
TYPE Original Research

PUBLISHED 26 February 2024

DOI 10.3389/fnagi.2024.1345417

OPEN ACCESS

EDITED BY

Alessandro Martorana,

University of Rome Tor Vergata, Italy

REVIEWED BY

Caterina Motta,

Santa Lucia Foundation (IRCCS), Italy

Francesco Di Lorenzo,

Santa Lucia Foundation (IRCCS), Italy

*CORRESPONDENCE

Mostafa Mehdipour Ghazi

ghazi@di.ku.dk

RECEIVED 27 November 2023

ACCEPTED 12 February 2024

PUBLISHED 26 February 2024

CITATION

Mehdipour Ghazi M, Selnes P, Timón-Reina S,

Tecelão S, Ingala S, Bjørnerud A,

Kirsebom B-E, Fladby T and Nielsen M (2024)

Comparative analysis of multimodal

biomarkers for amyloid-beta positivity

detection in Alzheimer’s disease cohorts.

Front. Aging Neurosci. 16:1345417.

doi: 10.3389/fnagi.2024.1345417

COPYRIGHT

© 2024 Mehdipour Ghazi, Selnes,

Timón-Reina, Tecelão, Ingala, Bjørnerud,

Kirsebom, Fladby and Nielsen. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Comparative analysis of
multimodal biomarkers for
amyloid-beta positivity detection
in Alzheimer’s disease cohorts

Mostafa Mehdipour Ghazi1*, Per Selnes2,3,

Santiago Timón-Reina2, Sandra Tecelão2, Silvia Ingala4,

Atle Bjørnerud5,6, Bjørn-Eivind Kirsebom7,8, Tormod Fladby2,3 and

Mads Nielsen1

1Department of Computer Science, Pioneer Centre for Artificial Intelligence, University of

Copenhagen, Copenhagen, Denmark, 2Department of Neurology, Akershus University Hospital,

Lørenskog, Norway, 3Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway,
4Department of Radiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark,
5Department of Physics, University of Oslo, Oslo, Norway, 6Unit for Computational Radiology and

Artificial Intelligence, Oslo University Hospital, Oslo, Norway, 7Department of Neurology, University

Hospital of North Norway, Tromsø, Norway, 8Department of Psychology, Faculty of Health Sciences,

UiT The Arctic University of Norway, Tromsø, Norway

Introduction:E�orts to develop cost-e�ective approaches for detecting amyloid

pathology in Alzheimer’s disease (AD) have gained significant momentum with

a focus on biomarker classification. Recent research has explored non-invasive

and readily accessible biomarkers, including magnetic resonance imaging (MRI)

biomarkers and some AD risk factors.

Methods: In this comprehensive study, we leveraged a diverse dataset,

encompassing participantswith varying cognitive statuses frommultiple sources,

including cohorts from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

and our in-house Dementia Disease Initiation (DDI) cohort. As brain amyloid

plaques have been proposed as su�cient for AD diagnosis, our primary aim

was to assess the e�ectiveness of multimodal biomarkers in identifying amyloid

plaques, using deep machine learning methodologies.

Results: Our findings underscore the robustness of the utilized methods

in detecting amyloid beta positivity across multiple cohorts. Additionally, we

investigated the potential of demographic data to enhance MRI-based amyloid

detection. Notably, the inclusion of demographic risk factors significantly

improved our models’ ability to detect amyloid-beta positivity, particularly in

early-stage cases, exemplified by an average area under the ROC curve of 0.836

in the unimpaired DDI cohort.

Discussion: These promising, non-invasive, and cost-e�ective predictors of MRI

biomarkers and demographic variables hold the potential for further refinement

through considerations like APOE genotype and plasma markers.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition that
leads to cognitive dysfunction and eventual dementia (Gaugler
et al., 2022). The initial event in AD pathophysiology is the
extracellular deposition of amyloid beta (Aβ) plaques in the brain,
which can occur up to 20 years before the onset of dementia
(Karran and De Strooper, 2022). This extended predementia
phase offers a potential window for secondary prevention of
AD dementia. However, defining the target population for such
prevention strategies remains a lengthy, error-prone, and costly
process (Scharre, 2019).

