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Introduction: Modifiable risk factors account for a substantial proportion of 
Alzheimer’s disease (AD) cases and we currently have a discrete AT(N) biomarker 
profile for AD biomarkers: amyloid (A), p-tau (T), and neurodegeneration (N). 
Here, we investigated how modifiable risk factors relate to the three hallmark 
AT(N) biomarkers of AD.

Methods: Participants from the European Prevention of Alzheimer’s Dementia 
(EPAD) study underwent clinical assessments, brain magnetic resonance 
imaging, and cerebrospinal fluid collection and analysis. Generalized additive 
models (GAMs) with penalized regression splines were modeled in the AD 
Workbench on the NTKApp.

Results: A total of 1,434 participants were included (56% women, 39% APOE 
ε4+) with an average age of 65.5 (± 7.2) years. We found that modifiable risk 
factors of less education (t =  3.9, p  <  0.001), less exercise (t =  2.1, p =  0.034), 
traumatic brain injury (t =  −2.1, p =  0.036), and higher body mass index (t =  −4.5, 
p <  0.001) were all significantly associated with higher AD biomarker burden.

Discussion: This cross-sectional study provides further support for modifiable 
risk factors displaying neuroprotective associations with the characteristic AT(N) 
biomarkers of AD.
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Introduction

Dementia remains one of the greatest global health, social, and economic challenges of 
the 21st century (Livingston et al., 2017), yet evidence suggests up to 40% of dementia risk is 
modifiable (Livingston et al., 2020). Modifiable risk factors for dementia are education, hearing 
loss, traumatic brain injury (TBI), hypertension, alcohol consumption, obesity, smoking, 
depression, social isolation, physical inactivity, air pollution, and diabetes (Livingston et al., 
2020). With research indicating that many dementia cases could be avoided by changing 
lifestyle behaviors (Livingston et al., 2020), addressing modifiable risk factors could prevent 
or delay over 40 million cases worldwide by 2050 (Moore et al., 2015). To our knowledge, 
modifiable risk factors contribute a significant proportion to dementia risk (Livingston et al., 
2020), are highly prevalent in the community (Yaffe, 2018), and are exacerbated by low 
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socioeconomic status (Kezios et al., 2022); however, modifiable risk 
factors are often overlooked as potential therapeutic targets for 
risk reduction.

Targeting modifiable risk factors entails a suite of positive impacts 
not only on dementia but also on the prevention of other chronic 
conditions such as cardiovascular disease and cancer, which share 
similar risk factors (Edwards et al., 2019). Intervening earlier in the 
disease course is likely to bring about greater benefits for individuals, 
where effective interventions for blood pressure reduction, smoking 
cessation, and prevention of diabetes deliver the greatest efficacy in 
significantly reducing health care expenditure, reducing dementia 
prevalence, and producing quality-adjusted life-year gains (Mukadam 
et al., 2020). There is also evidence for clustering incremental risk 
from modifiable risk factors. Modifiable risk factors tend to co-occur 
(Griffin et  al., 2014; Morris et  al., 2016), where clusters typically 
consist of smoking, excess alcohol consumption, and physical 
inactivity (Peters et al., 2019).

Alzheimer’s disease (AD) has a prolonged period of ‘silent’ 
degeneration, a preclinical phase that lasts up to decades prior to 
clinical symptom onset (Sperling et al., 2011). During this phase, 
pathophysiological processes of beta-amyloid (Aβ) accumulation, 
phosphorylated-tau (p-tau) aggregation, and neurodegeneration 
emerge, with subtle cognitive deficits developing alongside 
(Sperling et al., 2011). Under this framework, the National Institute 
on Aging—Alzheimer’s Association (NIA-AA) has established 
discrete biomarker profiles to discriminate Alzheimer’s pathological 
change from non-Alzheimer’s pathological change (Jack et  al., 
2018). The NIA-AA’s AT(N) profiling system classifies individuals 
based on the presence of one or more hallmark biomarkers of AD: 
amyloid β (A), p-tau (T), and neurodegeneration (N). This window 
of biologically burdened, yet cognitively unimpaired, pathological 
change presents an ideal opportunity to intervene with modifiable 
risk factors that can impact dementia risk. By the time clinical 
symptoms emerge, the underlying AD pathology has likely entered 
an advanced stage, limiting the impact of interventions (Reiman 
et al., 2011).

