoE4, 
which differ at two amino acid positions (Raulin et al., 2022; Zhang 
L. et al., 2023). Notably, among these isoforms, ApoE4 significantly 
increases the risk of AD, while ApoE2 reduces the risk by 
approximately 50% and contributes to longevity (Raulin et al., 2022). 
The interactive effects of sex and ApoE genotype impact wide 
neuropathological processes linked to AD. During the cognitively 
normal stage of AD, ApoE-ε4 noncarriers of female display 
significantly higher Aβ levels compared with males, whereas ApoE-ε4 
carriers among males exhibit considerably greater Aβ burden than 
noncarriers (Pan et  al., 2023). Furthermore, mild cognitive 
impairment (MCI) represents the prodromal stage of AD (Reas et al., 
2023), and previous studies indicated that male ApoE-ε4 carriers with 
MCI exhibited higher levels of amyloid deposition in the older age 
group, while female ApoE-ε4 carriers with MCI showed increased 
amyloid deposition in the younger age group (Wang J. et al., 2023). 
The impact of ApoE on the pathological processes of AD in various 
brain regions also differs between sexes. More specifically, a 
quantitative 18F-flortaucipir PET study conducted on individuals with 
cognitive impairment revealed that the dosage of the ApoE-ε4 gene 
had a sex-specific effect on tau deposition in regions like the amygdala, 
medial temporal lobe, lateral temporal lobe, posterior cingulate cortex, 
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entorhinal cortex, parahippocampal gyrus, and inferior temporal 
regions (Yan et al., 2021). Interestingly, this ApoE-ε4 allele’s dose-
dependent effect on specific tau deposition in brain regions was 
observed only in men, not women (Yan et al., 2021).

2.2.1.5 Sex differences in AD’s therapeutic opportunities
The heterogeneity in the progression and manifestation of disease 

among AD patients has been recognized as a pivotal issue in the 
present approach for developing AD novel therapies, and sex is a 
critical variable contributing to the heterogeneity of this disease 
(Ferretti et al., 2018), making it essential to focus on considering the 
role of sex differences in AD therapies. The current treatment 
strategies regarding sex differences in AD are showed in Table 1.

2.2.1.5.1 Cholinesterase inhibitors and anti-NMDA
The FDA has sanctioned three ChEIs: rivastigmine, donepezil, 

and galantamine, along with the uncompetitive NMDA receptor 
antagonist called memantine, for mitigating dysfunction and cognitive 
impairment associated with symptomatic AD (Long and Holtzman, 
2019; Thakral et  al., 2023). However, existing pharmacological 
interventions for AD dementia provide merely temporary relief from 
symptoms instead of modifying the underlying disease progression 
(Marasco, 2020; Zhang Y. et  al., 2023). Noteworthy is a study 
indicating a higher likelihood of early-onset AD in males treated with 
memantine, whereas females were more linked to late-onset AD 
(Miller et  al., 2022), which this divergence in association could 
possibly stem from sex-related differences in the effectiveness of 
memantine treatment. However, understanding the precise 
mechanism requires further investigation and worth noting is 
memantine’s potential slightly negative impact on female rat skeletal 
health relative to males (Londzin et al., 2023). Interestingly, during the 
prodromal stages of AD, treatment with rivastigmine has been 
observed to delay the progression from MCI to AD in women, but not 
in men. In contrast, the treatment of ChEIs in the advanced stages of 
AD has exhibited more selective and pronounced beneficial effects in 
men (DuMont et al., 2023). Despite the limited attention given to the 
existence of sex differences regarding the efficacy of memantine and 

ChEIs in AD thus far (Canevelli et al., 2017), this topic represents a 
significant area that warrants future research in AD.

2.2.1.5.2 Anti-amyloid monoclonal antibody drugs
The amyloid cascade hypothesis is central to AD pathogenesis and 

provides a valuable conceptual framework for therapeutic 
advancements in this domain (Long and Holtzman, 2019; 
Yadollahikhales and Rojas, 2023). This hypothesis focuses AD 
treatment approaches on amyloid clearance to mitigate disease 
progression. Thus far, both lecanemab and aducanumab, targeting Aβ 
drugs in AD, have achieved key milestones with FDA approval 
through an accelerated approval pathway (Yadollahikhales and Rojas, 
2023). However, one recent investigation has indicated that 
donanemab, another anti-Aβ drug for AD, likewise showcases clinical 
effectiveness (Høilund-Carlsen et  al., 2023). Crucially, sex-based 
differences in responses to lecanemab and donanemab in AD patients 
might exist. One study’s primary endpoint was the alteration in the 
Clinical Dementia Rating–Sum of Boxes score, a scale ranging from 0 
to 18, where higher values signify greater impairment. The findings of 
this study indicated that for male participants, the between-group 
comparison (lecanemab vs. placebo) exhibited a statistically significant 
difference, and in contrast, the same comparison among female 
participants lacked statistical significance, which suggested that 
lecanemab’s efficacy might be limited to men only (van Dyck et al., 
2023). On the other hand, another study involved a subgroup analysis, 
assessing the change in the integrated Alzheimer Disease Rating Scale 
(iADRS) score, which ranges from 0 to 144, with lower scores 
indicating greater impairment, and interestingly, this analysis revealed 
the existence of sex differences in the efficacy of donanemab, showing 
that it may be  effective exclusively in women (Sims et  al., 2023). 
Further exploration of the causes and mechanisms underlying the 
observed sex differences between lecanemab and donanemab is 
essential in future research.

2.2.1.5.3 Hormone therapy (HT)
Though hormone therapy (HT) holds potential for AD treatment, 

evident sex differences in treatment response exist. Overall, women 
appear to benefit more from HT in AD than men do, often linked to 
the more pronounced estrogen decline following menopause 
(Karamitrou et al., 2023). A prior study corroborates the idea that 
females may be  protected by HT compared with men, possibly 
delaying AD onset as long as estrogen levels remain stable (Kommaddi 
et al., 2023).