Aβ plaques are associated with longitudinal cognitive decline
(Jack et al., 2013), and recently proposed guidelines (https://
aaic.alz.org/diagnostic-criteria.asp) posit that they are sufficient
to define AD. Research indicates that cognitive dysfunction
in AD is closely linked to the deposition of intracellular tau
neurofibrillary tangles (Braak and Braak, 1991). The combined
impact of misfolded amyloid and tau proteins appears to trigger
a cascade of events (Selkoe, 2001), that ultimately leads to
dementia according to current disease models, albeit with varying
timeframes. Aβ dysmetabolism leading to Aβ plaque deposition
is followed by an extended pre-morbid and pre-dementia stage
that may provide a window for intervention (Buchhave et al.,
2012).

While amyloid and tau can be quantified through the analysis
of cerebrospinal fluid (CSF) and positron emission tomography
(PET) measures as well as plasma-based assays (Janelidze
et al., 2016; Mattsson et al., 2016), defining neurodegeneration
remains challenging. Current research criteria suggest that
neurodegeneration can be measured using fluorodeoxyglucose
(FDG) PET, magnetic resonance imaging (MRI), and CSF
measurements (Schöll et al., 2019), but specific biomarkers
and thresholds remain uncertain. These vague definitions,
combined with the variable disease trajectories and clinical
presentations, contribute to the heterogeneity of AD (Jack et al.,
2013). Furthermore, the spatiotemporal relationships between AD
biomarkers require further clarification, making the diagnostic
and prognostic assessment of AD complex and necessitating a
multimodal approach (Jack et al., 2018).

Several studies employing machine learning techniques to
predict AD pathology have predominantly relied on single-cohort
analysis with a limited number of multimodal biomarkers (Li
et al., 2020; Tosun et al., 2021; Agostinho et al., 2022). Moreover,
some investigations have strategically combined noninvasive
and sensitive markers, including CSF measures and genetic
data, with MRIs to underscore the effectiveness of integrating
multimodal imaging and non-imaging markers for AD prediction,
as demonstrated by Salvatore et al. (2015) and Moscoso et al.
(2019). Despite these advancements, several limitations persist
within the field in terms of data heterogeneity, constrained sample
sizes, a limited number of cohorts, and the inherent challenges in
harmonizing diverse datasets and biomarkers. Furthermore, the
imperative for standardization across studies and validation in
large, independent cohorts emerges as a critical necessity, ensuring
that predictive models attain robust generalizability across varied
populations and settings.

Considering the challenges inherent in ADpathology detection,
our primary objective is the development of an artificial intelligence
(AI) algorithm dedicated to predicting Aβ positivity and leveraging
a comprehensive set of multimodal AD biomarkers in two distinct
cohorts. Our study not only seeks to advance prediction model
efficiency through novel machine learning methods but also holds
the potential for cost reduction by leveraging noninvasive, readily
available biomarkers. We rigorously validate this algorithm across
multimodal biomarkers obtained from two independent non-
demented cohorts, showcasing its robustness and applicability in
diverse settings. The utilization of similar markers from these
cohorts, matched based on analogous protocols and cutoffs, ensures
compatibility and fairness in the acquired results. Additionally,
our evaluation extends to the accuracy of models in predicting
Aβ positivity by integrating noninvasive biomarkers, such as
MRI measurements and demographic risk factors, with a specific
emphasis on early-stage unimpaired cases.

2 Materials and methods

This section outlines the data sources, processing steps,
biomarkers, and the experimental and analytical procedures
employed for amyloid-beta positivity classification. A summary
of the methods employed in the processing and analysis of the
cohorts is provided in Figure 1. The tools and codes utilized for
data preparation and analysis are available at https://github.com/
Mostafa-Ghazi/.

2.1 Study participants

We used data from two distinct cohorts for the analysis. The
first cohort was sourced from publicly available data (Petersen et al.,
2010) via the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
website. The second cohort comprised participants from an in-
house dataset (Fladby et al., 2017) from the Dementia Disease
Initiation (DDI) study conducted in Norway. Tables 1, 2 show
demographic details of the utilized cohorts per clinical diagnostic
group.

2.1.1 ADNI
The ADNI was launched in 2003 as a public-private

partnership, led by principal investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease. We
included all participants from the ADNI-MERGE (1/GO/2/3)
cohorts with available clinical dementia rating (CDR) values and
Aβ status. This led to a dataset comprising 1,218 unimpaired and
1,293 impaired patients withmissingmodality biomarkers from the
ADNI cohort. Refer to Table 1 for demographic details.
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FIGURE 1

An overview of the methods employed for the processing and analysis of cohorts. These methods are independently applied to ADNI and DDI

cohorts to obtain data subsets, and the training/testing is conducted per biomarker modality within each cohort/group.