We have strong evidence from around the world that targeting 
modifiable risk factors can maintain and improve cognitive function 
(Ngandu et al., 2015), as well as reduce the risk for AD and other 
forms of dementia (Kivipelto et  al., 2018), which is evidenced by 
findings from a systematic review (Coley et al., 2022) recommending 
age-, sex-, and factor-specific lifestyle modifications. Whether an 
intervention targets physical activity and hypertension or is 
multidomain in nature, risk factor reduction efforts for dementia will 
likely overlap with preventative efforts for other chronic conditions. 
This aligns with a global effort to improve the quality of life throughout 
aging, accounting for the shared pathways and biological mechanisms 
of age-related chronic conditions. Furthermore, recent advancements 
have come alongside calls for biomarker results to be disclosed to 
research participants (Grill and Karlawish, 2022). We currently have 
the tools to safely disclose biomarker insights in order to foster 
positive lifestyle modification and create supportive environments for 
individuals to reduce their risk (Frisoni et al., 2023).

Despite strong evidence for a biologically defined AD continuum 
(Jack et al., 2018) and modifiable risk amelioration (Livingston et al., 
2020), there are very few studies investigating modifiable risk 
categories against the biologically driven AT(N) biomarkers. 
Addressing this gap is important as it opens earlier periods of life to 

intervention. In this study, we aimed to investigate how modifiable 
risk factors are related to the three hallmark AD biomarkers: amyloid 
β (A), p-tau (T), and neurodegeneration (N). We hypothesized that 
we would observe associations between adherence to modifiable risk 
factors and increased AD biomarker burden measured via AT(N) 
criteria and that these associations would be  of use to clinicians, 
researchers, and caregivers in assessing the biological and modifiable 
risk profile of individuals.

Materials and methods

Participants

Participants were drawn from the European Prevention of 
Alzheimer’s Dementia (EPAD) Longitudinal Cohort Study (LCS) 
(Ritchie et al., 2020). A full protocol has been published previously 
(Solomon et al., 2018). Briefly, EPAD is a prospective, multicenter, 
pan-European longitudinal cohort study. Participants were 
recruited across 21 different European sites and were eligible if 
they were at least 50 years of age, had completed at least 5 years of 
formal education, and did not have a dementia diagnosis at 
baseline. Participants underwent clinical and neurological 
assessments including a mini-mental state examination (MMSE), 
brain magnetic resonance imaging (MRI), lumbar puncture for 
cerebrospinal fluid (CSF), and comprehensive neuropsychological 
assessment. For the purposes of this study, we used only EPAD LCS 
Visit 1 (V1) baseline data (EPAD LCS-v.IMI V1 [n = 2,737, 55.8% 
women]) as we  intended to investigate the clinical utility of a 
biomarker + modifiable risk factor panel to foster early detection 
and intervention in healthy populations. For the neurodegeneration 
analysis, there was a small fraction (n = 17, 1.3%) of participants 
returning extremely low values for L and R hippocampal volume; 
therefore, we excluded those participants with a value of less than 
1,000 mm3 for total hippocampal volume (THV). Hearing loss was 
removed from all models due to missing data and insufficient levels 
for GAM comparison. We  did not apply any other exclusion 
criteria to the study population. Baseline data (V1) from 1,474 
participants were included, with sample size numbers varying 
according to the availability of neuroimaging and lumbar puncture 
data. The study was approved by the ethical committees of all 
participating EPAD centers. All study participants provided 
written informed consent prior to the collection of any study data. 
All procedures were conducted in accordance with the Declaration 
of Helsinki.

Non-modifiable risk factors

Non-modifiable criteria consisted of age, sex, and presence of the 
apolipoprotein epsilon 4 allele (APOE ε4). Age at baseline (in years) 
was calculated from age (years) and age (months) reported at the time 
of assessment. Sex at birth was also collected in demographic 
assessments. APOE genetic analysis was carried out on blood samples 
collected during baseline assessments. APOE allelic carriage was 
stratified by two ε alleles for six different combinations: ε2/ε2, ε2/ε3, 
ε3/ε3, ε3/ε4, ε4/ ε4, and ε4/ε2. We also stratified based on ε4 presence 
as ε4+ (ε3/ε4, ε4/ε4, or ε4/ε2) and ε4- (ε2/ε2, ε2/ε3, or ε3/ε3).
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Modifiable risk factors

Participants completed a variety of demographic, clinical, medical 
history, and lifestyle surveys at EPAD assessments. Survey collection 
was standardized across all European sites to ensure consistency of 
measurement. Data collection protocols were harmonized and were 
in accordance with the International Conference on Harmonization 
(ICH). Ten modifiable risk criteria from Livingston et  al.’s Lancet 
Commission were collected (Livingston et al., 2020). We were unable 
to account for social isolation and air pollution due to data availability. 
Education (in years) data were collected in demographics. Medical 
questionnaires asked about the history of diabetes (type 1 or 2), 
obesity, hypertension, TBI, depression, and hearing loss. Lifestyle 
factors collected were smoking (never/past/current), alcohol 
consumption (units/week), and frequency of physical activity, defined 
as leisure-time physical activity that lasted at least 20 min, and caused 
breathlessness and sweating (daily, 2–3 times a week, once a week, 2–3 
times a month, a few times a year, or not at all) (Rovio et al., 2005). 
We  dichotomized adherence to modifiable risk factors based on 
existing evidence (Livingston et al., 2020) and stratified the cohort 
based on fulfilling the following criteria: medical history (yes for 
diabetes, hypertension, TBI, depression, obesity, and hearing loss); 
lifestyle (physical inactivity: not at all/a few times a year; smoking: 
past/current; and alcohol: 2–6 units per day); and education 
(≤12 years).

