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The blood–brain barrier is known to consist of a variety of cells and complex inter-
cellular junctions that protect the vulnerable brain from neurotoxic compounds; 
however, it also complicates the pharmacological treatment of central nervous 
system disorders as most drugs are unable to penetrate the blood–brain barrier 
on the basis of their own structural properties. This dramatically diminished the 
therapeutic effect of the drug and compromised its biosafety. In response, a 
number of drugs are often delivered to brain lesions in invasive ways that bypass 
the obstruction of the blood–brain barrier, such as subdural administration, 
intrathecal administration, and convection-enhanced delivery. Nevertheless, 
these intrusive strategies introduce the risk of brain injury, limiting their clinical 
application. In recent years, the intensive development of nanomaterials science 
and the interdisciplinary convergence of medical engineering have brought light 
to the penetration of the blood–brain barrier for brain-targeted drugs. In this 
paper, we extensively discuss the limitations of the blood–brain barrier on drug 
delivery and non-invasive brain-targeted strategies such as nanomedicine and 
blood–brain barrier disruption. In the meantime, we analyze their strengths and 
limitations and provide outlooks on the further development of brain-targeted 
drug delivery systems.

KEYWORDS

blood–brain barrier, brain-targeted drugs, nanomaterials, cell transport, physical 
stimulation

1 Introduction

Delivery of medicines to the central nervous system (CNS) is restricted by the blood–brain 
barrier (BBB), which leads to a significant reduction in therapeutic efficacy (Abbott et al., 2010; 
Abbott, 2013; Daneman and Prat, 2015). The BBB is a micro-vascular network that surrounds 
the CNS and separates it from the peripheral circulation. This unique physiological structure 
plays an important role in precisely regulating the transport of bio-molecules between 
peripheral blood and brain tissues as well as maintaining the homeostasis of the internal 
environment of the central nervous system. Simultaneously, this barrier also prevents most 
large molecule drugs and more than 98% of small molecule drugs from entering brain tissue 
(Daneman and Prat, 2015; Pandit et al., 2020). This barrier consists of endothelial cells (ECs), 
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pericytes (PCs), basement membranes and astrocytes (Ribatti et al., 
2006; Abbott, 2013; Daneman and Prat, 2015). Endothelial cells form 
extensive tight junctions (TJs) through trans-membrane proteins, 
cytoplasmic attachment proteins, and cytoskeletal proteins, which 
restrict the cellular transport of molecules in the peripheral circulation 
and allow passive diffusion of only lipid-soluble drugs with molecular 
weights of less than 400-600da (Abdullahi et al., 2018; Zhang et al., 
2021). Transporters, receptors, and ion channels tightly control the 
uptake of ions and small molecules, and the net negative charge on the 
surface of endothelial cells resists molecules with the same charge 
(Pardridge, 2012, 2016; Dong, 2018; Sweeney et al., 2019). Although 
trans-cellular vesicles are able to carry many bio-molecules across the 
BBB by virtue of their phospholipid bilayer structure, high trans-
endothelial resistance restricts this pathway (Saint-Pol et al., 2020; 
Rehman et al., 2023). Simultaneously, the efflux transporter at the 
blood–brain barrier, p-glycoprotein, actively removes foreign macro-
molecules (Obermeier et al., 2013; Arvanitis et al., 2020; Kadry et al., 
2020). In addition, a discontinuous layer of PCs surrounds the basal 
surface of the endothelial cell wall. The ECs and PCs are also covered 
by a basement membrane that resembles the basement membrane, 
which is tightly enveloped by the telopods of astrocytes (Liebner et al., 
2018). Therefore, it has been a challenge for researchers to overcome 
the mentioned limitations of pharmaceutical transport and enhance 
the concentration of drugs in the CNS.

In recent years, the intensive development of nanomaterial science 
and the cross-fertilization of medical engineering disciplines have 
opened up unlimited possibilities for regulating the permeability of 
the blood–brain barrier, involving various processes of drug transport 
(Dousset et al., 2006; Vellinga et al., 2008; Zhou et al., 2018; Xie et al., 
2019; Li T. et al., 2022). Nanomaterials have a promising potential for 
a wide range of applications in the biomedical field, mainly for medical 
diagnostics and therapeutics, due to their specific physical, chemical, 
and biological properties (Sha and Badhulika, 2020; Chen et al., 2021; 
Liu and Jiang, 2022; Yuan et al., 2023). Medical nanomaterials exhibit 
unique surface properties, such as enhanced adhesion, activity, and 
selectivity, making them uniquely suited for drug delivery. Researchers 
have been able to control their size, shape, and surface chemistry in 
order to achieve targeted drug delivery in vivo, improving drug 
efficacy and reducing side effects (Khor et al., 2019; Kladko et al., 
2021; Collin et al., 2022). They are constructed from many substrates, 
including inorganic (e.g., metal/metal oxide particles) (Lee et al., 2011; 
Du et al., 2021; Wang et al., 2021), organic (e.g., liposomes, hydrogels) 
(Carne et al., 2011; Luo et al., 2019; Niu et al., 2022), and biofilm-
derived materials (e.g., exosomes, vesicles, etc.) (Benoit et al., 2019; Qi 
et al., 2019; Cui et al., 2022). In addition, physical means such as 
focused ultrasound and surface acoustic waves (SAW) have opened 
up the possibility of transiently increasing blood–brain barrier 
permeability and enhancing drug efficacy (Etame et al., 2012; Phenix 
et al., 2014; Alekou et al., 2021; Hsiao et al., 2023; Qi M. et al., 2023). 
Furthermore, with the intensive development of physical techniques 
such as ultrasound, new methods for transiently reversible 
enhancement of local blood–brain barrier permeability are being 
explored. Drug-carrying micro-bubbles open the blood–brain barrier 
under ultrasound stimulation through stable cavitation and inertial 
cavitation effects, increasing the concentration of pharmaceuticals in 
the lesion area (Wang et al., 2022). SAW is an acoustic wave that 
propagates along the surface of a medium, with properties such as 
concentrated energy and ease of manipulation. Stimulation of SAW 