Significantly, female sex hormones exhibit anti-aging properties 
and harbor enduring neuroprotective effects (Sochocka et al., 2023). 
Consequently, employing menopausal HT from the onset of 
menopause until the age of 60 could potentially establish a “window 
of opportunity” for diminishing the risk of MCI and AD among 
women in their later years (Sochocka et  al., 2023). However, it is 
essential to acknowledge that recent findings from one study 
concerning HT in AD treatment have yielded mixed results, implying 
an elevated risk of AD in women undergoing prolonged HT (Mills 
et al., 2023). Another emerging study also highlights a 24% higher AD 
dementia risk linked to estrogen–progestin treatment during 
perimenopause (Pourhadi et al., 2023).

The effectiveness of androgen therapy in preventing and treating 
AD in men with age-related testosterone decline is supported 
(Rosario et  al., 2012), and recent evidence indicates that higher 

TABLE 1 Sex differences in Alzheimer’s disease therapeutic opportunities.

Drugs Therapy effects

Male Female

ChEIs Rivastigmine ++a ++b

Donepezil NA NA

Galantamine NA NA

Anti-NMDA memantine NA −

Disease modifying 

therapy

Lecanemab ++ +

Donanemab + ++

HT Estrogen NA ++

Androgen ++ +

arepresents that the therapeutic efficacy occurred in the early stage of AD; brepresents that 
the therapeutic efficacy occurred in the later stage of AD; + represents the general 
therapeutic efficacy; ++ represents the better therapeutic efficacy; − represents poor 
therapeutic efficacy; NA represents that the therapeutic efficacy is unclear.
AD, Alzheimer’s disease; ChEIs, Cholinesterase inhibitors; Anti-NMDA, anti-N-methyl-D-
aspartate; HT, Hormone therapy.
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androgen concentrations correlate with reduced AD risk in men, with 
minimal effects in women (Kusters et  al., 2023). In contrast, a 
randomized controlled trial reported that 1 year of testosterone 
treatment in men with AD did not show any improvement in memory 
or other cognitive functions compared with placebo (Resnick 
et al., 2017).

3 Sex differences in depression

3.1 Depression

Depression is a prevalent and debilitating disease that significantly 
reduces the quality of life and is associated with an increased risk of 
suicide. It frequently recurs, with the risk increasing after each episode. 
Approximately 80% of patients experience at least one further episode 
during their lifetime, contributing to a major global mental health and 
economic burden and making it the leading cause of mental-health-
related disability worldwide (Malhi and Mann, 2018; Marwaha et al., 
2023). The World Health Organization (WHO) ranked major depressive 
disorder (MDD) as the third leading cause of global disease burden in 
2008 and projected it to become the primary cause by 2030 (Malhi and 
Mann, 2018). For many individuals with depression, onset occurs in 
mid-to-late adolescence (e.g., ages 14 to 25 years), with a median 
12-month prevalence of 4–5% in this age group (Thapar et al., 2012). 
MDD also negatively affects relationships, employment, and education, 
and it is prospectively associated with obesity, early mortality, and 
cardiac disease (Marwaha et al., 2023). Furthermore, while existing 
antidepressant treatments prove effective, a substantial proportion of 
individuals with MDD (about one-third to half) do not have respond to 
multiple antidepressants, and more may only achieve a partial response 
(Cipriani et al., 2018). Additionally, depressed patients typically have to 
await at least 4 weeks before an underlying response to current 
antidepressants occurs, and these medications often come with 
numerous side effects, such as loss of libido, agitation, headache, anxiety, 
and gastrointestinal symptoms, among others (Marwaha et al., 2023). 
Therefore, it is crucial to develop new agents or treatment modalities 
that present a more rapid onset of action, better tolerability, and greater 
effectiveness than existing antidepressants for individuals who fail to 
respond to current treatments.

3.2 The role of sex differences in 
depression

Depressive disorders are evenly distributed between boys and girls 
in childhood. However, a sex imbalance emerges at the age of 12 and 
peaks during adolescence, with young girls being up to three times more 
likely to be affected than young boys (Rossi et al., 2022). Furthermore, 
longitudinal studies conducted across diverse populations worldwide 
have confirmed that women are 2–5 times more likely to suffer from 
depression during perimenopause compared to the late premenopausal 
period (Bromberger and Epperson, 2018). Depression is more prevalent 
in women than in men (Kundakovic and Rocks, 2022), suggesting the 
existence of sex differences in depression, and importantly, conducting 
a thorough investigation of the genetic and mechanistic sex differences 
that contribute to depression is crucial for the development of more 
effective and universally satisfactory therapies (Figure 2).

3.2.1 Sex differences in depression’s mechanisms 
and genetics

3.2.1.1 Sex hormones
Females are twice as prone to depression than men are (Kundakovic 

and Rocks, 2022), displaying a stronger inclination toward severe 
symptoms (Labonté et  al., 2017), and yet the precise mechanisms 
behind this remain unclear. Epidemiological investigations have 
documented that women manifest a heightened propensity for 
depressive disorders during different phases of hormonal fluctuation, 
such as puberty and menopause (Morssinkhof et al., 2020), suggesting 
that sex hormones might significantly contribute to this disparity. In 
this context, we delve into the discussion of three pivotal sex hormones: 
estrogen, androgens and ovarian progesterone.

