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Objective: Voxel-based morphometry (VBM), surface-based morphometry 
(SBM), and radiomics are widely used in the field of neuroimage analysis, 
while it is still unclear that the performance comparison between traditional 
morphometry and emerging radiomics methods in diagnosing brain aging. In 
this study, we aimed to develop a VBM-SBM model and a radiomics model for 
brain aging based on cognitively normal (CN) individuals and compare their 
performance to explore both methods’ strengths, weaknesses, and relationships.

Methods: 967 CN participants were included in this study. Subjects were 
classified into the middle-aged group (n  =  302) and the old-aged group (n  =  665) 
according to the age of 66. The data of 360 subjects from the Alzheimer’s Disease 
Neuroimaging Initiative were used for training and internal test of the VBM-SBM 
and radiomics models, and the data of 607 subjects from the Australian Imaging, 
Biomarker and Lifestyle, the National Alzheimer’s Coordinating Center, and the 
Parkinson’s Progression Markers Initiative databases were used for the external 
tests. Logistics regression participated in the construction of both models. 
The area under the receiver operating characteristic curve (AUC), sensitivity, 
specificity, accuracy, positive predictive value, and negative predictive value 
were used to evaluate the two model performances. The DeLong test was 
used to compare the differences in AUCs between models. The Spearman 
correlation analysis was used to observe the correlations between age, VBM-
SBM parameters, and radiomics features.

Results: The AUCs of the VBM-SBM model and radiomics model were 0.697 
and 0.778 in the training set (p  =  0.018), 0.640 and 0.789 in the internal test set 
(p  =  0.007), 0.736 and 0.737 in the AIBL test set (p  =  0.972), 0.746 and 0.838 in the 
NACC test set (p <  0.001), and 0.701 and 0.830 in the PPMI test set (p = 0.036). 
Weak correlations were observed between VBM-SBM parameters and radiomics 
features (p  <  0.05).

Conclusion: The radiomics model achieved better performance than the VBM-
SBM model. Radiomics provides a good option for researchers who prioritize 
performance and generalization, whereas VBM-SBM is more suitable for those 
who emphasize interpretability and clinical practice.
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1 Introduction

The human brain structure changes with age throughout the 
lifetime (Ziegler et al., 2012). The atrophy of grey matter (GM) is 
commonly observed in normal brain aging, accompanied by the 
shrinkage of white matter volumes and enlargement of the 
cerebrospinal fluid spaces (Lemaitre et al., 2012). Trajectories of 
brain aging differ from individual, and aged brains are more 
prone to cognitive decline (Fjell et al., 2014). Thus, in the past 
few decades, researchers have continuously studied the 
macroscopic and microscopic manifestations of brain aging to 
varying degrees.

Voxel-based morphometry (VBM) and surface-based 
morphometry (SBM) are common approaches to studying brain 
morphological changes from the macroscopic level. VBM serves to 
estimate brain region volumes, such as grey matter volume (GMV) 
(Weise et al., 2019). SBM is applied to estimate a range of surface 
features, for example, cortical thickness (CTh), sulcal depth (SD), 
gyrification index (GI), as well as fractal dimension (FD) (Bachmann 
et al., 2023). These parameters can help distinguish between groups 
of controls and patients with neurological and psychiatric disorders 
(Nickel et al., 2019; Zhao et al., 2022; Ziukelis et al., 2022; Zhang 
et al., 2023). Previous cross-sectional and longitudinal studies have 
provided insights into brain region differences in morphological 
parameters of normal brain aging (Leong et al., 2017; Shen et al., 
2018; Aljondi et al., 2019; Zheng et al., 2019; Lamballais et al., 2020). 
Research has also recommended that the combined use of VBM and 
SBM could better understand the brain neurobiological processes 
and improve the accuracy of morphological change detection (Goto 
et al., 2022).