alters the distribution of tight junction proteins in neighboring cells 
and enlarges the cellular gap in endothelial cells, thereby increasing 
the permeability of the BBB to both small and large-molecule 
substances (Wang K. et  al., 2023). Here, we  focus on reviewing 
different types of nanomaterials and physical methods for drug 
delivery through the blood–brain barrier, as well as their physical 
principles and transport strategies, providing an overview of the latest 
research findings in this field (Table 1).

2 Strategies for the BBB modulation 
and penetration

The BBB precisely regulates the diffusion and trans-cystic 
transport of endogenous molecules and impedes the majority (>95%) 
of exogenous molecules to maintain the homeostasis of the internal 
environment of the brain, the most complex organ in the human body 
(Salmina et al., 2021; Zhang et al., 2023a). Therefore, it has been an 
ongoing concern of researchers to facilitate drug delivery through the 
BBB to the lesion site. Up to now nanomaterial-based drug delivery 
systems for penetrating the BBB have consisted of three main 
components; first, polymers (Canal et  al., 2011; Mu et  al., 2019; 
Maghsoudi et  al., 2020; Liu et  al., 2021), metal nanoparticles 
(Mortezaee et  al., 2019; Kuchur et  al., 2020), carbon nanotubes 
(Lanone et al., 2013; Raphey et al., 2019) and other nanomaterials 
combined with applied stimuli opened the light for penetrating the 
BBB; subsequently, liposome-based nanoparticles further improved 
penetration (Cheng et al., 2021; Tenchov et al., 2021; Wang Y. et al., 
2023); and in recent years, biologically based, application of multi-
layer technologies combining chemistry and physics, such as 
biomimetic nanomembranes, have constructed more flexible and 
stable nanoparticle drug carriers, enabling precise control and release 
of drugs in vivo (Turchanin and Golzhauser, 2016; Jaksic and Jaksic, 
2020; Mohammed-Sadhakathullah et al., 2023). A number of brain-
targeted therapeutic strategies based on nanomaterials are currently 
in different clinical trials (Kumthekar et al., 2021; Gusdon et al., 2022). 
In the following, we will describe the current status and prospects of 
nanomaterials based on different transportation mechanisms across 
the BBB (Figure 1).

2.1 Para-cellular transport

Cellular para-cellular transport is unmediated and passively 
reduces the concentration gradient, or it is driven by the osmotic 
pressure (for water) or solvent resistance of the solute (Almutairi et al., 
2016; Xu L. et  al., 2019; Qi D. et  al., 2023). Because there are no 
transporter proteins that can be saturated, cellular bypass transport 
also has the advantage of matching uptake rate to load. Although the 
tight junctions of the cell gap restrict para-cellular transport of ions, 
polar molecules, and most macromolecules, a number of small, 
soluble molecules can nevertheless travel into the brain via this 
pathway. One way to enhance para-cellular drug transport is to use 
active excipients that modulate TJs, such as permeation enhancers 
(PEs), including methanol, silver-leaf lactone, and others (Brunner 
et al., 2021; Mojarad-Jabali et al., 2021). These compounds target TJs 
through non-specific interactions to open the para-cellular cleft and 
increase the transport of small molecules. Streptococcus is an 
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important pathogen causing bacterial meningitis, and a large number 
of studies have shown that the pathogenic bacteria adhere and gather 
on the endothelial cells of cerebral micro-vessels, and by destroying 
the tight junction proteins between the endothelial cells, they cause a 
change in the permeability of the blood–brain barrier, break through 
the blood–brain barrier, and enter the central nervous system, In 
addition, other bacteria that cause meningitis, such as Escherichia coli, 
are also capable of increasing the permeability of the BBB (Al-Obaidi 
and Desa, 2018; Lei et al., 2023; Mi et al., 2023; Villalba et al., 2023; 
Yang R. et al., 2023; Yang et al., 2024a). Accordingly, researchers have 
developed pathogen-associated derivatives that bind to claudins to 
open para-cellular clefts and increase the penetration of small 
compounds. Due to the lack of in-depth in vivo biosafety and efficacy 
studies, these active excipients have rarely reached clinical trials. 
Another therapeutic strategy utilizing para-cellular transport is to 
reduce the expression of tight junction proteins. MS, an adenosine 
5′-triphosphate-sensitive potassium channel (KATP channel) 
activator, time-dependently inhibits occludin and claudin-5 
expression by modulating the reactive oxygen species (ROS)/RhoA/
PI3K/PKB pathway, increases tight junction permeability, and 
facilitates drug transport (Gupta et  al., 2022). Han et  al. (2016) 
developed auto-catalytic brain tumor-targeting poly (amine-co-ester) 
terpolymer nanoparticles (ABTT NPs) co-coated with three blood–
brain barrier modulators, Lexiscan, NECA, and minoxidil, which 
induced the aggregation of nanomaterials in the region of the glioma 
through the down-regulation of the expression of tight junction 
proteins and mediated the gene therapy and chemotherapy of 
brain tumors.