TABLE 1 Demographics of the ADNI cohorts per clinical diagnostic group.

Cognitively unimpaired Cognitively impaired

Aβ− Aβ+ Aβ− Aβ+

# Subjects (male vs. female) 186/202 96/147 184/137 254/218

# Visits 795 423 576 717

APOE allele (ε −/ε+ ratio) 3.97 1.23 3.94 0.62

Age (years) 74.61± 7.26 77.15± 7.00 73.16± 8.65 75.38± 7.39

Education (years) 16.74± 2.50 16.42± 2.61 16.25± 2.66 16.03± 2.74

MMSE score 29.08± 1.20 28.80± 1.38 28.23± 1.98 26.84± 2.63

2.1.2 DDI
The multi-site DDI cohort study comprised at-risk and clinical

cases with subjective cognitive decline (SCD) (Jessen et al.,
2014) and MCI (Albert et al., 2011) who had standardized MRI
and CSF measurements (Fladby et al., 2017; Siafarikas et al.,
2021). In addition, healthy controls (HC) were included from
spouses of patients and from patients who completed lumbar
punctures in connection with orthopedic surgery. For both cases
and controls, MRI scans, neuropsychological assessments, and
samples of plasma and CSF were collected within 3 months of

inclusion. Ethical approval for the study was obtained from the
Regional Committees for Medical and Health Research Ethics
(REK), ensuring compliance with ethical standards. All participants
provided written informed consent, and all research procedures
adhered to the relevant REK guidelines and the principles outlined
in the Declaration of Helsinki. We included all participants from
the DDI cohorts with available CDR values and Aβ status. This led
to a dataset comprising 441 unimpaired and 413 impaired patients
with missing modality biomarkers from the DDI cohort. Refer to
Table 2 for demographic details.
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TABLE 2 Demographics of the DDI cohorts per clinical diagnostic group.

Cognitively unimpaired Cognitively impaired

Aβ− Aβ+ Aβ− Aβ+

# Subjects (male vs. female) 113/137 32/53 83/73 74/74

# Visits 333 108 222 191

APOE allele (ε −/ε+ ratio) 1.94 0.64 2.32 0.42

Age (years) 62.30± 9.53 68.21± 7.10 65.38± 9.06 70.47± 7.93

Education (years) 13.95± 2.88 14.18± 3.13 13.68± 3.31 13.23± 3.50

MMSE score 28.78± 1.76 28.73± 1.55 28.62± 1.73 27.49± 2.72

2.2 Study biomarkers

We used multimodal biomarkers to study Aβ positivity of
different cohorts. These markers were selected from demographic
risk factors, cognitive scores, and CSF and imaging (MRI/PET)
measurements. Figures 2, 3 illustrate the distribution of some
selected key multimodal AD biomarkers utilized in this study from
the two datasets.

2.2.1 Risk factors
To capture and assess risk factors, we selected the demographic

variables of age, sex, and years of education as key determinants
within both the ADNI and DDI cohorts.

2.2.2 Cognitive scores
In both the ADNI and DDI cohorts, we employed scores

from the Mini-Mental State Examination (MMSE) and the
Clinical Dementia Rating-Sum of Boxes (CDR-SB). Furthermore,
we utilized the Alzheimer’s Disease Assessment Scale Cognitive
(ADAS-Cog) with 13 items from the ADNI dataset and the
learning subscale of the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD-Learning) from the DDI dataset. The
classification of individuals into cognitively unimpaired (CU) or
impaired (CI) categories was based on CDR values, where a CDR
score of 0 indicated unimpaired status, and a score of 0.5 signified
impairment (Morris et al., 2001; Aisen et al., 2010).