3.2.1.1.1 Estrogen
Research reveals that puberty-related hormonal changes 

contribute to sex-based disparities in depression prevalence 
(Morssinkhof et al., 2020). Notably, females who experience early 
onset of puberty face an elevated vulnerability to depression compared 
with their peers (MacSweeney et  al., 2023), and women in the 
perimenopausal and postmenopausal stages exhibit a significant 
association with depressive disorders (Zhang J. et al., 2023), which 
may arise from the fact that depressive symptoms during these phases 
are more closely linked to fluctuations in estrogen levels. Significantly, 
administering exogenous estrogen can alleviate the severe hormonal 
fluctuations experienced by women during perimenopause and 
postmenopause. Intriguingly, the effectiveness of exogenous estrogen 
in mitigating the adverse effects of estrogen fluctuations depends more 
on the age of the women rather than the dosage of the administered 
estrogen (Zhang J. et  al., 2023). Overall, a relative fluctuation in 
estrogen appears to correspond with heightened depressive symptoms 
(Morssinkhof et al., 2020), and these findings contribute to the partial 
elucidation of the sex differences in depression prevalence.

3.2.1.1.2 Androgens
Androgens, including testosterone, dehydroepiandrosterone 

(DHEA), androstenedione, and 5α-dihydrotestosterone (5α-DHT), 
play a pivotal role in depression as sex-related factors (de Wit et al., 
2021; Bianchi, 2022; Kische et al., 2022), and the association between 
depression and androgens has been well-established (Kische et al., 
2022), with notable sex differences. Specifically, hypoandrogenic men 
exhibit a higher prevalence of MDD, while women with higher levels 
of free testosterone or supraphysiological androgens show a higher 
MDD prevalence (de Wit et al., 2021).

Notably, substantial studies suggests that low testosterone levels in 
aged men are correlated with an increased incidence of depression 
(Jankowska et al., 2010; Hauger et al., 2022; Handelsman and Wittert, 
2024). Furthermore, one study demonstrated that DHEA and 
testosterone exhibited inverse associations with MDD among males, 
whereas no significant associations were observed among females 
(Kische et al., 2022).

3.2.1.1.3 Ovarian progesterone
Women exhibit a higher tendency toward depression during 

menopause compared to the premenopausal phase, possibly due to the 
cessation of ovarian function and a decline in serum progesterone 
levels (Sovijit et al., 2021). However, the role of ovarian progesterone 
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in depression remains controversial. One study suggests that reduced 
activity of progesterone receptors may contribute to depression-like 
behaviors in mice (Beckley et al., 2011). In addition, another study 
observes that progesterone treatment in ovariectomized (OVX) mice 
can ameliorate depressive and anxious behaviors by altering the gut 
microbiome composition, particularly by increasing the lactobacillus 
count (Sovijit et al., 2021). Yet, it’s important to note that research 
among rural Indian women found no significant link between 
progesterone and symptoms of depression (Walther et  al., 2019). 
Similarly, a study on premenstrual dysphoric disorder (PMDD) 
among Taiwanese women reported no significant statistical correlation 
between progesterone levels and depression or anxiety scores (Hsiao 
et al., 2004).

3.2.1.2 Neural circuits
Depression is frequently conceptualized as “circuitopathy” (Lu 

et al., 2022), displaying sex-specific variations. However, the intricate 
mechanisms that contribute to the sexual dimorphism in neural 
circuits associated with depression remains elusive. The prominent 
projection of the dopaminergic circuit connects the ventral tegmental 
area (VTA) in the midbrain to the basolateral amygdala (BLA) 
(Manion et  al., 2022), which plays a significant role in emotional 
processing related to depression. One study has identified that although 
the size of BLA and the density of dopaminergic axons within BLA are 

similar between female and male mice, the density of dopaminergic 
synaptic boutons in the BLA is significantly higher in male brains 
compared with female brains (Manion et al., 2022), indicating that men 
may be more effective in alleviating their depressive symptoms than 
women are. In addition, anhedonia, mediated by the reward circuitry, 
including the nucleus accumbens (NAc), is a key feature in patients 
with MDD, which mainly manifests as a difficulty using rewards to 
modulate depressive behavior. The NAc receives dopaminergic inputs 
from the VTA, signaling motivational salience, and then outputs to 
basal ganglia circuits to drive motivated actions related to depressive 
diseases (Bangasser and Cuarenta, 2021). Interestingly, although 
studies in rodents have reported stress-induced sex differences in the 
NAc circuitry, functional changes in the NAc and anhedonia-related 
structural changes do not differ by sex in humans (Williams et al., 2020; 
Bangasser and Cuarenta, 2021). Furthermore, another study using 
animal models of depression has indicated sex differences in the locus 
coeruleus (LC) norepinephrine (NE) circuitry, and the LC NE circuitry 
plays a crucial role in mediating sex differences in arousal, which may 
contribute to several symptoms of MDD, such as lack of concentration, 
restlessness, and rumination, among others (Bangasser and Cuarenta, 
2021; Williams et al., 2022). The dendritic architecture of LC neurons 
in female rats is more complex compared with that in males, and 
female LC dendrites receive significantly more synaptic input (Williams 
et al., 2022), which may underlie the heightened arousal in females, 

FIGURE 2

Sex differences related mechanism and genetics in depression. This figure is about key discoveries regarding sex differences related mechanisms and 
genetics associated with depression.
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potentially contributing to the sex differences in the incidence of 
depressive symptoms.

