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Emerging T cell 
immunoregulatory mechanisms 
in multiple sclerosis and 
Alzheimer’s disease
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Multiple sclerosis (MS) and Alzheimer’s disease (AD) are neuroinflammatory 
and neurodegenerative diseases with considerable socioeconomic impacts 
but without definitive treatments. AD and MS have multifactorial pathogenesis 
resulting in complex cognitive and neurologic symptoms and growing evidence 
also indicates key functions of specific immune cells. Whereas relevant processes 
dependent on T cells have been elucidated in both AD and MS, mechanisms that 
can control such immune responses still remain elusive. Here, a brief overview 
of select recent findings clarifying immunomodulatory mechanisms specifically 
induced by tolerogenic dendritic cells to limit the activation and functions 
of neurodegenerative T cells is presented. These insights could become a 
foundation for new cutting-edge research as well as therapeutic strategies.
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The roles of T cells in multiple sclerosis and 
Alzheimer’s disease

Multiple sclerosis (MS) is a complex autoimmune disease characterized by inflammation 
of the central nervous system (CNS) following the attack of immune cells that destroy 
components of the myelin sheath surrounding the neuronal axons of the nerves, leading to 
demyelination and neurologic dysfunction. In most cases, MS is characterized by a relapsing–
remitting disease course, although some patients with MS suffer from the primary-progressive 
form characterized by its steady progression. Many MS patients eventually develop a 
secondary-progressive MS characterized by a steady progression of symptoms (Dendrou et al., 
2015; Baecher-Allan et al., 2018). Both genetic and environmental factors including past viral 
infections can contribute to the development of MS but the exact mechanisms resulting in MS 
pathogenesis in individual patients are unknown. Nevertheless, the processes directly leading 
to development of MS depend on an aberrant response of the immune system directed against 
specific antigens derived from components of the CNS (Hafler et al., 2007; Patsopoulos et al., 
2011; Beecham et al., 2013; Lill et al., 2013). This autoimmune process can be initiated when 
specialized antigen presenting cells (APCs), including conventional dendritic cells (cDCs), 
activate autoreactive CD4+ T lymphocytes (cells). Such neural antigen-specific 
(encephalitogenic) CD4+ T cells can enter the CNS and be re-activated by the functions of 
microglia and possibly other of myeloid cells resulting in a recruitment of cytotoxic CD8+ T 
cells and establishing an inflammatory lesion (Kawakami et al., 2005; Raddassi et al., 2011; 
Jones and Hawiger, 2017; Absinta et al., 2021; Schnell et al., 2021; Lanz et al., 2022). Further, 
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CD4+ T cells orchestrate functions of autoreactive B cells that, along 
with natural killer (NK) cells and macrophages, crucially contribute 
to MS immunopathology (Dendrou et  al., 2015; Baecher-Allan 
et al., 2018).