2.2 Trans-cellular transport

Trans-cellular transport is the process by which bio-molecules in 
the peripheral circulation are taken up from one side of the endothelial 
cell across the plasma membrane into the cell with the aid of receptors 
(RMT), carriers (CMT), or direct adsorption-mediated 
cytotranspiration, and are subsequently delivered across the cytoplasm 
from the other side to the brain (Armulik et al., 2010; Andreone et al., 
2017; Fung et  al., 2018). Among these processes, brain-targeted 
delivery systems based on RMT to realize pharmaceuticals have been 
the most extensively researched (Patel and Patel, 2017; Stocki 
et al., 2021).

Following this line of thought, many targets that are highly 
expressed on endothelial cells of the blood–brain barrier have been 
identified. The transferrin receptor is widely expressed on endothelial 
cells of the BBB and mediates the brain transport of transferrin-iron 
complexes to maintain the homeostasis of the internal environment 
of the CNS. Meanwhile, the vigorous metabolism of most brain 
tumors and the increase in iron demand leads to the elevated 
expression of the transferrin receptor on the surface of the tumor cells, 
which is about 100 times that of the normal neuron, so that, by using 
the transferrin receptor-ligand binding effect, dual brain-targeted 
delivery can be  realized (Kawabata, 2019; Sahtoe et  al., 2021). 
Currently, researchers have identified and developed a variety of 
transferrin receptor-targeting ligands for modifying the surface of 
nanomaterials, such as transferrin, targeting peptides, corresponding 
antibodies, and their fragments (Shen et al., 2019; Koneru et al., 2021; 
Li J. et  al., 2023). Ag Seleci et  al. (2021) encapsulated magnetic 

TABLE 1 Effective strategies for BBB regulation and crossing.

Strategy Material/technique Advantage Limitation

Para-cellular permeability Permeation enhancer
Efficiency, low toxicity; Enhanced tight junction 

permeability

Non-specificity; Cerebral edema; 

Neurological damage

Minoxidil sulfate Inhibition of tight junction protein expression Side-effects based on drug toxicology

External stimulus
Reversible openness; Enhanced tight junction 

permeability
Non-specificity; penetration

Ligand modification Transferrin High specificity; Affinity to transferrin receptor
High concentrations of transferrin in 

the circulatory system

Low-density lipoprotein
Dual-targeting; Affinity to low-density lipoprotein 

receptor
Selectivity of binding carriers

Insulin or anti-insulin receptor Highly expressed; Affinity to insulin receptor
Metabolic dysfunction affecting 

selectivity

Membrane coating Red cell membrane
Long circulation and preventing from immune 

clearance; Affinity to CD47 proteins receptor
Loss of loading activity

Macrophage membrane

Bio-compatibility and avoidance behavior; 

Tumor-associated macrophages regulate tumor 

progression, invasion, and recurrence

The immune cold tumor state 

presented by the central nervous 

system

Natural killer cell;
High sensitivity; Naturally undergo 

immunosurveillance

The unique immune system of the 

brain, the immune cold tumor state 

presented by the central nervous 

system

Exosome
Bio-compatibility and Stability; Biological 

regulation of source and adjacent cells
Non-specificity
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nanoparticles within liposomes with surface-modified transferrin, and 
demonstrated that the modified transferrin significantly increased the 
enrichment of brain tumor regions, as well as markedly enhanced the 
uptake of the nanomaterials by tumor cells under magnetic guidance. 
Prades et  al. (2012) made fusion peptide-functionalized gold 
nanoparticles (5-13 nm) that were able to attach TfR and β-amyloid. 
This nanoparticle was also detectable in neuronal cells in the cerebral 
cortex after intraperitoneal injection into mice. Although other 
research groups have demonstrated that small-sized gold nanoparticles 
can access the brain without any target modification, the introduction 
of the targeted ligand also significantly improved the efficiency 
of transport.