3.2.1.3 Neuroinflammation
Neuroinflammation is implicated in depression, significantly 

contributing to its pathophysiology (Sørensen et  al., 2022, 2023). 
MDD patients exhibit elevated pro-inflammatory cytokine levels, and 
post-mortem examinations of depressed patients’ brains have found 
the presence of neuroinflammation (Santos et al., 2016; Malhi and 
Mann, 2018). However, growing evidence suggests sex-specific 
differences in underlying neuroinflammation mechanisms (Achtyes 
et al., 2020; Wang et al., 2022a). For instance, in one study, both male 
and female mice underwent a four-week intervention of chronic 
unpredictable mild stress aimed at assessing depressive-like 
phenotypes, which revealed more significant trends in female mice 
regarding iNOS/Arg-1 and TNF-α/IL-10 compared with male mice 
(Liu et al., 2019), suggesting an increased pro-inflammatory tendency 
in females following exposure to stress. Nevertheless, conflicting 
findings have been reported about inflammatory dysregulation in 
depression across sexes. Despite women reporting more somatic 
symptoms and higher vulnerability to inflammation’s effects than men 
did, the connection between stress-related depressive conditions and 
low-grade inflammation exhibited more consistent prevalence in men 
than in women (Bekhbat and Neigh, 2018), and interestingly, 
C-reactive protein, a depression-related inflammatory biomarker, is 
exclusively associated with depression in men, not women (Bekhbat 
and Neigh, 2018). Additionally, neuroinflammation can result from 
neonatal immune activation (NIA) (Khantakova et al., 2022), and one 
study investigated whether depression-like behavior emerges 
following NIA in rodent models, which indicated that adult males 
with a history of NIA demonstrate pronounced depression-like 
behavior in response to aversive testing conditions, but not observed 
in females (Khantakova et al., 2022).

3.2.1.4 Sex differences in depression’ s genetics
Genetic factors significantly impact depressive symptoms (Oliva 

et al., 2023), and multiple studies have unveiled sex-specific differences 
in the genetic underpinnings of depression (Labonté et  al., 2017; 
Gururajan et al., 2019; Issler et al., 2020; Miyata et al., 2020; Paden 
et  al., 2020), which this genetic divergence could enhance our 
understanding of the elevated prevalence of depression in females. To 
be specific, one study showed the presence of the neuron enrichment 
gene LINC00473, which has been identified as a sex-specific factor 
that contributes to stress resilience, and it was exclusively 
downregulated in the prefrontal cortex of depressed women, not men 
(Issler et al., 2020). Another study reported that downregulation of the 
Dusp6 gene increased susceptibility to stress by enhancing the 
excitability of glutamatergic pyramidal neurons in the ventromedial 
prefrontal cortex through extracellular-signal-regulated kinase (ERK) 
signaling activation, especially in females rather than males, 
suggesting that the Dusp6-dependent enhancement of ERK signaling 
in the ventromedial prefrontal cortex leads to depressive symptoms in 
women, while a similar enhancement in men does not result in a 
noticeable effect (Labonté et  al., 2017; Gururajan et  al., 2019). 
Additionally, there exist a multitude of significant genes that vary 
between sexes and are linked to depression, like ORM1, ORM2, 
RNF32, SLC25A5, Thbs1, and Cadps2 etc., manifesting sex-specific 
impacts on depression risk (Miyata et al., 2020; Paden et al., 2020). In 

conclusion, depression in both sexes may stem from genetic 
alterations, providing a foundation for comprehending the 
mechanisms behind depression.

3.2.2 Sex differences in depression’s therapeutic 
opportunities

Current antidepressant treatments demonstrate low remission 
rates, with efficacy typically taking weeks to months after treatment 
initiation, and even after achieving treatment response, depressed 
patients show high rates of relapse to depressive disorders (Duman 
et  al., 2019), which may be  attributed, at least in part, to the 
complexities arising from sex differences in depression therapy. 
Table 2 shows current treatment strategies regarding sex differences 
in depression.

3.2.2.1 Antidepressants
Common antidepressants, such as tricyclics (TCAs) and selective 

serotonin reuptake inhibitors (SSRIs), are used for depression 
treatment, but sex-based disparities influence their effectiveness and 
side effects (Pavlidi et al., 2021). In humans, SSRIs are more effective 
in women, particularly among premenopausal women, while TCAs 
are more effective in men (LeGates et al., 2019). In rodents, females 
show greater sensitivity to ketamine, a fast-acting antidepressant, yet 
males experience more lasting effects (Franceschelli et  al., 2015; 
LeGates et al., 2019; DuMont et al., 2023), hinting the presence of sex 
differences in the durability of antidepressant medications. 
Furthermore, sex differences were observed in the side effects of 
antidepressants, such as female patients displayed reduced tolerability 
of TCAs and experienced side effects including nausea, abnormal 
vision, somnolence, dizziness, and constipation, whereas male patients 
reported urinary complaints and experienced more significant sexual 
dysfunction (LeGates et al., 2019).

3.2.2.2 Sex hormones
Sex hormones not only contribute to the pathogenesis of 

depression but also serve as one of essential approach in its treatment, 

TABLE 2 Sex differences in depression’s therapeutic opportunities.

Drugs Therapy effects

Male Female

TCA ++ +

SSRI + ++

ketamine a b

HT

Estrogen NA ++

Testosterone ++ NA

Other therapies

Lifestyle interventions + ++

vitamin D NA ++

ECT + +

a The therapeutic efficacy is sensitive; b The therapeutic efficacy is lasting effects; + represents 
the general therapeutic efficacy; ++ represents the better therapeutic efficacy; − represents 
poor therapeutic efficacy; NA represents that the therapeutic efficacy is unclear.
AD, Alzheimer’s disease; ECT, Electroconvulsive therapy; HT, Hormone therapy; SSRIs, 
Selective serotonin reuptake inhibitors; TCA, Tricyclic.
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and to be specific, both estrogens in women and androgens in men 
have been implicated in the treatment of depression. Estradiol 
therapies have demonstrated effectiveness in alleviating depressive 
symptoms, especially in women experiencing significant fluctuations 
or reductions in ovarian hormones, such as during the perimenopause 
and postpartum periods (Zhang J. et al., 2023). Likewise, testosterone 
therapies have shown efficacy in alleviating depression in men with 
hypogonadism (Eid et al., 2019). Additionally, sex hormones may 
influence the efficacy of antidepressants like SSRIs, and these drugs 
have been found to be  more effective in premenopausal women 
compared with postmenopausal women. However, once HT is 
administered, the efficacy of SSRIs increases in postmenopausal 
women (Eid et al., 2019; Pavlidi et al., 2021).