The pathogenesis of another notorious neurologic disorder, 
Alzheimer’s disease (AD), remains elusive. AD is a devastating, 
progressive neurodegenerative disease affecting millions of 
people, including a large percentage of the population over 
85 years old. Microscopic hallmarks of the disease are 
characterized by early deposition of amyloid-β (Aβ) plaques 
followed by formation of neurofibrillary tangles composed of 
hyperphosphorylated tau protein. Although deposition of Aβ is a 
necessary factor in AD pathogenesis, its accumulation appears as 
insufficient for neurodegeneration and cognitive decline. In 
contrast, pathological tau accumulation is closely linked with 
neurodegeneration and cognitive decline (DeMarshall et al., 2016; 
Chen et  al., 2023). In contrast to MS and other autoimmune 
disease in which the key roles of T cells have been well established, 
T cells have been only recently implicated in pathogenesis of in 
AD. Previous results have suggested that T cells promote tissue 
pathology and cognitive defects in AD but these immune cells 
may also have beneficial functions such as clearing the amyloid 
plaques (Mietelska-Porowska and Wojda, 2017; Chen et al., 2023). 
The specific T cell antigens and the relevant functions of major T 
cell types including CD4+ T helper(Th)1, Th17, Th2, and CD8+ 
cytotoxic T cells, whose specific functions have been delineated 
in case of MS, remain less clear in AD. For example, Th1 cells were 
found to either exacerbate neuroinflammation or, conversely, had 
beneficial effects helping to clear amyloid plaques (Mietelska-
Porowska and Wojda, 2017). Such contradictory results have been 
attributed to specific disease models used for research as well as 
various stages of a disease process at which corresponding roles 
of T cell were investigated. In contrast, most recent results 
obtained from a highly relevant AD tauopathy model have clearly 
implicated the role of pathogenic T cells and their specific effector 
cytokines in pthogensis of AD (Chen et al., 2023). These authors 
discovered relevant T cell adaptive immune responses, further 
supported by findings that T cells are present in the brain 
parenchyma from AD patients and that enrichment of T cells 
highly correlates with the severity of brain atrophy. Crucially, the 
inhibition of interferon-gamma, a major Th1 cytokine, 
significantly ameliorated brain atrophy. Further, a unique TCR 
clonal expansion of pathogenic T cells observed in this study is 
consistent with the underlying pathologies that may be shared 
with a similarly observed expansion of autoimmune T cells during 
MS (Cao et  al., 2015; Hayashi et  al., 2021; Chen et  al., 2023). 
Further consistent with finding AD-associated neurodegenerative 
T cells in the CNS, such relevant T cells were also recently detected 
in peripheral blood from AD patients by the transcriptomic 
analysis that utilized a newly established Seqtometry platform 
based on direct profiling of gene expression (Kousnetsov et al., 
2024). These results are also in agreement with the known paths 
of T cell circulation between CNS and the peripheral immune 
system (Kawakami et al., 2005; Raddassi et al., 2011; Jones and 
Hawiger, 2017; Absinta et al., 2021; Schnell et al., 2021; Lanz et al., 
2022). Overall, the regulation of T cell functions appears as a 
critical objective for achieving successful immunotherapies in 
case of both AD and MS.

The indispensable roles of pTREGS and 
conventional dendritic cells in 
immunoregulation

The T cell-driven neuroinflammation is susceptible to a control 
by Foxp3+ regulatory CD4+ T cells (TREGS) (Jones and Hawiger, 2017). 
Accordingly, TREGS have been established to play a pivotal role in 
protection and recovery from MS and its animal models by 
suppressing relevant autoreactive T cells (O'Connor and Anderton, 
2008; Lowther and Hafler, 2012; Kleinewietfeld and Hafler, 2014). The 
functions of TREGS in AD are still being elucidated and a depletion of 
TREGS resulted in either blocking or promoting the AD disease process 
(Mietelska-Porowska and Wojda, 2017). A key recent study uncovered 
that increased numbers of TREGS indeed correlated with the decreased 
disease severity, further establishing the beneficial roles of TREGS in the 
AD process (Chen et al., 2023). In MS models, early pioneering studies 
showed that T cell receptor (TCR)-transgenic mice specific for myelin 
basic protein (MBP), a major neural antigen, succumbed to 
experimental autoimmune encephalitis (EAE), a mouse model of MS, 
when such animals were crossed onto a genetic background that 
precluded a development of TREGS while allowing a development of 
autoreactive T cells (Lafaille et al., 1994). Consistently, a depletion of 
TREGS in vivo by anti-CD25 antibody also exacerbated EAE (Kohm 
et  al., 2006). Based on these early insights, therapies focused on 
functions of TREGS have been proposed as an approach to block 
neuroinflammation (O'Connor and Anderton, 2008; Spence et al., 
2015; Cheng et al., 2017).