The low-density lipoprotein receptor (LDLR) family are 
membrane-mosaic proteins that mediate the cytosis of low-density 
lipoproteins, mainly including LRP1, LRP1B, LRP2, LRP5, LRP8, 
LDLR, and VLDLR. LDLR is not only a ubiquitously expressed 
receptor, but it is also extensively expressed in the brain, making it an 
effective transport protein for therapeutic pharmaceuticals (Li et al., 
2001; Defesche, 2004; Gent and Braakman, 2004). Angiopep-2 is a 
19-amino acid peptide originating from the Kunitz domain of bovine 
protein repressor peptidases and binds to LRP1 (Habib and Singh, 
2022; Thirumurugan et al., 2022; Zhu et al., 2022). Li B. et al. (2022) 
applied angiopoietin-2 peptide-modified engineered exosomes to 
trigger transcytosis of endothelial cell, allowing NPs to traverse the 
BBB and target GBM cells by recognizing the LRP-1 receptor. In 
addition, apolipoprotein B, apolipoprotein E, and their derivative 
peptides have the ability to deliver siRNA and nanoparticle targeting 
to the brain parenchyma (Ishii, 2019; Alagarsamy et al., 2022; Yang 
L. G. et al., 2023). Furthermore, while some compounds can facilitate 
brain-targeted delivery of agents, their specific mechanism of action 
remains unclear. Tween 80 is a hydrophilic surfactant with powerful 
cell membrane cleavage causing irritation, hemolysis and sensitization 
(histamine release). In recent years, researchers have found that Tween 
80 can be used as a surfactant coated on carriers such as nanoparticles 
to facilitate their brain delivery (Azhari et al., 2016; Menberu et al., 
2021). Xu et  al. (2020) prepared rhynchophylline (RIN) loaded 
methoxy poly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-
PLGA) nanoparticles (NPs) and subsequently added Tween 80 to 
form T80-NPs-RIN. It was demonstrated that T80-NPs-RIN had a 
significantly higher rate of transport in a BBB model in vitro, with 
drug accumulation increasing over time and osmotic saturation being 
reached after 3 h, compared to RIN or NPs-RIN alone.

Of course, there are other types of receptors that mediate 
transcellular transport of carriers. Insulin receptors on brain capillary 
endothelial cells have been demonstrated to be  useful for brain-
targeted drug delivery (Vella et al., 2018; Lawrence, 2021; Choi and 
Bai, 2023). Insulin binds to two different sites on each subunit of the 
receptor, cross-linking the two receptors, resulting in a high-affinity. 
However, direct application of insulin as a ligand to prompt 
nanoparticles to cross the BBB has a number of disadvantages 
(Boucher et al., 2010; Scherer et al., 2021; Nagao et al., 2023). Firstly, 
insulin might cause hypoglycemia, which requires close monitoring 
of blood glucose changes or early interventions, and in addition, it has 
been indicated that insulin transport across the BBB is related to the 
type of insulin receptor, e.g., insulin receptors associated with 
signaling activation are not involved in its transcellular transport. 
Therefore, researchers generally utilize glucagon mimetic peptide 
antibodies and derivatives to overcome the aforementioned difficulties 
and achieve safe and effective brain-targeted delivery of 
pharmaceuticals (Ulbrich et al., 2011; Betzer et al., 2017; Tashima, 
2020). However, neither paracellular nor transcellular transport is only 
applicable to small molecules of hydrophilic compounds or highly 
hydrophobic compounds less than 400-600 Da. If high molecular 
drugs need to be delivered by either method, a transient reversible 
disruption of the BBB or an increase in  local blood–brain barrier 
permeability is required.

In addition to receptor-mediated transcellular trafficking, 
transporter (carrier) and adsorption-mediated brain-targeted delivery 
of medications has been intensively investigated for applications 
(Persidsky et al., 2006; Pardridge, 2015; Balzer et al., 2022; Ni et al., 
2022). In the first place, glucose transporters and glutathione 
transporters are the two most commonly utilized transporter proteins 
that facilitate nanoparticle penetration of the BBB for the delivery and 
aggregation of pharmaceuticals. Glucose transporters (e.g., GLUT1) are 
highly expressed on brain capillary endothelial cells and various tumor 
cells, including brain tumors, while glucose is a principal source of 
energy for brain and tumor hypermetabolism; thus, surface-loaded 
glucose ligands enable sequential dual-targeted delivery of therapeutic 
agents (Abbott, 2002; Serrano et al., 2012). For example, Jiang et al. 
developed 2-deoxy-D-glucose modified poly (ethylene glycol)-co-poly 
(tri-methylene carbonate) nano-system (D-Glu-NP) with glucose as a 
ligand, realizing the above-mentioned dual-targeting strategy of agents 
(Jiang et  al., 2014). Glutathione, as an endogenous antioxidant, is 
present in almost all cells and can contribute to the maintenance of 