Cerebrospinal fluid

CSF was obtained at baseline assessment using a pre-analytical 
protocol harmonized across study sites. Analyses were performed 
using the Roche ELECSYS® immunoassays (Roche Diagnostics 
International Ltd., Rotkreuz, Switzerland) at the University of 
Gothenburg (Solomon et al., 2018). Concentrations of Aβ1-42 and 
p-tau 181 were determined according to the 
manufacturer’s instructions.

Magnetic resonance imaging

Brain MRI scans were performed with standardized acquisition 
protocols. Images were centrally evaluated by experienced raters and 
blinded to neuropsychological and clinical data. Scans were visually 
assessed for white matter hyperintensities, perivascular spaces, 
microbleeds, medial temporal lobe atrophy (MTA), and posterior 
cortical atrophy. Regional measures for white matter volume, gray 
matter volume, and hippocampal volume were determined using a 
segmentation process based on atlas propagation with the Learning 
Embeddings for Atlas Propagation framework (Jack et al., 2017). THV 
is the sum of left hippocampal volume (LHV) and right hippocampal 
volume (RHV), all expressed in mm3.

AT(N) biomarkers

AT(N) biomarker profiling and classification of EPAD participants 
was based on published research (Jack et al., 2018; Ebenau et al., 2020; 
Ingala et  al., 2021). Eligible EPAD participants had their AT(N) 

biomarkers measured in CSF (CSF Aβ1-42 [pg/mL] and CSF p-tau 
181 [pg/mL]) and MRI (THV [mm3]). Central laboratories conducted 
a harmonized protocol to ensure measurement consistency and 
interpretation: CSF at the University of Gothenburg, genetics at the 
University of Edinburgh, and neuroimaging at the Amsterdam 
University Medical Center (Solomon et al., 2018). Participants were 
classified into presence (+) or absence (−) of abnormal CSF Aβ1-42 
(“A”), CSF p-tau 181 (“T”), and neurodegeneration (“N”). For A+/−, 
participants were split using a cut-off of CSF Aβ1-42: < 1,000 pg./mL 
classified as A+ and ≥ 1,000 pg./mL classified as A-. For T+/−, CSF 
p-tau 181: > 27 pg./mL was classified as T+ and ≤ 27 pg./mL was 
classified as T-. For N+/−, participants’ age and MTA average (L/R) 
were used: participants were classified as N+ if their age was <65 years 
and their MTA average (L/R) was ≥1 or their age was ≥65 years and 
their MTA average (L/R) was ≥1.5; all other participants were 
classified as N-. AT(N) criteria were further classified based on A+/−, 
T+/−, and N+/−, stratifying participants into 8 groups: A−/T-/N-, 
A−/T-/N+; A−/T+/N-, A−/T+/N+, A+/T-/N-, A+/T-/N+, A+/
T+/N-, and A+/T+/N+.

Statistical methods

Data were accessed via the NeuroToolKit (NTK) Application 
(NTKApp, BetaVersion, 2022) on the AD Workbench, a powerful 
cloud-based data-sharing platform designed by the Alzheimer’s 
Disease Data Initiative (ADDI). All analyses were performed using R 
code on the NTK’s Analysis module. Demographic characteristics 
were expressed as frequencies (percentage) and mean ± standard 
deviation (SD). T-test for continuous variables and chi-squared test 
for categorical variables were used to test the difference between men 
and women and discrete AT(N) groups. Generalized additive models 
(GAMs) with regression splines were used to model the associations 
between modifiable risk factor adherence and AT(N) biomarkers. Two 
GAMs were fit against each individual AT(N) biomarker as the 
dependent variable. The goodness of fit was determined by 
interpreting Akaike’s Information Criterion (AIC). Age (in years) and 
total MMSE (out of 30) were smoothed due to being non-linearly 
associated with AT(N) biomarkers. Since AD is a disease of aging, an 
appropriate adjustment of the age that acknowledges this non-linearity 
was made to more accurately estimate the effects of modifiable risk 
factors independent of age. Education (in years) and BMI (weight in 
kg * height in m2) were included in GAMs due to their better fit than 
binary variables (less education/obesity). Following an inspection of 
Q-Q plots, AT(N) biomarkers were log-transformed to approximate 
the normal distribution of residuals; however, untransformed values 
were used for visualization. Modifiable risk factor independent 
variables were tested against the individual AT(N) dependent variables 
in both individual and multiple independent variable models; 
however, the results were similar and thus multiple independent 
variables are shown in Model 1. Model 1 was adjusted for all 
modifiable criteria (education, TBI, hearing, hypertension, alcohol, 
BMI, smoking, depression, exercise, and diabetes), all unmodifiable 
criteria (age, sex, and APOE ε4 presence), and cognition (MMSE). 
Model 2 was adjusted for all significant variables in Model 1 together 
with unmodifiable covariates. In all GAMs, Model 1 (with all 
unmodifiable and modifiable criteria) displayed the best fit, with the 
lowest relative AIC. Figures were produced using the ggplot2 package 
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for R in NTK Analysis. Reproducible NTK Analysis code and data are 
both available from the AD Workbench.