2.2.3 CSF and PET measures
Aβ42, Aβ40, phosphorylated tau (p-tau181), total tau (t-tau),

Neurogranin (Ng), and β-site amyloid-precursor-protein cleaving
enzyme 1 (BACE1) were partially quantified in the CSF samples
collected from both the ADNI and DDI cohorts. Pathological Aβ

levels in the ADNI dataset were determined by applying a threshold
of 1.11 to the radiotracer florbetapir (18F-AV-45) in PET scans
without using CSF biomarkers, as previously validated by Royse
et al. (2021). More specifically, we categorized patients with 18F-
AV-45 values ≥1.11 into the Aβ+ group, while those with values
below this threshold were assigned to the Aβ− group. In the DDI
dataset, we established Aβ42/40 ratio cutoffs with a range of 0.077,
derived from receiver operating curve (ROC) analysis using visual
read results of Flutemetamol (18F-Flut) PET scans as the standard

reference (Siafarikas et al., 2021). Aβ measurements were excluded
from predictor variables in the model, as they were partially used
for status definition in DDI and represent the same features as
measured with PET in ADNI. Note that we achieved an area under
the ROC curve of 0.98 when fitting Aβ42 values using decision
trees for binary 18F-AV-45 classification. Moreover, since there
were not enough ADNI samples with available Ng and BACE1
measurements, we only used p-tau181 and t-tau variables for the
classification purpose in ADNI.

2.2.4 MRI measures
MRI scans were obtained on multi-vendor systems including

Siemens, Philips, and GE, at field strengths of 1.5 and 3 T. The
T1-weighted images were used for volumetric analysis with slice
thicknesses from 1 to 2 mm, while diffusion-weighted imaging
(DWI) series were used for diffusion tensor-based analysis.

T1-weighted volumetric assessments were conducted using
distinct segmentation tools: FreeSurfer (Fischl et al., 2002) in
the ADNI cohort and the FAST-AID Brain (Mehdipour Ghazi
and Nielsen, 2022) in the DDI cohort. Regional volumes were
computed based on the segmentation results obtained from T1-
weighted brain MRI scans. Subsequently, these estimated volumes
were adjusted for the total intracranial volume (ICV). In the ADNI
dataset, the analysis encompassed 6 brain regions, comprising the
ventricles, hippocampus, entorhinal cortex, fusiform gyrus, middle
temporal gyrus, and the whole brain. Conversely, the DDI cohort
examined a more extensive set of 68 regions, encompassing both
left and right compartments of the 132 segmented areas combined.

DWI scans underwent rigorous analysis using the FSL tool
(Smith et al., 2004). To ensure data accuracy, corrections were
applied to mitigate Eddy-current distortion and head motion,
taking into consideration the available b0 scan. Subsequently, a
diffusion tensor was modeled at every voxel within the brain,
utilizing the FSL fit function on the corrected DWI scans. Scalar
anisotropy and diffusivity maps were derived from the eigenvalues
of the diffusion tensor, yielding fractional anisotropy (FA), axial
diffusivity (AD), radial diffusivity (RD), andmean diffusivity (MD).
To unveil spatial patterns of interest, a voxel-wise statistical analysis
of the DTI maps was executed via the TBSS function (Smith et al.,
2006). The corrected FA images were then registered to the white-
matter tractography atlas sourced from Johns Hopkins University
(JHU) (Hua et al., 2008). This process resulted in the calculation
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FIGURE 2

Violin plots of the selected non-imaging AD biomarkers utilized in this study from di�erent cohorts. Note that clipped values of Aβ42 (>1,700 or

<200) were replaced with the recalculated results. (A) Age (years). (B) Education (years). (C) MMSE (scores). (D) CDR-SB (scores). (E) T-tau (pg/mL). (F)

Aβ42 (pg/mL).

of 20 and 57 regions of interest (ROIs) for each anisotropy and
diffusivity feature within the DDI and ADNI datasets, respectively.

2.3 Statistical analysis

The statistical analysis involved the utilization of appropriate
tests based on variable type and group comparisons. For continuous

variables within both the impaired and unimpaired cohorts, the
nonparametric Wilcoxon rank-sum test was employed to assess
statistical differences between the two groups (Aβ±). Categorical
variables, on the other hand, were subject to Fisher’s exact test
when dealing with binary outcomes, and the Chi-squares test when
analyzing groups with nonbinary values. A significance threshold
of p < 0.05 was employed to guide the determination of hypothesis
test outcomes.

Frontiers in AgingNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1345417
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Mehdipour Ghazi et al. 10.3389/fnagi.2024.1345417

FIGURE 3

Violin plots of the selected imaging AD biomarkers utilized in this study from di�erent cohorts. (A) Hippocampus volume (normalized). (B) Middle

temporal gyrus (normalized). (C) Uncinate fasciculus (AD). (D) Inf fronto-occipital fasciculus (RD).