FIGURE 1

Strategies and materials for BBB regulation and brain-targeted drug delivery. (1) Transporter-mediated transcytosis. (2) Receptor-mediated transcytosis. 
(3) Para-cellular transportation. (4) Lipophilic pathway. (5) Efflux pump-mediated transcytosis. (6) Adsorptive transcytosis. (7) Vesicle-mediated 
transcytosis.
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normal immune system function and has antioxidant effects and 
integrative detoxification (Meister, 1991; Cooper and Kristal, 1997). 
Studies have demonstrated that glutathione is significantly higher in the 
brain than in the peripheral circulation or other tissues, and glutathione 
transporters are efficiently expressed on brain capillary endothelial cells, 
which exert an influential role in the maintenance of CNS homeostasis. 
Recently brain-targeted delivery systems for glutathione transporters 
have been gradually developed. In addition, adsorption-mediated 
transcellular transport has been extensively explored for brain-targeted 
drug delivery (Scherrmann, 2002; Zhang et  al., 2023b). Brain 
endothelial cell membranes are naturally negatively charged, and 
transcellular transport is achieved by electrostatic interactions with 
positively charged agents or pharmaceutical carriers. Cell-penetrating 
peptides (CPPs) are short, positively charged peptides (< 20 amino 
acids) that promote cellular uptake and absorption of molecules ranging 
from nanoparticles to small compounds to large DNA fragments, a 
typical adsorption-mediated transcellular transport (Guidotti et al., 
2017; Zhou et al., 2022; Zorko et al., 2022). Since CPP-mediated drug 
delivery lacks cell specificity and targeting, it is usually combined with 
corresponding targeting peptides to realize the dual effects of drug 
crossing the BBB and focal aggregation. Zhong et  al. developed 
co-functional tandem nano-compartments, termed ANG20/TAT10-
Ms, loaded with both Angiopep-2 and the transcription factor TAT (a 
CPP), and found that ANG20/TAT10-Ms had significantly higher 
glioma accumulation rates compared to nanoclusters that included only 
Angiopep-2 modifications in the U87MG glioma mouse model.

3 Penetration strategies for the BBB

3.1 Membrane camouflage for brain 
targeting

In the past decades, nanotechnology has achieved promising 
results in biomedical applications in a variety of directions, including 
therapeutic, diagnostic, etc. However, the inherent rejection of the 
immune system prevents some, if not the majority, of nanoparticles 
that enter the body from functioning (Mundt et al., 2022; Salvador and 
Kipnis, 2022; Xu et al., 2022). In order to avoid detection and removal 
by the immune system, researchers have attempted to evade capture 
by the immune system through methods such as particle surface 
modification (Yang et al., 2018; Cao et al., 2020; Li Y. et al., 2023). For 
example, polyethylene glycol (PEG) coated on the surface of 
nanoparticles can comprise a kind of “invisible coating” (Fang et al., 
2023). This PEGylation has proven to be effective in prolonging the 
half-life of most nanoparticles, however, acquired immunity is still 
able to accelerate clearly with more frequent administration. 
Furthermore, in order to improve the focal targeting and specificity of 
nanoparticles, a great deal of work has focused on the identification, 
characterization and production of specific ligands. As the 
construction of nanocarriers becomes progressively more complex, 
the process of ligand modification inevitably becomes difficult to 
control. In recent years, the modification of nanoparticles utilizing 
natural membrane materials such as cell membranes and exosomes 
has become a new area of research interest. The interaction of these 
(biomimetic) nanoparticles with cell membrane-derived platforms 
allows them to avoid clearance by the immune system and, at the same 
time, has natural targeting properties that enable them to travel 

through complex biological environments to reach and accumulate in 
focal areas (Figure 2).

3.1.1 Brain targeting based on cell membrane 
encapsulation

Erythrocytes have natural biophysical properties and stability that 
enable them to be excellent “shells” for safe and immune-compatible 
drug delivery systems (Cui et al., 2020; Zhang et al., 2022). In addition, 
erythrocyte membranes are readily available, simple to prepare, and 
uniform in size and shape. In order to improve the efficacy of drugs 
for the treatment of ischemic stroke, Lv et  al. (2018) developed a 
bioengineered ROS-responsive nanocarrier for specific brain-targeted 
delivery of the neuroprotectant NR2B9C to reduce the extent of 
ischemia-induced brain injury by targeting the ROS upregulation in 
ischemic neurons. This nanocarrier consists of a dextran polymer core 
modified with ROS-responsive borate and a red blood cell (RBC) 
membrane shell inserted with stroke homing peptide (SHp) (Lv et al., 
2018). Thus, this nanoparticle (SHp-RBC-NP) controls the release of 
NR2B9C upon entry into ischemic brain tissues triggered by high 
ROS. The potential of SHp-RBC-NP for the treatment of ischemic 
stroke was systematically evaluated in vitro and a rat middle cerebral 
artery occlusion (MCAO) model. The results of in vitro experiments 
showed that SHp-RBC-NP was well protected against glutamate-
induced cytotoxicity. In vivo pharmacokinetic (PK) and 
pharmacodynamic (PD) assays also further demonstrated that the 
nanoparticles significantly prolonged the systemic circulation time of 
NR2B9C, enhanced the active targeting of ischemic regions and 
attenuated ischemic brain damage in MCAO rats.