Data availability

All EPAD data are available via the NTKApp on the AD 
Workbench, designed by ADDI. NTKApp is accessible at: https://
www.alzheimersdata.org/ntk. R code is available upon request to 
the corresponding author, Dr. Eddy Roccati (eddy.roccati@utas.
edu.au).

The EPAD Longitudinal Cohort Study brings together participants 
from 21 sites across Europe. For a full list of collaborators contributing 
to open-access data, please visit: https://ep-ad.org/open-access-data/
overview/.

Results

Baseline demographic statistics are displayed in Table  1. 
Participants were predominantly women (56%, N = 821), with an 
average age of 14.4 (SD 3.7) years of education and the highest 
genotypic prevalence for APOE being ε3 homozygotes (52%, 
N = 714). The overall penetrance for APOE ε4 allele was 39.0% in 
both women and men. Men were significantly older, more educated, 
and had a higher prevalence of alcohol misuse, smoking, and 
physical inactivity. Women demonstrated significantly higher rates 
of depression, higher CSF Aβ1-42, and lower THV than men. The 
most commonly reported risk factors were obesity (59.3%), 
smoking (53.9%), less education (34.4%), physical inactivity 
(21.5%), and alcohol consumption (12.4%). A total of 338 (22.9%) 
participants reported adhering to zero risk factors, 340 (23.1%) of 
them reported one, 440 (29.9%) of them reported two, 272 (18.5%) 
of them reported three, 79 (5.4%) of them reported four, and 5 
(0.3%) of them reported five.

AT(N) comparison

Summary statistics stratified by amyloid classification are 
displayed in Supplementary Table 1. A+ participants (33%, N = 406) 
were significantly older, had higher APOE ε4 penetrance, higher CSF 
p-tau 181, lower THV, and lower MMSE scores than A- participants 
(67%, N = 810). For modifiable risk factors, A+ participants had a 
significantly higher prevalence of alcohol misuse and obesity. All other 
modifiable risk factors were non-significant.

Summary statistics stratified by tau classification are displayed in 
Supplementary Table  2. T+ participants (18%, N = 214) were 
significantly older, less educated, and had higher penetrance for APOE 
ε4, lower THV, and lower MMSE scores than T- participants (82%, 
N = 1,001). Compared with T–, T+ participants had significantly 
higher rates of smoking and obesity.

Summary statistics stratified by neurodegeneration classification 
are displayed in Supplementary Table  3. N+ participants (15%, 
N = 195) were significantly older and displayed higher CSF Aβ1-42 
and lower MMSE scores than N- participants (85%, N = 1,105). In 
terms of modifiable risk factors, N+ participants only had a 
significantly higher prevalence of smoking than N- participants.

AT(N) generalized additive models

For A in Model 1, APOE ε4 presence and TBI were significantly 
negatively associated with CSF Aβ1-42 (Table 2; Figure 1). In Model 
2, these results remained significant after removing non-significant 
modifiable risk factors. Smoothed age and MMSE were also 
significantly associated with CSF Aβ1-42.

For T in Model 1, APOE ε4 and BMI were significantly positively 
associated with CSF p-tau 181 (Table 2; Figure 2). In Model 2, these 
results remained significant. BMI was significantly negatively 
associated with CSF p-tau 181. Smoothed age and MMSE were 
significantly associated with CSF p-tau 181.

For N in Model 1, sex, education, and BMI were significantly 
positively associated with THV (Table 2; Figure 3). In Model 2, these 
results remained significant. Smoothed age and MMSE were 
significantly associated with THV.

Discussion

In a large-scale community cohort of cognitively healthy 
participants from the EPAD study, we found significant relationships 
between modifiable risk factors for dementia and the hallmark AT(N) 
biomarkers that precede clinical symptoms of AD and other forms of 
dementia. Self-reported history of TBI was significantly associated 
with lower levels of Aβ1-42 levels in CSF; physical inactivity and lower 
BMI were significantly associated with higher levels of p-tau 181 in 
CSF; and higher education and higher BMI were both significantly 
associated with higher THV.