TABLE 3 Aβ status classification results (five-fold mean ± SD) for the unimpaired group of the test ADNI.

Biomarker # Samples AUC Accuracy Sensitivity Specificity Precision

Cognitive 243 0.603± 0.004 0.597± 0.005 0.500± 0.017 0.648± 0.006 0.429± 0.007

CSF 114 0.862± 0.007 0.802± 0.008 0.784± 0.019 0.810± 0.015 0.666± 0.015

T1-MRI 187 0.651± 0.012 0.634± 0.008 0.512± 0.058 0.694± 0.028 0.447± 0.012

Diffusion-MRI 24 0.825± 0.049 0.775± 0.037 0.514± 0.163 0.882± 0.042 0.644± 0.057

T1-MRI and risk 187 0.720± 0.013 0.726± 0.010 0.489± 0.058 0.841± 0.022 0.599± 0.018

TABLE 4 Aβ status classification results (five-fold mean ± SD) for the impaired group of the test ADNI.

Biomarker # Samples AUC Accuracy Sensitivity Specificity Precision

Cognitive 258 0.760± 0.001 0.709± 0.000 0.632± 0.004 0.805± 0.005 0.801± 0.003

CSF 155 0.925± 0.003 0.849± 0.013 0.873± 0.024 0.816± 0.007 0.871± 0.004

T1-MRI 194 0.753± 0.002 0.697± 0.004 0.737± 0.011 0.649± 0.017 0.713± 0.008

Diffusion-MRI 37 0.828± 0.027 0.735± 0.048 0.760± 0.022 0.706± 0.083 0.755± 0.059

T1-MRI and risk 194 0.862± 0.003 0.777± 0.024 0.792± 0.021 0.760± 0.043 0.796± 0.030
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TABLE 5 Aβ status classification results (five-fold mean ± SD) for the unimpaired group of the test DDI.

Biomarker # Samples AUC Accuracy Sensitivity Specificity Precision

Cognitive 88 0.590± 0.008 0.602± 0.043 0.514± 0.052 0.630± 0.070 0.306± 0.025

CSF 80 0.843± 0.016 0.858± 0.019 0.670± 0.027 0.920± 0.022 0.739± 0.057

T1-MRI 48 0.674± 0.010 0.671± 0.040 0.415± 0.042 0.766± 0.055 0.402± 0.060

Diffusion-MRI 44 0.753± 0.008 0.809± 0.026 0.517± 0.109 0.919± 0.036 0.716± 0.079

T1-MRI and risk 48 0.836± 0.015 0.746± 0.040 0.569± 0.129 0.811± 0.033 0.526± 0.063

TABLE 6 Aβ status classification results (five-fold mean ± SD) for the impaired group of the test DDI.

Biomarker # Samples AUC Accuracy Sensitivity Specificity Precision

Cognitive 82 0.732± 0.007 0.654± 0.014 0.658± 0.065 0.650± 0.061 0.621± 0.026

CSF 69 0.910± 0.003 0.829± 0.019 0.820± 0.018 0.840± 0.029 0.794± 0.030

T1-MRI 44 0.785± 0.029 0.736± 0.057 0.756± 0.101 0.723± 0.032 0.652± 0.052

Diffusion-MRI 43 0.682± 0.012 0.637± 0.027 0.553± 0.067 0.692± 0.000 0.539± 0.030

T1-MRI and risk 44 0.805± 0.044 0.723± 0.059 0.678± 0.107 0.754± 0.044 0.654± 0.062

2.4 Amyloid-beta status prediction

Our approach for Aβ± classification involved the utilization
of feedforward artificial neural networks comprising two fully
connected layers with learnable parameters and nonlinear
activation functions. These networks were employed to predict
the Aβ status by leveraging multivariate biomarkers from each
modality, both individually and in combination. These networks
underwent supervised training, during which they learned to
encode high-dimensional input data, abstracting latent variables
while disregarding insignificant information and minimizing
classification errors through an output layer.

To optimize the network’s performance and ensure robustness,
we conducted a rigorous training and inference process. We
randomly partitioned each of the two datasets into training (80%)
and testing (20%) subsets using a stratified approach. We applied
a five-fold stratified cross-validation and testing procedure to the
training and test data to tune the network’s hyperparameters,
allowing at most 1,000 iterations, and to assess the generalization
capability.