Leukocytes can cross the BBB and reach the lesion area in the 
brain, including macrophages, dendritic cells (DCs), and natural killer 
(NK) cells. Therefore, immune cell membranes are favorable 
membrane-encapsulated materials because of their excellent 
biocompatibility and the adverse effect of non-recognition of normal 

FIGURE 2

Membrane camouflage for brain targeting. Immune cell-based 
membrane camouflage (1) Natural killer cell (NK). (2) Macrophage. 
Vesicle-based membrane camouflage (3) Exosome. (4) Cancer cell-
based membrane camouflage. (5) Red blood cell-based membrane 
camouflage.
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cells (Artyomov et  al., 2016; Crinier et  al., 2020; Hilligan and 
Ronchese, 2020; Kameritsch and Renkawitz, 2020; Wu et al., 2020; 
Anderson et al., 2021; Kadomoto et al., 2021; Lee et al., 2021; Wen 
et al., 2022; Wiernicki et al., 2022; Chen X. et al., 2022; Galati and 
Zanotta, 2023).

Naturally occurring molecules on the surface of macrophage 
membranes can confer a number of properties to encapsulated 
nanoparticles, including the BBB penetration, brain tissue targeting, 
and immune evasion. For example, C-C chemokine receptor 2 (CCR2) 
(Hajal et al., 2021; Quaranta et al., 2023), and intercellular adhesion 
molecule-1 (ICAM-1) (Dietrich, 2002; Soldati et al., 2023) can direct 
macrophage membrane-encapsulated nanoparticles to the tumor 
region, and in addition, α4 and β1 integrins on the macrophage 
membrane can interact with vascular cell adhesion molecule-1 
(VCAM-1) on the membrane of the cancer cells, allowing macrophage 
membrane-encapsulated nanoparticles to be targeted to the cancer 
cells and cancer metastasis (Rosenman et al., 1995; Haarmann et al., 
2015; Cheng V. W. T. et al., 2019). Jiang et al. constructed nanoparticles 
loaded with chemotherapeutic drugs and encapsulated using 
macrophage membranes (cskc-PPiP/PTX@Ma) (Zhang et al., 2018). 
It was observed that the nanoparticles crossed the BBB with the 
assistance of various chemokines on the surface of macrophage 
membranes to reach the tumor region, and were subsequently shed 
through morphological changes driven by stimulation of the 
extracellular microenvironment of the tumor. After the nanoparticles 
are internalized, the loaded drug is rapidly released from the 
nanoparticles in response to endosomal pH, thereby enhancing the 
tumor killing effectiveness. This combination of bionic cell membranes 
and cascade-responsive nanoparticles builds an effective drug delivery 
system tailored to the tumor microenvironment.

Natural killer cells (NK cells), important immune cells in the 
organism, are morphologically large granular lymphocytes, and 
although they lack tumor antigen-specific cell surface receptors, they 
have a number of alternative receptors that can recognize cancer cells, 
including NKG2D (Dhar and Wu, 2018; Liu et al., 2019), NKp44, 
NKp46, and DNAM-1,(Horton and Mathew, 2015; Liu et al., 2019; 
Focaccetti et al., 2022; Murayama et al., 2022; Cifaldi et al., 2023) 
which have excellent biocompatibility and tumor targeting properties. 
Tang and coworkers developed nanorobots by coating an aggregation-
induced emission-active polymer endoskeleton with a membrane 
derived from NK cells to mimic NK cells (Su et al., 2021). Mechanistic 
studies indicated that receptors from NK cells to the surface of the 
nanorobots play a primary role in BBB crossing and tumor recognition.

3.1.2 Brain targeting based on exosomes
Exosomes are membranous vesicles released into the extracellular 

matrix by fusion of intracellular multivesicular bodies (MVB) with the 
cell membrane (Zhang et al., 2015; Yang et al., 2019; Zhang et al., 
2020). Almost all types of cells, which can produce and release 
exosomes, are nanoscale lipid inclusion structures with a diameter of 
30–100 nm. Because of their origin from parental cells, they have 
excellent biocompatibility and tissue-organ targeting properties (He 
et al., 2018; Kalluri and LeBleu, 2020; Ocansey et al., 2020). Therefore, 
changing the cellular origin of exosomes may be an effective strategy 
to induce brain-targeted delivery (Wu et al., 2022; Zhan et al., 2022; 
Kim et al., 2023; Tao et al., 2023; Yang et al., 2024b). In a mouse stroke 
model, neural stem cell-derived EVs showed enhanced CNS delivery 
efficiency compared with MSC-derived EVs. However, it was 

discovered that exosomes from different cell types without any 
modification had a delivery efficiency of <1% to the brain after 
systemic injection, implying that exosomes have a natural tendency to 
ignore the BBB (Zhang and Yu, 2019; Peng et al., 2020; Liang et al., 
2021). As a result, researchers have attempted various modifications 
to the exosome surface to improve its brain-targeting ability, such as 
the aforementioned receptor-mediated transcellular transporter 
action. Kim et  al. utilized transferrin receptor (TfR)-modified 
exosomes to construct TfR-exo, and by coupling the T7 peptide to 
Lamp2b, compared to the unmodified exosome, TfR-exo had favorable 
BBB penetration and glioma targeting (Kim et  al., 2020; Choi 
et al., 2022).