We found that the history of TBI was significantly associated with 
lower CSF Aβ1-42. Even after adjusting for age, sex, APOE ε4 
presence, and cognition, the relationship remained, which is 
concordant with previous research into post-mortem Aβ plaque 
pathology following survivors of TBI (Johnson et al., 2012) and acute 
ventricular CSF Aβ1-42 elevations in the initial week following severe 
TBI (Olsson et al., 2004). Lower CSF Aβ1-42 could indicate reduced 
clearance of Aβ1-42, which has been hypothesized to be a result of 
amyloid accumulation in the brain (Tarasoff-Conway et al., 2015). 
Therefore, TBI events may be  causing acute increases in amyloid 
production. However, several studies did not find an association 
between TBI and CSF (Neselius et al., 2012; Alosco et al., 2018; Weiner 
et al., 2022) and cerebral (Hicks et al., 2022) Aβ. Following a TBI 
event, axonal injury results in the accumulation of amyloid precursor 
protein, leading to intra-axonal Aβ aggregation and potentially Aβ 
aggregation and plaque formation. For this reason, CSF Aβ has been 
suggested as a potential biomarker for TBI (Tsitsopoulos and 
Marklund, 2013). There may also be other biological mechanisms at 
play in this pathway; for example, hypoperfusion, vascular 
dysfunction, and ischemia post-TBI may all contribute to Aβ 
deposition (Ramos-Cejudo et al., 2018). We found that age, APOE ε4, 
and cognition were all significantly associated with CSF Aβ1-42. 
Furthermore, the prevalence of TBI did not significantly differ 
between men (2.5%) and women (1.9%), indicating that the biological 
pathway operates independently of sex; yet, it may be mediated by a 
genetic predisposition for AD via APOE ε4 pathways (Jellinger 
et al., 2001).

Physical inactivity and lower BMI were both significantly 
associated with higher levels of p-tau 181 in CSF. Evidence suggests 
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TABLE 1 Demographic statistics of included EPAD participants (N  =  1,474).

Women Men Total p-value

N (%) 821 (56%) 653 (44%) 1,474

Age at baseline in years (SD) 65.5 (7.2) 66.7 (7.4) 66.0 (7.3) <0.001

Education in years (SD) 14.1 (3.7) 14.7 (3.8) 14.4 (3.7) 0.004

MMSE (SD) 28.4 (1.9) 28.4 (2) 28.4 (1.9) 0.809

APOE ε4 genotype 0.211

e2e2 2 (0.3%) 2 (0.3%) 4 (0.3%)

e2e3 60 (7.8%) 57 (9.6%) 117 (8.6%)

e3e3 410 (53.2%) 304 (51.1%) 714 (52.3%)

e2e4 18 (2.3%) 17 (2.9%) 35 (2.6%)

e3e4 249 (32.3%) 186 (31.3%) 435 (31.9%)

e4e4 31 (4%) 29 (4.9%) 60 (4.4%)

A: CSF Aβ1-42 pg/mL (SD) 1427.7 (798.9) 1325.8 (669.7) 1382.6 (745.9) 0.016

T: CSF p-tau 181 pg/mL (SD) 20.0 (11.1) 20.0 (11) 20.0 (11.1) 0.977

N: THV mm3 (SD) 4,591 (767.3) 4896.2 (823.9) 4724.8 (806.8)

Less education 0.089

No 479 (63.6%) 401 (68.2%) 880 (65.6%)

Yes 274 (36.4%) 187 (31.8%) 461 (34.4%)

Self-report hearing difficulty 0.785

No 21 (95.5%) 25 (89.3%) 46 (92%)

Yes 1 (4.5%) 3 (doi:10.7%) 4 (8%)

TBI 0.533

No 735 (98.1%) 581 (97.5%) 1,316 (97.8%)

Yes 14 (1.9%) 15 (2.5%) 29 (2.2%)

Hypertension 0.057

No 706 (94.3%) 545 (91.4%) 1,251 (93%)

Yes 43 (5.7%) 51 (8.6%) 94 (7%)

Alcohol > 21 units p/w <0.001

No 713 (93.8%) 475 (79.7%) 1,188 (87.6%)

Yes 47 (6.2%) 121 (20.3%) 168 (12.4%)

Smoking <0.001

No 395 (50.3%) 252 (40.9%) 647 (46.1%)

Yes 391 (49.7%) 364 (59.1%) 755 (53.9%)

Obesity 0.157

No 292 (39%) 256 (43%) 548 (40.7%)

Yes 457 (61%) 340 (57%) 797 (59.3%)

Depression 0.009

No 699 (93.3%) 576 (96.6%) 1,275 (94.8%)