Additionally, it is noteworthy that research has indicated that 
estrogens can enhance the antidepressant-like action of fluoxetine, a 
selective serotonin reuptake inhibitor, as well as desipramine and 
venlafaxine, which are selective noradrenaline reuptake inhibitors and 
mixed serotonin/noradrenaline reuptake inhibitors, respectively, 
substantially shortening the latency of their effects (Estrada-Camarena 
et al., 2010). Moreover, testosterone replacement therapy has yielded 
interesting results in the efficacy of antidepressants and an animal 
study assessing the impact of castration and testosterone replacement 
(1 mg per 100 g body weight) has shown that the effectiveness of 
fluoxetine is modulated by testosterone levels, such as the loss of the 
antidepressant effect of fluoxetine in castrated male rats (Busch 
et al., 2000).

3.2.2.3 Other therapies
Besides common medications, adopting a healthy lifestyle can 

help alleviate depression in adults (Wang W. C. et  al., 2022). 
Sex-specific differences in lifestyle interventions exist, with physical 
activity showing promise in improving women’s overall mental health 
than men (Zheng et al., 2023). Because low vitamin D levels are linked 
to higher depression risk, particularly in women, preventing vitamin 
D deficiency is crucial in mitigating their depression (Hinata et al., 
2023). Electroconvulsive therapy (ECT) is the most effective treatment 
for MDD, demonstrating equal effectiveness regardless of sex (Blanken 
et al., 2023), signifying that remission rates following ECT remain 
unaffected by sex.

4 Sex differences in the relationship 
between AD and depression

AD represents the most prevalent form of dementia, and nearly 
all patients experience neuropsychiatric symptoms, with depression 
being one of the most common psychiatric disorders, in conjunction 
with cognitive and memory deficits (Lyketsos et al., 2011; Santos et al., 
2016; Depp et al., 2023; Rodriguez Salgado et al., 2023; Tremblay et al., 
2023). Importantly, depression not only manifests as an early symptom 
of AD dementia but also increases the risk of AD, and conversely, 
depressive disorders can also arise in response to cognitive decline due 
to AD (Elser et al., 2023; Liao et al., 2023), suggesting a crucial and 
bidirectional association between AD and depression. Significantly, 
different stages of depression are associated with the risk of dementia. 
Specifically, early depression has been consistently linked to more than 
doubling the risk of dementia, but research on late-life depression and 
the risk of dementia has been conflicting (Byers and Yaffe, 2011). 

Nevertheless, one study has suggested that late-life depression may 
increase the risk of AD (Diniz et al., 2013). Notably, both depression 
and AD display a significant sex disparity, with a higher prevalence 
observed among women (Wang et al., 2022a), but existing research on 
sex differences in the association between AD and depression 
produces incongruent findings. A recent study noted men appearing 
to be more susceptible to developing depressive symptoms following 
the onset of AD (Tremblay et  al., 2023), which may arise from 
overlapping symptoms between AD dementia and depression, as well 
as the absence of consensus criteria to diagnose AD-related 
depression. Likewise, another study revealed that men diagnosed with 
depression have a higher risk of developing AD (Elser et al., 2023), but 
men may be less inclined to seek healthcare compared with women, 
resulting in consistent underestimation of the prevalence of depression 
among men. Altogether, these findings underscore the importance of 
investigating sex differences in the underlying association between 
AD and depression.

4.1 Sex differences in AD and depression’s 
mechanisms and genetics

4.1.1 Stress, sex hormones and receptors of sex 
hormones

Stress is increasingly recognized as a catalyst for depression onset 
as well as a causal factor in the occurrence and progression of AD 
pathology (Sotiropoulos et  al., 2008). One study conducted amid 
COVID-19 confinement revealed that, when exposed to identical 
stressors, individuals with amyloid positivity were prone to 
experiencing more pronounced depressive symptoms (Akinci et al., 
2022). This observation implies that AD pathology might augment the 
frequency and intensity of depression in reaction to stressors. Of note, 
corticotropin-releasing hormone (CRH) tightly regulates the 
hypothalamic–pituitary–adrenal (HPA) axis, serving as a critical 
mediator in the stress response, and upon the action of CRH, 
adrenocorticotropic hormone (ACTH) is released, subsequently 
leading to the release of corticosteroids, such as glucocorticoids 
(Swaab et  al., 2005). Long-term exposure to glucocorticoids, the 
primary stress hormones, can detrimentally affect the brain (Du et al., 
2023), thereby acting as a risk factor for both AD and depression. 
Cortisol, the most prominent glucocorticoid in human, was found at 
higher levels in women than in men (Swaab et al., 2005), which may 
partially account for the higher incidence of depressed women with 
AD than depressed men. Moreover, a close interaction between the 
HPA axis and the hypothalamic–pituitary–gonadal (HPG) axis has 
been well-established, that is, the activating roles of sex hormones on 
the HPA axis have been demonstrated (Barel et al., 2018), indicating 
that the stress system is influenced by fluctuating levels of sex 
hormones and in AD-related depression. Both sexes revealed 
increased HPA axis activity and reduced HPG axis activity, and 
women exhibited lower plasma levels of estrogen, while men 
experienced reduced testosterone levels (Swaab et al., 2005).