Radiomics, as a rapidly developing field, can extract quantitative 
features from medical images to build diagnosis or prediction models 
to analyze microscopic information (Mayerhoefer et  al., 2020). 
Radiomics features consist of region of interest (ROI) characteristics 
such as shape, first-order, and texture features, which can obtain a 
variety of unknown information from different modality images 
(Bang et al., 2021). The established disease-specific models could 
be potentially applied to solve clinical problems (Huang et al., 2023). 
In the area of neurodegenerative disorders, multiple radiomics 
models have been developed to diagnose mild cognitive impairment, 
Alzheimer’s disease, and Parkinson’s disease, and predict their 
progression and treatment effect (Bian et  al., 2023; Shahidi 
et al., 2023).

Both VBM-SBM and radiomics are mainstream methods for 
neuroimaging analysis. The former focuses on comparing the 
macrostructural differences in brain regions to distinguish 
changes in diseases and the latter selects the most representative 
and meaningful features to build classification models. Although 
both methods are widely applied in neurodegenerative diseases, 
there is a lack of research comparing their performance in 
assessing brain aging. Therefore, this study aimed to construct a 
VBM-SBM model and a radiomics model based on the GM of 
cognitively normal (CN) individuals and compare the 
performance of the two models in identifying the degree of 
normal brain aging. By analyzing their strengths, weaknesses, 
and associations, our research could provide a reference for the 
selection and applicable situation of the two methods for 
future research.

2 Materials and methods

2.1 Participants and MRI acquisition

A total of 967 CN subjects were included in this study. Among 
them, 360 participants were collected from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database1 as the internal dataset. For 
the external test datasets, 263, 239, and 105 CN subjects were collected 
from the Australian Imaging, Biomarker and Lifestyle (AIBL) database,2 
and the National Alzheimer’s Coordinating Center (NACC) database,3 
and the Parkinson’s Progression Markers Initiative (PPMI) database,4 
respectively. The four databases are multisite, longitudinal, and open-
access large databases. ADNI, AIBL and NACC consist of clinical, 
cognitive and imaging data and aim to develop biomarkers for tracking 
brain aging and early detecting Alzheimer’s disease. PPMI was launched 
to provide comprehensive and standardized data and further identify 
biological markers of Parkinson’s risk, onset, and progression. Each 
participating site in the four databases had obtained approval from the 
ethics committee and informed written consent from participants was 
conducted following to the Declaration of Helsinki. Subjects were 
classified into the middle-aged and old-aged groups according to the 
age of 66. The internal dataset was randomly divided into the training 
set and internal test set at a ratio of 7:3. All participants had T1-weighted 
imaging (T1WI) acquired by 3T scanners with the sequence of 
volumetric three-dimensional magnetization-prepared rapid gradient-
echo (3D-MPRAGE) or similar schemes. More details about image 
acquisition protocols were available on the databases’ websites.

2.2 Data processing and model 
construction

2.2.1 VBM and SBM
SPM125 and CAT126 were employed for VBM and SBM analysis 

(Weise et al., 2019). Both software tools were run in MATLAB R2016a 
platform. T1WI DICOM data were converted into NIFTI format via 
dcm2nii software.7 The structural imaging data were segmented with 
CAT 12, and CTh and central surface data were extracted 
simultaneously. During the segmentation process, affine 
regularization, correction for bias-field inhomogeneity, and spatial 
normalization with the Montreal Neurological Institute (MNI) 
template were used to remove bias. Total intracranial volumes (TIV) 
were obtained. No scans were excluded due to poor quality. For VBM, 
the GM data were smoothed with an 8 mm full width at half maximum 
(FWHM) of the Gaussian kernel. For SBM, additional surface 
parameters, including SD, GI, and FD were extracted using the CAT12 
surface tools section. Then CTh data were smoothed with a 15 mm 
FWHM of the Gaussian kernel and other surface parameters data with 
a 20 mm FWHM of the Gaussian kernel.