Foxp3-expressing TREGS are a heterogenous group of T cells that 
includes thymically derived (t)TREGS developing in the thymus. 
Whereas functions of such tTREGS are indispensable for the 
maintenance of immune homeostasis, they are not sufficient to 
prevent an initiation of specific autoimmune process such as in 
EAE. Instead, mechanisms blocking antigen-specific autoimmunity 
rely on other Foxp3-expressing TREGS that are induced de novo outside 
the thymus from T cells in response to corresponding self-antigens 
(Iberg et al., 2017; Jones and Hawiger, 2017). By focusing on relevant 
antigens, such peripherally induced (p)TREGS can efficiently limit 
harmful effector autoimmune responses (Kretschmer et  al., 2005; 
Iberg et al., 2017). Therefore, a de novo induction of antigen-specific 
peripheral pTREGS critically complements the functions of tTREGS, and 
has a major role in shaping the immune homeostasis. Experimental 
results in animal disease models confirmed that induction and 
functions of pTREGS were required for blocking neurologic symptoms 
in EAE despite the normal presence of thymically-derived tTREGS 
(Jones et al., 2015, 2016; Jones and Hawiger, 2017). Similar findings 
were also extended to some other autoimmune disease models (Iberg 
and Hawiger, 2020a; Bourque and Hawiger, 2022a).

Given their importance, the induction of pTREGS from naive T cells 
must be carefully regulated. A key role in this processes is performed 
by specialized cDCs that can present antigens in the tolerogenic 
context that depends on a specific molecular crosstalk between cDCs 
and T cells to skew the actively induced T cell differentiation toward 
pTREGS instead of priming effector responses (Iberg and Hawiger, 
2020a). Overall, the versatility of T cell differentiation depends on 
comprehensive characteristics of cDCs which represent a heterogenous 
group of cells including two major types 1 and 2 (cDC1 and cDC2) 
that differ in their specific development, phenotypes, and immune 
functions (Durai and Murphy, 2016; Murphy et al., 2016). Whereas all 
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cDCs excel at presentation of antigens to T cells, the CCR7+ migratory 
cDCs can deliver various peripherally-acquired antigens to lymph 
nodes (LNs) (Bourque and Hawiger, 2022a). Such cDCs also express 
immunoregulatory molecules including PD-L1, PD-L2, and CD200, 
and can promote relevant T cell tolerance in the case of multiple 
antigens (Leventhal et  al., 2016; Maier et  al., 2020). However, 
migratory cDCs also have key roles in the initiation of effector 
responses (Scheinecker et al., 2002; GeurtsvanKessel et al., 2008; Kim 
et al., 2010; Bajana et al., 2012; Krishnaswamy et al., 2018; Jenkins 
et al., 2021). In contrast, other types of cDCs present in lymphoid 
organs such as LNs and spleen, specialize in promoting induction of 
pTREGS with anti-autoimmune roles (Iberg and Hawiger, 2020a; 
Bourque and Hawiger, 2022a). These pTREGS-inducing cDC1s are 
characterized by high expression of immunomodulatory molecules B 
and T lymphocyte associated/attenuator (BTLA) and T-cell 
immunoglobulin mucin-3 (TIM-3) (Kim et al., 2020; Bourque and 
Hawiger, 2022a; Tang et al., 2022). The constitutive expression of these 
pro-tolerogenic immunomodulators, as part of the pre-determined 
developmental program, provides BTLAhi cDC1s with inherent 
capabilities to facilitate induction of pTREGS from T cells activated in 
response to various antigens presented by these cDC1s (Bourque and 
Hawiger, 2019, 2022a; Iberg and Hawiger, 2020a). Specifically, through 
interactions with herpesvirus entry mediator (HVEM) expressed in 
naive T cells, BTLA increase expression of CD5 in T cells (Jones et al., 
2016; Bourque and Hawiger, 2019). This BTLA-HVEM-CD5 
immunomodulatory axis facilitates the pTREGS conversion from naive 
T cells by decreasing the sensitivity of T cells to various 
pro-inflammatory cytokines through limiting functions of 
mammalian target of rapamycin (mTOR) (Chen et  al., 2003; 
Henderson et al., 2015; Jones et al., 2016; Bourque and Hawiger, 2019). 
Therefore, tolerogenic functions of BTLAhi cDC1s also crucially rely 
on other mechanisms notably including the production and activation 
of transforming growth factor beta (TGF-β), well established as 
critically required for the de novo expression of Foxp3 in developing 
pTREGS (Chen et al., 2003; Bourque and Hawiger, 2018). Additional 
mechanisms such as those dependent on indoleamine 2,3-dioxygenase 
(IDO) and aryl hydrocarbon receptor (AHR) also can play important 
roles in these tolerogenic processes (Bourque and Hawiger, 2018). In 
the absence of specific tolerogenic functions of BTLAhi cDC1s, the de 
novo induction of pTREGS controlling specific autoimmune responses 
is compromised, as observed using either Btla genetic deletion or a 
treatment with anti-BTLA blocking antibodies in mouse models in 
vivo (Jones et al., 2016; Iberg et al., 2017, 2022). Nevertheless, while 
IDO may complement tolerogenic functions of BTLAhi cDC1s, recent 
results have also shown IDO activation in some mature cDC1s with 
high CCR7 expression, and not corresponding to BTLAhi cDC1s, that 
may promote the tolerogenic functionality in autoimmune models 
including non-obese diabetes (NOD) and EAE (Price et al., 2015; 
Tabansky et al., 2018; Gargaro et al., 2022).