Yes 50 (6.7%) 20 (3.4%) 70 (5.2%)

Physical inactivity 0.021

No 599 (76.2%) 501 (81.5%) 1,100 (78.5%)

Yes 187 (23.8%) 114 (18.5%) 301 (21.5%)

Diabetes 0.914

No 736 (98.3%) 587 (98.5%) 1,323 (98.4%)

Yes 13 (1.7%) 9 (1.5%) 22 (1.6%)

All available data are displayed. All values shown are n (%) unless otherwise stated. p-values are provided for group comparisons (men vs. women) between either continuous (one-way 
ANOVA) or categorical (Chi-squared) data. Significance was set at a p < 0.05. SD, standard deviation; MMSE, mini-mental state examination; APOE, apolipoprotein epsilon E; Aβ, beta-
amyloid; p-tau, phosphorylated tau; CSF, cerebrospinal fluid; THV, total hippocampal volume; TBI, traumatic brain injury.
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TABLE 2 Detailed summary table of generalized additive model (GAM) regression results for AT(N) individual biomarkers.

Parametric coefficients

A: log CSF Aβ1-42  pg/mL T: log CSF p-tau 181  pg/mL N: log THV mm3

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Estimate
Std 

Error
t-

value
Pr 

(>|t|) Estimate
Std 

error
t-

value
Pr 

(>|t|) Estimate
Std 

error
t-

value
Pr 

(>|t|) Estimate
Std 

error
t-

value
Pr 

(>|t|) Estimate
Std 

error t-value
Pr 

(>|t|) Estimate
Std 

error t-value
Pr 

(>|t|)

Intercept 7.206 0.12 60.21 <0.001 7.243 0.023 311.5 <0.001 3.211 0.095 33.90 <0.001 3.127 0.071 43.78 <0.001 8.353 0.027 3doi:10.7 <0.001 8.354 0.025 335.10 <0.001

Sex: Men −0.03 0.032 −1.00 0.318 −0.05 0.03 −1.5 0.133 0.003 0.025 0.100 0.920 0.007 0.024 0.279 0.780 0.066 0.007 8.977 <0.001 0.068 0.007 doi:10.18 <0.001

APOE ε4: Yes −0.27 0.031 −8.64 <0.001 −0.27 0.031 −8.61 <0.001 0.143 0.025 5.749 <0.001 0.148 0.024 6.272 <0.001 −0.01 0.007 −0.880 0.380 −0.01 0.007 −1.39 0.165

Education (in 

years) 0.002 0.004 0.396 0.692 −0.01 0.003 −1.69 0.091 0.003 0.001 3.301 <0.001 0.004 0.001 3.876 <0.001

TBI −0.24 0.12 −1.97 0.049 −0.25 0.12 −2.1 0.036 −0.16 0.095 −1.65 0.100 −0.01 0.027 −0.31 0.754

Hypertension 0.048 0.062 0.776 0.438 0.007 0.05 0.14 0.889 0.001 0.014 0.085 0.932

Alcohol > 21 units 

p/w −0.05 0.049 −1.08 0.282 −0.05 0.039 −1.19 0.236 0.008 0.011 0.681 0.496

Smoking 0.012 0.031 0.383 0.702 0.035 0.024 1.431 0.153 −0.00 0.007 −0.17 0.862

BMI −0.00 0.004 −0.17 0.864 −0.01 0.003 −4.35 <0.001 −0.01 0.003 −4.54 <0.001 0.002 0.001 2.04 0.042 0.002 0.001 1.973 0.049

Depression 0.103 0.065 1.572 0.116 0.035 0.052 0.672 0.502 −0.00 0.015 −0.06 0.949

Physical 

inactivity

0.062 0.037 1.67 0.095 0.058 0.029 1.989 0.047 0.06 0.028 2.121 0.034 −0.00 0.008 −0.36 0.722

Diabetes −0.04 0.112 −0.32 0.751 −0.06 0.089 −0.69 0.491 −0.03 0.027 −0.96 0.335

Approximate significance of smooth terms:

edf Ref.df F
p-

value edf Ref.df F
p-

value edf Ref.df F
p-

value edf Ref.df F
p-

value edf Ref.df F
p-

value edf Ref.df F
p-

value

s(age) 1 1 4.053 0.044 1 1.001 4.552 0.033 3.06 3.872 33 <0.001 3.536 4.446 35.74 <0.001 2.455 3.124 26.11 <0.001 2.396 3.048 33.51 <0.001

s(MMSE) 3.43 4.244 12.14 <0.001 3.353 4.155 12.57 <0.001 3.157 3.924 13.38 <0.001 1.574 1.968 30.32 <0.001 2.253 2.828 16.69 <0.001 2.372 3.011 20.16 <0.001