1 https://adni.loni.usc.edu/

2 https://aibl.org.au/

3 https://naccdata.org/

4 https://www.ppmi-info.org/

5 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

6 https://neuro-jena.github.io/cat//

7 https://people.cas.sc.edu/rorden/mricron/dcm2nii.html
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The smoothed data were used to perform two-sample t-tests for 
statistical comparisons between the middle-aged and old-aged 
groups for GMV, CTh, SD, GI, and FD, respectively, in the CAT12 
and SPM12 statistical modules. TIV served as a covariate for VBM 
analysis to correct different brain sizes. Sex, education, and MMSE 
were included for both VBM and SBM analyses. The threshold of 
p < 0.05 family-wise error (FWE) correction was applied for VBM 
and SBM analyses. VBM results saved from CAT12 were loaded into 
the xjView toolkit8 and differential brain ROIs with the Anatomical 
Automatic Labeling (AAL) atlas were generated by the xjView report 
section. SBM results were loaded into the CAT12 result presentation 
section and differential brain ROIs with the Desikan-Killiany (DK40) 
atlas were generated by the atlas labeling section. Then, the values of 
GMV, CTh, SD, GI, and FD inside ROI were estimated. All procedures 
were carried out according to standard protocol,9 applying default 
settings unless indicated otherwise.

Differential brain ROIs with cluster size >50 for GMV, and cluster 
size >50 with overlap of brain region >40% for CTh, SD, GI, and FD 
were selected as potential variables. Univariate and multivariable 
logistic regression were used to build the VBM-SBM model in the 
training set. Model testing was performed with the internal test, AIBL, 
NACC, and PPMI test sets.

2.2.2 Radiomics
SPM12 software (see text footnote 5) was used to automatically 

segment GM from T1WI data. An experienced neuroradiologist who 
was blinded to the clinical data, examined segmentations and 
manually modified unsatisfactory cases using ITK-SNAP software.10 
PyRadiomics (version 3.0) was applied to extract radiomics features 
of the GM segmentation, which conformed to the Image Biomarker 
Standardization Initiative guideline (Zwanenburg et  al., 2020). 
Radiomics features were obtained from the GM segmentation of each 
subject, including shape, first-order, and texture.

The batch effect of different datasets was reduced by using the 
ComBat method to normalize and gather the data distributions. The 
development of the radiomics model was on FeAture Explorer (FAE 

8 https://www.alivelearn.net/xjview/download-link/

9 https://dbm.neuro.uni-jena.de/cat12/CAT12-Manual-old.pdf

10 http://www.itksnap.org

V 0.3.6) platform, a PyRadiomics-based software (Song et al., 2020). 
The process included feature redundancy with the Pearson 
Correlation Coefficient value >0.99, feature selection with Analysis 
of Variance, classifier with Logistic Regression, and 5-fold cross-
validation on the training data set to determine the hyper-parameter. 
The range of the feature number was set from 1 to 10. To find the 
simplest model and avoid overfitting, the model was determined 
according to one-standard error criterion which selected the least 
number of features and an area under the receiver operating 
characteristic curve (AUC) value within one standard deviation from 
the highest AUC in the cross-validation set (Gareth et al., 2013). The 
internal test, AIBL, NACC, and PPMI test sets were used to evaluate 
the radiomics model.

2.3 Statistical analysis

Data analysis was performed with SPSS (version 25.0) and 
Microsoft Excel 2020. Two-tailed p < 0.05 was considered statistically 
significant. For continuous variables, the Student’s t-test and Mann–
Whitney test were used to compare normally and nonnormally 
distributed data, respectively. The Chi-squared test was implemented 
for categorical variables. Statistical analysis of VBM and SBM data 

TABLE 1 Clinical characteristics in the training and internal test sets from 
ADNI.

Characteristics

Training set 
(n  =  252)

Internal test set 
(n  =  108)

MAG 
(n  =  76)

OAG 
(n  =  176)

MAG 
(n  =  32)

OAG 
(n  =  76)

Gender

Male 15 (19.74) 49 (27.84) 9 (28.13) 28 (36.84)

Female 61 (80.26) 127 (72.16) 23 (71.87) 48 (63.16)

Age (y) 62.50 (6.58) 70.65 (7.95) 61.35 

(6.33)

70.00 

(6.77)

Education (y) 16 (4) 16 (3) 16 (4) 16 (3)

MMSE 30 (1) 29 (1.75) 29.5 (1) 29 (1)

Data are expressed as number (percentage) or median (interquartile).
ADNI, Alzheimer’s Disease Neuroimaging Initiative; MAG, middle-aged group; OAG, 
old-aged group; MMSE, Mini-Mental State Examination.