We assessed the performance of our prediction models by
employing key metrics including total accuracy, the area under the
ROC curve (AUC), precision, recall (sensitivity), and specificity.
These metrics were consistently evaluated across various cross-
validation folds applied to the test sets. This approach allows for
a comprehensive interpretation of results, effectively addressing
concerns related to data size, biases, and classification errors of any
kind.

3 Results

In the ADNI cohorts considering both impaired and
unimpaired individuals, several key variables exhibited statistically
significant differences between the Aβ± groups. These variables
included age, ADAS-Cog, MMSE, p-tau, t-tau, Aβ42, as well as the

volumetric measurements of ventricles, hippocampus, whole brain,
and 47 regional diffusion parameters. Similarly, within the DDI
cohorts comprising both impaired and unimpaired individuals, the
Aβ± groups demonstrated notable disparities in various variables.
Specifically, age, CERAD-Learning, p-tau, t-tau, BACE1, Ng,
volumes of seven distinct brain regions, and two regional diffusion
measures displayed statistically significant differences between
the two Aβ groups. Figure 5 depicts a visual representation of the
statistical analysis conducted on the ADNI biomarkers.

Within the impaired ADNI cohort, significant differences
between the Aβ± groups were observed in CDR-SB, volumetric
measurements of the entorhinal, fusiform, and middle temporal
gyrus, as well as seven regional diffusion metrics. Conversely, in
the unimpaired ADNI cohort, distinctions emerged in terms of sex,
years of education, and 136 regional diffusion measures. Besides,
in the impaired DDI cohort, Aβ± group disparities were evident
in CDR-SB and MMSE scores, volumes spanning 33 distinct
brain regions, and two regional diffusion metrics. However, in the
unimpaired DDI cohort, significant differences were only noted in
terms of sex and a regional diffusion measure. Figure 6 presents
a visual representation of the statistical analysis conducted on the
DDI biomarkers.

Tables 3–6 provide a comprehensive summary of the Aβ status
classification outcomes obtained from the test sets within the ADNI
and DDI cohorts, covering both the impaired and unimpaired
groups. The results suggest that CSF measures exhibit the highest
accuracy, with imaging markers and cognitive scores following
behind. Additionally, the minimal fluctuations observed around
the average accuracies show the robustness of the models across
various cross-validation folds. Furthermore, the congruence in
results between the ADNI and DDI cohorts underscores the
generalizability of these models.

To complement the result interpretation, we have additionally
provided visual representations of the ROC curves in Figure 4 for
all cohorts within the utilized test sets. The observed variability in
the diffusion-MRI measurements can be attributed to the limited
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FIGURE 4

Average ROC curves and their associated 95% confidence intervals for various AD biomarker modalities of the test cohorts used in Aβ status

classification. (A) ADNI—unimpaired. (B) ADNI—impaired. (C) DDI—unimpaired. (D) DDI—impaired.

availability of data points in this specific modality. Furthermore,
the lower and fluctuating accuracy of CSF measurements in
the unimpaired DDI cohort, compared to alternative modalities
and cohorts, may be attributed to slight differences in the CSF
measurement protocols between DDI and ADNI, potentially
influencing the detection of Aβ positivity in the unimpaired groups.
It is also worth noting that the higher accuracies achieved by the
T1-MRI measures in the DDI cohorts can be primarily attributed
to the utilization of a larger set of robust regional volumes obtained
through FAST-AID Brain.

4 Discussion

This study leveraged two distinct cohorts, ADNI and DDI,
characterized by nearly the same sets of biomarkers, ensuring a
fair and comprehensive analysis. When comparing the clinical-
demographic differences between the ADNI and DDI cohorts,
patients in the ADNI cohort tend to be older than those in the
DDI cohort, yet they possess a higher number of education years.
Additionally, the ADNI cohort exhibits a lower percentage of cases
with APOE+ alleles compared to the DDI cohort. The distribution

of subjects by sex is nearly equivalent in both ADNI and DDI, with
a higher proportion of females in the unimpaired cohort and a
greater prevalence of males in the impaired cohort.

The prediction results obtained in this study reveal consistent
accuracies across both the ADNI and DDI cohorts for Aβ

status classification using deep learning models. Notably, CSF
markers yielded the highest accuracy, followed by imaging
biomarkers and cognitive scores. This pattern aligns with previous
research, including the hypothetical model proposed by Jack
et al. (2010) and the latest studies on multimodal biomarkers
of AD (Tosun et al., 2021). The consistent findings underscore
the robustness and generalizability of our models in achieving
these accuracies.