Generalized additive model (GAM) regression results for natural log of individual AT(N) biomarkers. Model 1 adjusted for all modifiable criteria (education [in years], TBI, hypertension, alcohol, BMI, smoking, depression, exercise, and diabetes), unmodifiable criteria 
(age, sex, and APOE presence), and cognition (MMSE). Model 2 adjusted for all significant variables in Model 1 together with unmodifiable covariates. Thin plate regression splines applied to smoothed terms of age and cognition (MMSE). Significance was set at a 
p < 0.05. edf, effective degrees of freedom; Ref.df, Reference degrees of freedom; MMSE, mini-mental state examination; APOE, apolipoprotein epsilon E; Aβ, beta-amyloid; p-tau, phosphorylated tau; CSF, cerebrospinal fluid; THV, total hippocampal volume; TBI, 
traumatic brain injury. Bold values represent significance (p <0.05).
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that exercise plays a critical role in reducing the accumulation of tau 
pathology and may be most beneficial in the preclinical phases of AD 
(Brown et al., 2019). In a study of cognitively normal participants, 
higher levels of self-reported physical activity predicted lower levels 
of CSF p-tau (Baker et al., 2012). Other research has found similar 
results with physical activity measured via actigraphy, where more 
time spent in moderate physical activity was significantly associated 
with lower levels of CSF p-tau (Law et al., 2018). On the other hand, 
several studies found different results: either the results attenuated 
after adjusting for covariates (Liang et  al., 2010) or a lack of an 
association was observed in cognitively normal participants 

(Stojanovic et  al., 2020; Roccati et  al., 2023), pre-symptomatic 
autosomal-dominant AD (ADAD) (Brown et  al., 2017), or AD 
patients via a 16-week moderate–high intense physical activity 
intervention (Steen Jensen et  al., 2016). In our study, we  found 
physical inactivity was significantly associated with higher levels of 
CSF p-tau. This relationship was significant even when adjusting for 
age, sex, cognition, and presence of APOE ε4. There are several 
potential mechanisms to explain this relationship. Physical activity has 
been shown to elicit a number of positive impacts on the brain, 
including an increase in levels of growth factors such as brain-derived 
neurotrophic factor (BDNF), altered inflammation, neurogenesis, and 

FIGURE 1

Levels of log-transformed CSF Aβ1-42 (pg/mL) of EPAD participants grouped by adherence to modifiable risk factors. Log-transformed levels of CSF 
beta-amyloid 1–42 (pg/mL) are presented. Raw amyloid +/− was classified using a cut-off of CSF Aβ1-42: < 1,000  pg./mL classified as A+ 
and  ≥  1,000  pg./mL classified as A−. CSF, cerebrospinal fluid; Aβ, beta-amyloid; EPAD, European Prevention of Alzheimer’s Dementia; TBI, traumatic 
brain injury.

FIGURE 2

Levels of log-transformed CSF p-tau 181 (pg/mL) of EPAD participants grouped by adherence to modifiable risk factors. Log-transformed levels of CSF 
p-tau 181 (pg/mL) are presented. Raw tau +/− was classified using a cutoff of CSF p-tau 181: > 27  pg./mL classified as T+ and  ≤  27  pg./mL classified as 
T−. CSF, cerebrospinal fluid; p-tau, phosphorylated tau; EPAD, European Prevention of Alzheimer’s Dementia; TBI, traumatic brain injury.
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increased energy supply (Chen and Nakagawa, 2023). The relationship 
between these improvements and tau phosphorylation is less clear but 
may be  due in part to increased clearance or altered production 
pathways. In this regard, the normal role of tau phosphorylation at 
specific sites, which occurs through a number of different kinase 
pathways such as glycogen synthase kinase 3 (GSK3) and cyclin-
dependent kinase 5 (CDK5), is neither fully understood nor are the 
alterations in function that occur in disease states. APOE ε4 is a 
mediator of numerous pathological processes related to AD risk. 
APOE increases tau hyperphosphorylation, yet APOE ε4 carriers and 
non-carriers show similar benefits to brain health as a result of 
engagement in physical activity (Pearce et al., 2022). Given physical 
activity engagement entails a suite of biological processes, it is likely 
that many of these molecular targets align with AD neuropathology 
and therefore require further investigation (de Frutos Lucas et al., 
2023). We also found lower BMI was associated with higher levels of 
p-tau 181 in CSF, where the prevailing evidence seems to indicate an 
association (Mathys et al., 2017; Bos et al., 2019; Zhang et al., 2022) 
rather than a lack of association (Pegueroles et al., 2020; Sun et al., 
2020). There is considerable literature concerning an age-related risk 
matrix (Vidoni et al., 2011; Besser et al., 2016; Gottesman et al., 2017; 
Müller et al., 2017; Bos et al., 2019), a so-called “obesity paradox”, 
where lower BMI in midlife is associated with decreased AD risk while 
lower BMI in later life is associated with an increased risk. This 
paradox pattern appears to continue into the preclinical AD stage as 
indicated by biomarkers, where lower BMI has been associated with 
higher levels of CSF p-tau 181 in midlife (Mathys et al., 2017), and 
later life obesity has been linked with lower levels of CSF p-tau (Zhang 
et al., 2022).