3.2 External stimuli mediate transient 
opening of the partial BBB

Many chemotherapeutic drugs are unable to achieve transcellular 
brain-targeted delivery only through the aforementioned 
transmembrane transport pathway due to their large molecular 
weights. Therefore, transient opening of the local BBB through 
external stimulation with the assistance of various energy-converting 
materials and modulation of its permeability is an effective strategy to 
promote brain-targeted delivery of drugs (De Cock et al., 2015, 2016; 
Mulik et al., 2016; Szablowski et al., 2019; Cheng B. et al., 2019; Chen 
J. et al., 2022) (Figure 3).

Focused ultrasound (FUS) combined with microbubbles (MBs) is 
used extensively in the clinic for enhanced angiography of well 
perfused organs such as the heart, liver, and kidneys (Wang et al., 
2022). In recent years, this technique has been applied to open the 
BBB for targeted brain delivery of medications (Kamimura et al., 2019; 
Vince et al., 2021; Yang et al., 2021). In recent years, the US FDA has 
approved monoclonal antibody drugs for the treatment of Alzheimer’s 
disease (AD). Relevant studies have shown that focused ultrasound 
could effectively improve the concentration of monoclonal antibodies 
in the brain and enhance the therapeutic effect of AD (Ma et al., 2023). 
The principle of this technique is that low-frequency focused 
ultrasound is not restricted by the skull, and after penetration, it can 

FIGURE 3

External stimuli mediate transient opening of the partial BBB. (1) 
Focused ultrasound combined with micro-bubbles. (2) Surface 
acoustic wave.
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gather in the brain and lead to a series of cavitation effects in 
microbubbles in intracranial blood vessels, which stretches the 
structure of the BBB and ultimately induces an increase in the 
permeability of the blood–brain barrier (Hijnen et al., 2017; Nowicki, 
2020). The BBB can be briefly and reversibly opened by FUS with the 
assistance of MBs to concentrate the ultrasound energy on the 
localized area of the BBB. How to precisely control the FUS energy to 
keep the opening of the BBB within a safe and effective range is a 
question that researchers need to consider (De Cock et al., 2016; Sun 
et  al., 2017; Xu S. et  al., 2019). Fortunately, focused ultrasound 
combined with microbubble-mediated BBB opening has entered 
clinical trials in recent years, and its safety and efficacy have been 
supported by clinical evidence (Rezai et al., 2020; Mehta et al., 2023). 
The main application limitation of bubbles as FUS-mediated BBB 
opening response is the bubble size. Chen et al. (2019) synthesized a 
porous lipid-polymer hybrid MBs (lipid/PLGA MBs). These MBs can 
encapsulate drugs in the inner lumen and simultaneously open the 
local BBB by FUS-triggered cavitation effect to release the encapsulated 
medications at the lesion site; however, these MBs have micrometer-
sized particles, resulting in ultrasound-perforating effects only within 
the blood vessels (Chen et al., 2019). Studies have found that nanoscale 
bubbles, including nanobubbles, nanodroplets, echo-exosomes, and 
liposomes, as well as air bubbles, are highly stable and that binding to 
the FUS more facilitates the transport of biomolecules across the 
cellular and tissue barriers, even though the reduction in the size of 
the bubbles results in a hardening of their shells and a reduction in the 
echo signal (Kim et al., 2015; Suarez Escudero et al., 2018).

Surface acoustic wave (SAW) is an acoustic wave that propagates 
along the surface of a medium with excellent properties such as 
concentrated energy and easy manipulation, which makes its 
application in biomedical fields gradually widespread (Wang K. et al., 
2023). It has been discovered that SAW stimulation can influence the 
distribution of tight junction proteins between endothelial cells in 
brain capillaries without affecting the expression of tight junction 
proteins or the activity of endothelial cells, and enlarge the cellular 
gaps between endothelial cells, thus facilitating macromolecules to 
penetrate the BBB and enter into the brain (Steed et al., 2010; Ding 
et al., 2013; Guo et al., 2021; Peng D. et al., 2021; Kim et al., 2022).

4 Conclusion and perspectives

The BBB serves as a natural barrier to maintain homeostasis of the 
internal environment of the CNS. However, this barrier is a double-
edged sword that protects the brain from toxins and pathogenic 
bacteria, but the endothelial cels and the tight junctions between them 
also impede the brain permeability of most therapeutic drugs which 
largely affects their therapeutic efficacy for CNS disorders (Iovino 
et  al., 2016; Peng D. et  al., 2021). With the rapid development of 
nanotechnology and the in-depth integration of medical engineering 
crossover, it brings light to the regulation of blood–brain barrier 
permeability and targeted drug delivery. Researchers have designed 
and fabricated many drug-targeting delivery systems with unique 
physicochemical properties and multifunctional nano-substrates 
according to the demand to achieve drug brain focal aggregation by 
modulating various transcellular transport pathways and BBB 
permeability (Qian et al., 2020). This paper summarizes the research 
progress of various drug delivery systems in recent years and the 