In addition, it is noteworthy that sex hormones may regulate the 
activity of HPA axis in both humans and rats through their respective 
receptors, such as the estrogen receptor α or β (ERα and ERβ) and 
androgen receptors (ARs), which act directly on the CRH gene 
promoter (Lu et al., 2015). Thus, numerous studies have delved into 
the role of sex hormones receptors in mediating sex disparities in the 
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AD and depression (Ishunina et al., 2002; Zhao et al., 2015; Rybka 
et al., 2022; He et al., 2023). To be specific, one study revealed that 
genetic polymorphisms of ERβ have shown an association with 
cognitive impairment and an elevated risk of AD, particularly in 
women as compared with men (Zhao et al., 2015). Of note, the nucleus 
basalis of Meynert (NBM) and the vertical limb of the diagoenal band 
of Broca (VDB) are pivotal cholinergic nuclei within the human basal 
forebrain, a complex that is impacted in AD (Ishunina et al., 2002). 
One study indicated that cytoplasmic ARs exhibited a marked 
reduction in the NBM and the VDB specifically among AD women 
but not among AD men (Ishunina et al., 2002) and this finding implies 
women’s higher susceptibility to AD compared with those of men. 
Significantly, androgen actions through ARs reduce stress-related 
behaviors and HPA axis responses, resulting in an amelioration of 
depressive mood especially among men (Rybka et al., 2022). Moreover, 
ERβ expression is enriched in the dorsal raphe nucleus (DRN), a 
region closely linked to emotion regulation (He et al., 2023). Deletion 
of DRN-specific ERβ leads to slightly elevated anxiety in women but 
does not affect anxiety levels in men (He et al., 2023), highlighting the 
sex-specific involvement of DRN ERβ in emotional 
behavior regulation.

4.1.2 Hippocampal formation
The hippocampus, a crucial structure for memory and cognition, 

holds a key role in depression and AD development (Idunkova et al., 
2023; Ortega-Cruz et  al., 2023). Sex differences in hippocampal 
volume (HV) may contribute to depression and AD pathogenesis, 
such as women may experience faster hippocampal atrophy, resulting 
in a greater decrease in hippocampal volume than men (DuMont 
et  al., 2023), and thus, women could be  more susceptible to 
experiencing greater cognitive decline in the context of depression in 
AD compared with men. Decreased hippocampal volume is associated 
with increased AD pathology, which is more pronounced in women, 
especially in the MCI stage (Yagi and Galea, 2019). However, while 
both depressed men and women demonstrated a more pronounced 
decline in hippocampal volume, the greater decline was observed in 
men compared with women (Yagi and Galea, 2019). In rats with AD, 
higher hippocampal tumor necrosis factor (TNF)-α levels induced an 
upsurge in depressive symptoms in both sexes. Intriguingly, female 
AD rats showed fewer depression-related behaviors, linked to 
increased hippocampal brain-derived neurotrophic factor (BDNF), 
crucial for neuronal differentiation and preservation, suggesting that 
BDNF mitigates AD cognitive impairment and holds antidepressant 
properties, observed in females, but not in males with AD (Linnemann 
and Lang, 2020; Naghibi et al., 2021). Moreover, the combination of 
estrogens with antidepressants like fluoxetine has been noted to 
enhance neurogenesis and dendritic arborization in the hippocampus, 
correlating with more significant antidepressant-like effects in female 
rats (Vega-Rivera et al., 2015).

4.1.3 Neuroinflammation
Neuroinflammation has a significant impact on the progression 

of both AD and depression (Linnemann and Lang, 2020). Elevated 
levels of TNF-α and interleukin-6 (IL-6) within the peripheral blood 
are closely associated with MDD (Dowlati et  al., 2010). Likewise, 
heightened levels of IL-1β, IL-6, IL-12, IL-18, TGF-β, and TNF-α are 
linked to AD (Swardfager et  al., 2010), and importantly, patients 
diagnosed with both AD and depression demonstrate the highest 

levels of IL-6 and TNF-α in their circulatory system (Santos et al., 
2016). Interestingly, sex differences emerge in the neuroinflammatory 
mechanisms underlying AD and depression, that is, women with AD 
and depression appear more susceptible to the impact of 
neuroinflammation compared with men (Bekhbat and Neigh, 2018; 
Cui et al., 2023). Remarkably, the sex differences in the function of 
microglia may be one of the contributing factors to the variations in 
the prognosis and susceptibility of depression and AD between men 
and women (Chen et al., 2021) and in several study, female mice with 
both diseases displayed a marked rise in counts of microglia compared 
with male mice (Bekhbat and Neigh, 2018; O'Neill et al., 2022). In 
addition, one study examined the gene expression profiles of microglia 
isolated from the hippocampus and cortex of female and male 
AppNL-G-F mice and found that microglia in female mice progressed 
faster on the Activated response microglia (ARMs) trajectory 
compared with those of male mice (Sala Frigerio et  al., 2019). 
Similarly, another study demonstrated that microglia in healthy 
women play a protective role, yet in the presence of AD, the protective 
effect of female microglia diminishes, instead contributing to the 
disease progression of AD (Chen et al., 2021). Nevertheless, one recent 
study suggested that chronic stress significantly modifies the 
morphology and the behavior of microglia in a sex-specific manner, 
and to be specific, males were more susceptible to stress, displaying 
depression-like behaviors and microglial hypertrophy, whereas 
females showed microglial remodeling in the NAc (atrophy), and did 
not exhibit depression-like behaviors (Gaspar et al., 2022). Overall, 
these findings pinpoint the importance of exploring the specific role 
of sex differences with microglia in the association between AD and 
depression. However, the underlying mechanisms remain equivocal, 
necessitating further exploration in future studies.