We found that having more education and a higher BMI were 
both significantly associated with higher THV. Systematic review and 
meta-analysis from 45 observational, cross-sectional, epidemiological 
studies have demonstrated a clear association between higher BMI 
and lower brain volume (Han et al., 2021). However, there is some 
longitudinal evidence that changes in body weight are not related to 

hippocampal volume in later-life participants (Giudici et al., 2019). 
In our EPAD participants (mean age 66 years at baseline), higher BMI 
was associated with higher THV, adjusting for age and cognition, 
which were both significant. Previous research has found that midlife 
obesity (BMI > 30) was associated with an increased rate of 
hippocampal atrophy and global brain atrophy in cognitively normal 
individuals (Debette et al., 2011); however, in patients with AD, a 
negative correlation was observed (Ho et  al., 2011). Given these 
findings and ours, it may be that the relationship between BMI and 
neurodegeneration is particularly important in midlife, where a 
higher BMI is associated with lower brain volume. This relationship 
is less important, however, in later life when changes in body weight 
do not seem to impact longitudinal changes in hippocampal volume.

In this study, we have shown how several key modifiable risk 
factors are associated with the AD hallmark AT(N) biomarkers. This 
study has substantial implications in clinical settings, where routine 
screening tests could use modifiable dementia risk factor profiles to 
assess risk, severity, and potential therapeutic interventions. Given 
modifiable risk factors often cluster together, addressing them in 
designated memory clinics could be a one-stop-shop for lifestyle 
modification, where we know precision medicine has the potential 
to catalyze positive behavior change (Freling et al., 2020). There are 
several strengths of our study of note. To the best of our knowledge, 
this is the first comprehensive investigation of modifiable dementia 
risk factors and AT(N) biomarkers. We used an open-source data 
repository from a large-scale, highly characterized, epidemiological 
cohort study, and our data and code are freely accessible and 
available to be reproduced. There are also several limitations. This 
was an observational study on existing longitudinal epidemiological 
data, and as such, no causal relationship can be  construed. All 
participants were cognitively healthy at baseline; therefore, we were 
unable to include clinical staging on AT(N) instead of opting to 
adjust for cognition (MMSE) and age as proxies. Most self-reported 
measures were dichotomous, and hearing loss was omitted due to 
insufficient values for GAM comparison. Furthermore, the 

FIGURE 3

Log-transformed total hippocampal volume (mm3) of EPAD participants grouped by adherence to modifiable risk factors. Log-transformed levels of 
total hippocampal volume (mm3) are presented. Total hippocampal volume (THV) is the sum of left hippocampal volume (LHV) and right hippocampal 
volume (RHV). EPAD, European Prevention of Alzheimer’s Dementia; TBI, traumatic brain injury.
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self-reported nature of medical history and risk factor adherence 
may have imparted bias to null, especially for participants who have 
experienced a TBI (McKinlay et al., 2016), where we were unable to 
account for injury severity. However, for the application of biomarker 
and risk factor interpretation in designated memory clinics or 
routine clinical practice, self-reported measures are commonplace 
and concordant with objective measures of risk. We were also unable 
to account for racial status as, in the EPAD LCS cohort, the 
participants were predominantly white Caucasian of European 
descent and not necessarily representative of the general population, 
which may limit the generalizability of our findings to other racial 
groups. Cognition was accounted for in our GAMs by adjusted for 
MMSE scores, which is a brief cognitive screening tool and not 
necessarily sensitive to precisely detecting early cognitive decline 
and individuals at risk (Gallegos et al., 2022). Finally, we acknowledge 
how modifiable risk factors have a tendency to cluster (Peters et al., 
2019); however, this was outside the scope of our investigation. 
There is growing evidence that individual risk factors tend to 
interact, potentially leading to an underestimation of population 
attributable fraction (Welberry et  al., 2023). Further research is 
necessary to elucidate the role of clustering risk factors and their 
impact on AT(N) biomarkers.

In conclusion, this study found that TBI, physical inactivity, lower 
BMI, and lower education were all significantly associated with 
increased burden of individual AT(N) biomarkers. Lifestyle 
modification offers an accessible, cost-effective, non-invasive, and 
easily targeted avenue for risk reduction. Given the strong evidence 
for modifiable risk factors being associated with AD incidence and 
prevalence, here we  have shown significant relationships between 
several key modifiable dementia risk factors and the hallmark 
biomarkers of AD.
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