The understanding of the tolerogenic roles of cDCs comes mostly 
from studies that focused on these functions among the cDCs present 
in the peripheral immune system, outside the CNS. However, because 
T cells trafficking to the CNS also recirculate to the peripheral immune 
system where they can be maintained and activated (Kawakami et al., 
2005; Raddassi et al., 2011; Jones and Hawiger, 2017; Absinta et al., 
2021; Schnell et  al., 2021; Lanz et  al., 2022), the tolerogenic 
mechanisms initiated in the periphery extend to the control of the 
pathogenic immune processes in the CNS (Jones et al., 2015; Jones 

and Hawiger, 2017). Therefore, not only are the molecular mechanisms 
underlying the tolerogenic roles of cDCs of acute research interest, but 
they could also become potential therapeutic targets.

Tolerogenic mechanisms under 
pro-inflammatory conditions

The in vivo targeted delivery of self-antigens to BTLAhi cDC1 
utilizing recombinant antibodies and other reagents binding to 
specific surface receptors on these cells represents a key pro-tolerogenic 
strategy (Iberg and Hawiger, 2019, 2020b; Bourque and Hawiger, 2021, 
2022b). However, the full realization of such therapeutic potentials, 
especially for translationally relevant settings, still remains limited by 
the complexities of molecular mechanisms within the cDCs. Recent 
results have revealed that even under steady conditions (in the absence 
of specific, disease-associated pro-inflammatory signals), some cDCs 
induce CD4+ T cells with an increased potential for autoimmune 
differentiation (Opejin et al., 2020; Bourque and Hawiger, 2022a). In 
EAE models such “pre-effectors” can readily convert into 
encephalitogenic effector T cells resulting in a development of 
autoimmune disease. Therefore, a careful consideration is required 
when selecting specific targets and routes for antigen delivery to cDCs 
with intended pro-tolerogenic effects (Bourque and Hawiger, 2022a,b).