4.1.4 Sex differences in AD and depression’s 
genetics

Both AD and depression are not only affected by genetic factors, 
but also intriguing sex differences have been observed in the genetic 
susceptibility (Labonté et al., 2017; Nebel et al., 2018), which hold 
promise in elucidating pathogenesis and enhancing early detection as 
well as management of AD coexisting with depression. 
Herein, we  discuss several sex-specific genetic factors in AD and  
depression.

4.1.4.1 Sex-specific genetics
One genome-wide association study involving over 12,000 

individuals with AD was the first to employ single-nucleotide 
polymorphisms for quantifying the heritability of psychosis within 
AD. The study uncovered a favorable genetic correlation between 
depressive symptoms and psychosis of AD (DeMichele-Sweet et al., 
2021). Furthermore, the first multi-omics investigation on a genome-
wide scale delved into the role of epigenome alterations and gene 
expression in the risk of comorbid depression in patients with late-onset 
AD and elucidated sex-specific disparities in the expression of gene that 
contribute to the manifestation of depressive symptoms in late-onset AD 
(Upadhya et al., 2022). Specifically, there were 25 differentially expressed 
genes associated with depression in AD men, and CHI3L2, involved in 
multiple inflammatory reactions of depression in late-onset AD, was the 
most upregulated gene, while only three differentially expressed 
genes were associated with depression in AD women (Upadhya 
et al., 2022).
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4.1.4.2 TREM2 and APOE
Microglial activation plays an integral role in neuroinflammation 

(Santos et  al., 2016) and constitutes a well-established pathological 
hallmark in the brains of AD patients (Long and Holtzman, 2019) while 
exerting a significant influence on the regulation of depressive disorders 
(Jia et  al., 2021). Additionally, the TREM2 gene is known to play a 
significant role in microglial activation and survival, as well as it has been 
recognized as a risk factor for depression in AD (Wang et al., 2022a; Wu 
et  al., 2023). Likewise, the ApoE-ε4 allele influences the microglial 
responses and has been confirmed as a risk factor for both AD and 
depression (Santos et al., 2016; Long and Holtzman, 2019). Of note, 
minimal depressive symptoms (MDSs) were discovered to correlate not 
only with elevated cerebrospinal fluid (CSF) amyloid markers but also 
with an 83% heightened likelihood of developing AD in elderly adults 
without dementia (Xu et al., 2021). One study demonstrated a strong 
relationship between CSF-soluble TREM2 (sTREM2) and MDSs but no 
significant sex differences. However, the researchers found that women 
with MDSs may have stronger associations with increased amyloid 
burdens and impaired function of microglia than men do (Wang et al., 
2022a). Furthermore, one study revealed that early depression is 
associated with amyloid pathology mediated by microglial activation, 
especially in the absence of ApoE-ε4 (Wang et al., 2022a). However, 
another study demonstrated that combing ApoE-ε4 can significantly 
improve the predictive accuracy of depressive symptoms for predicting 
conversion from MCI to AD dementia, specifically in women (Kim 
et al., 2015). Overall, it is crucial to conduct sex-stratified genetics studies 
in depression and AD. Even if no significant sex differences are found, 
as they significantly contribute to the progress of precision medicine.

4.2 Sex differences in depression and AD’s 
therapeutic opportunities

4.2.1 Sex hormones therapy
Sex hormone replacement therapy (HRT) effectively alleviates 

depressive symptoms in AD patients (Swaab et al., 2005) (Table 3). One 
study links sex hormone level change to sex differences in AD patients 
with depression (DuMont et al., 2023). Premature estrogen decline 
heightens susceptibility of women to AD and depression compared with 
men (Sochocka et al., 2023), suggesting women could benefit more from 
HRT. However, despite estrogen therapy studies mostly focusing on 
females, an increasing acknowledgment of the significant contributions 
of estrogens to male brain has emerged (Gillies and McArthur, 2010). 
As a result, HRT presents a promising avenue for mitigating depressive 
symptoms and AD-associated manifestations in both men and women. 
However, it is essential to recognize that HRT is not without its 
constraints, i.e., estrogen therapy could potentially elevate a woman’s 
vulnerability to ovarian, endometrial, and breast cancers (Crespo-
Castrillo and Arevalo, 2020). Additionally, the utilization of androgen 
deprivation therapy (ADT) might be linked to an exacerbated risk of 
experiencing depression and cognitive impairment (Siebert et al., 2020).

4.2.2 The treatment of neuroinflammation
The significant role of neuroinflammation in the pathogenesis of 

AD and depression is widely acknowledged (Santos et  al., 2016). 
Elevated levels of pro-inflammatory cytokines stimulate the 
overexpression of indoleamine-2,3-dioxygenase (IDO), an enzyme 
that converts tryptophan into kynurenine primarily within microglia. 

This enzymatic conversion leads to reduced tryptophan availability 
due to increased kynurenine production, potentially obstructing the 
synthesis of serotonin, which may contribute to depression among AD 
patients (Santos et al., 2016). Thus, inhibiting IDO or kynurenine 
hydroxylase to target the kynurenine pathway is a promising approach 
for treating both MDD and AD (Table  3). Significantly, animal 
experiments have provided evidence to support this strategy 
(O'Connor et al., 2009; Yu et al., 2015), and to be specific, emerging 
research indicates that there may be sex differences in the effectiveness 
of this treatment. For instance, administering the novel IDO inhibitor 
DWG-1036 to 3xTg-AD mice aged 2 to 6 months resulted in enhanced 
cognitive function and reduced depression-related behaviors in 
AD. Furthermore, the treatment’s impact on depression in AD was 
observed to be more pronounced in male mice than in female mice 
(Fertan et al., 2019).