problems that require attention/solution. Nanomaterials-based 
delivery systems have excellent bio-compatibility for drug delivery 
through the molecular transport pathway of the BBB without causing 
damage to normal organs in the human body, especially in recent 
years with the continuous advancement of nanotechnology, which has 
been conjugated to biological membranes or linked to relevant 
antibodies to enable them to acquire complex therapeutic functions. 
Liu et  al. (2023) developed engineered artificial vesicles (EAVs), 
ANG-TRP-PK1@EAVs, which have similar properties to secreted 
exosomes but with higher yields. ANG-TRP-PK1@EAVs had efficient 
BBB penetration and GBM targeting ability. Adriamycin-loaded EAVs 
(ANG-TRP-PK1@DOX) have not altered the properties of EAVs, 
which can penetrate the BBB, reach the GBM, and kill tumor cells in 
the in situ GBM mouse model. Researchers generally increase the 
aggregation penetration of nanoparticles in the BBB by ligand 
coupling, but intravenous injection leads to redirection to other 
organs such as the liver, so altering the route of administration to 
increase BBB aggregation is a pressing issue, such as nasal 
administration and convection-enhanced administration (Yang et al., 
2022; Pickering et al., 2023). Physical methods such as FUS achieve 
reversible brain-targeted drug delivery by briefly opening the local 
blood–brain barrier through low energy without serious complications 
or side effects. For example, MR-guided focused ultrasound 
(MRgFUS) combined with intravenous microbubble drug delivery has 
been applied to open the focal temporary BBB in patients with 
neurodegenerative diseases and brain tumors, and it has become a 
therapeutic tool for drug delivery in neurorecovery therapy (Gasca-
Salas et al., 2021). However, this method is unable to realize the precise 
delivery of drugs. In recent years, nanodelivery systems combined 
with physical methods have become a new option, such as the FUS/
microbubble-assisted BBB opening for intravesical delivery of lipid 
nanoparticles encapsulating mRNA to the brain studied by Ogawa 
et al. (2022). The intensity of the FUS irradiation was optimized to 
1.5 kW/cm2 without hemorrhage or edema (Ogawa et al., 2022). In 
conclusion, the delivery methods described in this paper each have 
their own advantages, and intensive cross-fertilization will further 
improve the delivery efficiency.

Despite the tremendous achievements of this engineering 
technology in the field of brain-targeted delivery, and even some 
nano-delivery platforms have progressed to the clinical trial stage, 
there are still technical difficulties or problems in this technology that 
require researchers to overcome and optimize. (1) Peripheral 
circulation time of nanoplatforms (Ohta et al., 2020). It was discovered 
that the physical properties of nanomaterials, including size, charge, 
and composition, affect blood circulation time. This not only reduces 
the efficiency of brain-targeted drug delivery, but also might cause 
accumulation of materials in peripheral tissues and organs, which 
raises biosafety concerns. In addition, the peripheral immune system 
may phagocytose and destroy the BBB, reducing its serum half-life. 
Researchers generally make nanomaterials functional for immune 
escape through ligands and membrane camouflage, in addition, 
polyethylene glycolization is commonly applied to prolong the half-
life of nanomaterials and avoid their destruction. In conclusion, 
during the construction of nanomedicine delivery platforms, it is 
essential to consider how to make them rapidly aggregate in the lesion 
area. (2) Spatio-temporal deliberate targeting. After nanomaterials 
have been modified or successfully penetrated the BBB with the 
assistance of their own physicochemical properties, they will not 
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be  completely pooled in the focal area, and other therapeutic 
modalities other than drug delivery with the help of nanomaterials, 
such as thermotherapy and catalytic therapy, require precise control 
of their temporal and spatial distribution, thus realizing precise 
treatment and reducing the damage to the normal brain tissues. (3) 
Long-term biosafety concerns. Favorable biosafety is an issue that 
must be considered and resolved for nanomedicine delivery platforms 
to truly achieve clinical applications. Although most of the literature 
findings indicated that nanomaterials do not inflict acute toxic damage 
to cells, tissues, and organs, their long-term distribution and 
metabolism should be further evaluated. Studies have identified that 
some nanomaterials may have excellent biocompatibility, 
pharmacological and toxicological evaluations have revealed that 
these materials may reside in areas of normal brain tissue and cause 
long-term brain damage. Therefore, in addition to exploring the 
molecular mechanisms of nanomaterials to penetrate the BBB and 
disease treatment, long-term biosafety assessment is also an issue that 
researchers must pay attention to. (4) homogeneity and reproducibility. 
Subtle changes in the physical and chemical properties of 
nanomaterials, such as size and shape, can influence their functions; 
in addition, the reproducibility of penetration, targeting and other 
functions is also a direction that researchers need to focus on. This 
puts higher demands on the preparation techniques and processes of 
nanomaterials. Although this technology is still facing problems that 
require urgent solutions, in view of the favorable results achieved so 
far, we believe that further in-depth cross-development of medical 
engineering technologies will provide a broader platform for precise 
BBB penetration and brain-targeted therapies.
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