The high AUCs obtained using non-amyloid CSF variables
for the unimpaired and impaired groups implicate amyloid-
related neurodegeneration both at early stages and during
AD progression (Kirsebom et al., 2018, 2022). Besides, our
classification results were more favorable in the impaired
cohorts, attributed to the presence of pronounced biomarker
changes and cognitive impairment developments in these
groups. This trend mirrors earlier findings in the literature
(Tosun et al., 2021), highlighting the relative challenges
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FIGURE 5

Statistically significant di�erences between Aβ± groups of ADNI cohorts with logarithmic p-values per biomarker. The dashed line indicates the 0.05

threshold, while non-significant markers are represented by black bars. Statistically significant risk factors (blue), cognitive scores (red), T1-weighted

MRIs (yellow), di�usion-weighted MRIs (violet), and CSF markers (green) are highlighted. (A) ADNI—unimpaired. (B) ADNI—impaired.

of Aβ status classification within the cognitively normal
populations.

The high AUCs for diffusion-weighted and T1-weighted MRIs
are in accordance with early changes in diffusivity measures and
later neurodegenerative changes (Selnes et al., 2013). In the ADNI
cohorts, the limited size of diffusion-weighted MRI data precludes
a definitive conclusion regarding their performance compared to
T1-weighted MRIs. In the DDI cohort, diffusion-weighted MRI
markers exhibit higher accuracy in predicting Aβ positivity among
early AD patients within the unimpaired cohort. Still, the observed
discrepancy in results is greater compared to T1-weighted MRIs.

In general, cognitive markers exhibit lower predictive power
for AD compared to imaging and CSF markers, aligning
with findings in the existing literature discussed in various
hypothetical, statistical, and learning models (Jack et al., 2013;
Mehdipour Ghazi et al., 2019, 2021). However, it is noteworthy
that certain cognitive or neuropsychological biomarkers, such

as auditory-verbal assessments, have demonstrated substantial
efficacy in detecting AD in the early stages (Zandifar et al., 2020;
Mehdipour Ghazi et al., 2021).

The results from the statistical analyses presented in Figures 5,
6 reveal statistically significant differences in some demographic
risk factors and all CSF measures between Aβ± groups across all
cases. Additionally, as cohorts transition to impairment, various
biomarkers, including cognitive scores and MRI measurements,
demonstrate significance. Notably, T1-weighted MRIs are
particularly emphasized in the impaired DDI cohort, benefiting
from a detailed regional analysis provided by FAST-AID Brain.
Conversely, diffusion-weighted MRIs exhibit prominence in the
unimpaired ADNI cohort, possibly attributed to the utilization of a
more extensive set of regional markers and a smaller dataset from
ADNI.

Furthermore, the combination of MRI measurements with
demographic risk factors demonstrated an enhancement in
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FIGURE 6

Statistically significant di�erences between Aβ± groups of DDI cohorts with logarithmic p-values per biomarker. The dashed line indicates the 0.05

threshold, while non-significant markers are represented by black bars. Statistically significant risk factors (blue), cognitive scores (red), T1-weighted

MRIs (yellow), di�usion-weighted MRIs (violet), and CSF markers (green) are highlighted. (A) DDI—unimpaired. (B) DDI—impaired.

classification performance across different scenarios. The literature
has previously demonstrated the enhanced accuracy achieved
through the concatenation of MRI measurements with other risk
factors (Ten Kate et al., 2018; Tosun et al., 2021). Particularly
intriguing is the observation that this improvement was more
pronounced in the unimpaired cohorts. This outcome bears
significant implications for early AD detection using noninvasive
biomarkers, where early and accurate identification within this
subset of individuals holds particular importance.

Finally, the utilized noninvasive and cost-effective predictors
involving MRI biomarkers and demographic variables show
promise for refinement through additional considerations, such
as the APOE genotype and plasma markers. However, it is

essential to acknowledge that utilizing the APOE genotype
introduces challenges, mainly rooted in ethical considerations,
privacy concerns, and the sensitivity of genetic information. On
the contrary, plasma markers pose challenges due to their limited
establishment in AD research, potentially hindered by a lack of
substantial representation in large cohorts alongside other markers
for comprehensive analysis.
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