4.2.3 Transcranial magnetic stimulation (rTMS)
Transcranial magnetic stimulation (rTMS), as a safe and 

non-invasive brain neuromodulation method, has demonstrated 
effectiveness in treating AD and depression (Xu et al., 2022; Zhang 
et al., 2022). Interestingly, previous research has indicated potential 
sex differences in cortical plasticity induced by rTMS. Specifically, 
a study revealed ovarian hormone-dependent excitability in the 
primary motor cortex (M1) in females, which is absent in males. 
Women exhibited higher rTMS-induced motor evoked potentials 
(MEP) during the late menstrual cycle (Zeng et al., 2020). However, 
no sex differences were found in TMS-induced cortical excitability 
between men and women in young adulthood. In contrast, internal 
age-related differences in cortical excitability within each sex 
showed more pronounced decreases in excitability in older women 
compared to men (Zeng et al., 2020). These findings suggest the 
possibility of sex-dependent rTMS treatment for AD and 
depression. Notably, a study comparing chronic rTMS effects on 
forced swim behaviors in male and female rats, to validate rTMS’s 
antidepressant effect, indicated that female rats consistently 
showed higher activity levels in the Forced Swim Test (FST) (Yang 
et  al., 2007). Another study indicated that women, especially 
during periods of high estradiol, appear particularly sensitive to 
rTMS treatment, with a 1.37 times higher probability of major 
depressive disorder remission in women compared to men (Hanlon 
and McCalley, 2022). Further research demonstrated more marked 
improvements in depression in women following rTMS treatment, 
with no significant changes noted in men (Desai et  al., 2023). 
However, direct research exploring sex differences in rTMS 
treatment for AD is currently limited, with only one study 
suggesting that TMS may have a more pronounced impact on 
cognitive performance in women than in men (Zeng et al., 2020).

TABLE 3 Sex differences in depression and AD’s therapeutic 
opportunities.

Drugs Therapy effects

Male Female

Sex hormones HRT + ++

Neuroinflammation IDO ++ +

+ represents the general therapeutic efficacy; ++ represents the better therapeutic efficacy.
AD, Alzheimer’s disease; IDO, indoleamine-2,3-dioxygenase; HRT, Sex hormone 
replacement therapy.
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5 Conclusion and future directions

Accumulating evidence supports the significant influence of 
sex on depression and AD. Specifically, women experience higher 
prevalence of both conditions than men do, possibly leading to 
differences in treatment outcome (Hampel et  al., 2018; Wang 
et al., 2022a; Cui et al., 2023; Tseng et al., 2023), suggesting the 
imperative of crafting personalized approaches based on sex 
differences. Sex disparities unveil crucial biological mechanisms 
underlying AD and depression etiology and progression, 
encompassing neuroinflammation, hormones, brain structure, 
and more. There is mounting evidence indicating sex-specific 
susceptibility to the effects of the ApoE-ε4 allele and sex-specific 
genes. Additionally, interactions between sex and treatment 
responses targeting hormones, neuroinflammation therapy, etc., 
have been observed. Taken together, evidence confirms sex as a 
vital contributor to phenotypic variability in AD and depression, 
warranting consideration in clinical practice and preclinical 
research. Substantial enhancements are necessary for the analysis 
and reporting of sex differences in both clinical and preclinical 
studies to produce robust evidence capable of guiding changes in 
clinical practice.

Emerging research has illuminated the influence of sex on AD 
and depression, offering promising avenues for therapeutic 
advancement. Recent investigations highlight the significant 
amelioration of cognitive impairment and depression in AD 
patients through the administration of minocycline, a well-
established anti-inflammatory drug (Cheng et  al., 2023). Zinc 
(Zn2+), a vital trace element associated with CNS 
neuroinflammation (Liu et  al., 2023), has been identified as a 
therapeutic target for depression in AD through brain Zn2+ 
homeostasis maintenance (Wang B. et al., 2023). However, these 
studies have overlooked the impact of sex differences, highlighting 
the imperative for future research in this domain. Furthermore, 
while beneficial gut bacteria like Lactobacillus and Bifidobacterium 
alleviate depression in AD via gut microbiota modulation (Kerry 
et al., 2018; Holingue et al., 2020), the sexual differences of the gut 
microbiome in AD and depression remain underexplored. This 
gap warrants exploration of sex-based gut microbiome treatments 
for a tailored precision medicine approach. Additionally, 
nonpharmacological methods such as transcranial pulse 
stimulation, aromatherapy, psychosocial interventions, social 
interventions, and music interventions, among others (Dhippayom 
et al., 2022; Bavarsad et al., 2023; Chen X. et al., 2023; McAleer 
et al., 2023; Tan et al., 2023; Vuijk et al., 2023), hold significant 
promise as strategies to enhance the management of depression 
and AD. Moving forward, the development of a precision medicine 
framework, integrating knowledge gained from sex-related 
distinctions, could transform the future management of AD and 
depression, ultimately contributing to substantial improvements 
in the quality of life for almost all patients.

The study of sex differences in depression in AD faces several 
challenges that warrant attention in future research. For example, 
although health agencies require comparable representation of 
female and male subjects in preclinical and clinical trials, a 
significant imbalance in the utilization of male and female 
subjects still persists in many studies, and most basic research also 

has heavily relied on male rodent cells or animals as disease 
models, disregarding investigations involving both sexes (Pallier 
et al., 2022; DuMont et al., 2023). Notably, despite the remarkable 
technological advancements made in neuroscience in the 21st 
century, the conceptual progress in investigating diseases across 
sexes, particularly in comprehending and effectively treating men 
and women, has fallen behind (Bangasser and Cuarenta, 2021). 
Moving forward, if studies pay more attention to the differences 
brought about by sex in etiology or genetics, perhaps more 
effective and universally applicable treatments for AD and 
depression can be developed in the near future. We believe that 
the research field of sex differences in depression and AD 
holds tremendous promise and is anticipated to flourish in 
the future.
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