Recent findings also uncovered that tolerogenic BTLAhi cDC1s are 
highly susceptible to pro-inflammatory conditions that result in 
ablation of these cells through an acute cell death mediated by TNF-α 
(Iberg et al., 2022; Bourque and Hawiger, 2023a). TNF-α is released by 
cDCs, T cells, and other types of immune cells upon their initial 
immune activation (Bourque and Hawiger, 2023b). TNF-α has been 
shown in numerous mouse models to be  crucially involved in a 
propagation of the maturation (activation) of cDCs (Bardou et al., 
2021; Cabeza-Cabrerizo et al., 2021). Consistently, TNF-α is involved 
in the pathogenesis of several autoimmune and pro-inflammatory 
disease in humans including AD and MS and also others such as 
Crohn’s disease and arthritis (Chang et al., 2017; Jang et al., 2021). 
Significantly, the levels of TNF-α are increased in blood of patients with 
AD, and clinical and animal studies have demonstrated a link between 
excess TNF-α levels in the brain and AD development (Chang et al., 
2017). At the same time, anti-TNF-α treatments have been only 
partially successful, and their lack of effectiveness, particularly in case 
of MS, can likely be attributed to complex signaling pathways that are 
initiated by TNF-α sensed by two different receptors, tumor necrosis 
factor receptor 1 (TNFR1) and TNFR2 (Bourque and Hawiger, 2023b). 
The expression patterns and functions of these receptors differ 
depending on the cell type. Both receptors can respond to TNF-α 
bound to a membrane but only TNFR1 can proficiently respond to 
TNF-α in its soluble form (Wajant and Siegmund, 2019). TNFR1 is 
expressed by nearly all cell types, whereas TNFR2 expression is 
restricted to regulatory T cells, myeloid cells, glial cells, certain 
endothelial cells, and is also induced by certain T and B cell subsets, 
epithelial cells, and fibroblasts (Wajant and Siegmund, 2019). Both 
receptors activate proinflammatory pathways such as the NF-κB 
(Wajant and Siegmund, 2019). TNFR1 induces necroptotic and 
apoptotic cell death through complex processes dependent on receptor-
interacting serine/threonine-protein kinase 3 (RIPK3) and caspase 8, 
respectively (Wajant and Siegmund, 2019). These diverse mechanisms 
mediated by TNF-α underscore the pleiotropic outcomes of the sensing 
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of this cytokine by cDCs that interact with different types of effector 
and regulatory T cells. Recent results have elucidated that, among all 
cDCs, the highest expression of TNFR1 characterizes tolerogenic 
BTLAhi cDC1s (Iberg et al., 2022). Therefore, under pro-inflammatory 
conditions the BTLAhi cDC1s die rapidly in response to the released 
TNF-α whose copious amounts are also produced in the autocrine/
paracrine fashion by these cells (Iberg et  al., 2022). Although the 
ablation of BTLAhi cDC1s is only transient, with the populations of 
cDCs returning to their homeostatic numbers within a week, the acute 
absence of these tolerogenic cDCs shifts a balance away from the 
induction of pTREGS (Iberg et al., 2022; Bourque and Hawiger, 2023b). 
Such conditions blocking pro-tolerogenic mechanisms can be instead 
more conducive to differentiation and function of potentially 
pathogenic effector T cells (Bourque and Hawiger, 2023b). Therefore, 
designs of new therapies focused on either induction or restoration/
enhancement of tolerogenic mechanisms must also account for a loss 
of cDCs with tolerogenic functions occurring under conditions that 
underly various pro-inflammatory diseases.

Conclusions and future directions

It is becoming increasingly clear that specific immunoregulatory 
mechanisms can limit the disease process in MS, and possibly also in 
AD. Whereas it is still not possible to fully utilize such processes for 
translationally relevant clinical applications, recent insights into the 
tolerogenic mechanisms of dendritic cells as well as the impact of key 
pro-inflammatory mediators on these functions, could pave the way 
for designing effective strategies that could better counter pathologies 
underlying MS and AD. Further, new tools may facilitate a detection 
of neurodegenerative T cells in AD and MS patients for early 
diagnostic as well as monitoring therapeutic outcomes. Overall, the 

future advances will lead to designing targeted and antigen-specific 
immunotherapies to fully utilize the potential of regulatory T 
cell mechanisms.
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