TABLE 2 Clinical characteristics in the AIBL, NACC, and PPMI test sets.

Characteristics
AIBL test set (n =  263) NACC test set (n =  239) PPMI test set (n  =  105)

MAG (n =  51) OAG (n =  212) MAG (n =  77) OAG (n =  162) MAG (n  =  66) OAG (n  =  39)

Gender

Male 22 (43.14) 96 (45.28) 30 (38.96) 69 (42.59) 37 (56.06) 27 (69.23)

Female 29 (56.86) 116 (54.72) 47 (61.04) 93 (57.41) 29 (43.94) 12 (30.77)

Age (y) 63.00 (3.00) 73.00 (7.00) 62.00 (8.00) 73.00 (9.00) 59.50 (7.62) 72.00 (6.50)

Education (y) – – 16 (5) 16 (4) 16 (4) 18 (3)

MMSE/MoCA 29 (2)a 29 (2)a 30 (1)a 29 (1)a 28 (2.25)b 28 (2)b

Data are expressed as number (percentage) or median (interquartile).
MAG, middle-aged group; OAG, old-aged group; AIBL, Australian Imaging, Biomarker and Lifestyle; NACC, National Alzheimer’s Coordinating Center; PPMI, Parkinson’s Progression 
Markers Initiative; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.
aData are MMSE scores from the Alzheimer’s Disease Neuroimaging Initiative database; bdata are MoCA scores from the Parkinson’s Progression Markers Initiative database.
Education is not available for the subjects of AIBL database.
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TABLE 3 VBM and SBM results between the middle-aged and old-aged groups.

Cluster size 
(mm3)

MNI coordinates
Side Brain region T value p-value

X Y Z

GMV (MAG > OAG)

568 −26 −38 −6 L ParaHippocampal 5.81 0.001

20 −42 −21 3 L Temporal_Sup 5.05 0.030

1,109 30 −30 −11 R Hippocampus 6.11 <0.001

124 41 −20 14 R Heschl 5.38 0.007

449 41 −26 53 R Postcentral 5.83 0.001

CTh (MAG > OAG)

183 −47 −17 −3 L 74% Superior temporal 5.73 <0.001

26% Transverse temporal

142 −15 −65 2 L 64% Lingual 5.16 0.001

36% Pericalcarine

117 −55 −11 30 L 100% Postcentral 5.12 0.001

48 −9 13 47 L 100% Superior frontal 4.62 0.008

217 48 −14 32 R 95% Postcentral 5.48 <0.001

5% Precentral

51 5 41 −25 R 100% Medial orbitofrontal 4.88 0.003

18 45 −20 1 R 72% Transverse temporal 4.40 0.020

28% Superior temporal

15 16 −63 3 R 100% Lingual 4.32 0.027

GI (MAG > OAG)

253 −36 −27 4 L 72% Insula 4.96 0.002

11% Transverse temporal

11% Postcentral

4% Precentral

2% Superior temporal

181 38 −24 1 R 69% Insula 5.92 <0.001

21% Superior temporal

10% Transverse temporal

GI (MAG < OAG)

129 −56 −19 −25 L 59% Middle temporal 5.19 0.001

41% Inferior temporal

MAG, middle-aged group; OAG, old-aged group; MNI, Montreal Neurological Institute; GMV, grey matter volume; CTh, cortical thickness; GI, gyrification index; L, left; R, right.
The brain regions of GMV were from Anatomical Automatic Labeling (AAL) Atlas, and the brain regions of CTh and GI were from Desikan-Killiany (DK40) Atlas.
P < 0.05, family-wise error-corrected.

processing was performed with SPM 12 and CAT12 statistical 
modules, which have been described in detail in the 2.2.1 VBM and 
SBM part. In the univariate logistic regression analysis, the variables 
with p  < 0.05 were selected and input to the stepwise forward 
multivariable logistic regression to obtain the final brain regions for 
building the VBM-SBM model in the training set. The AUC, 
sensitivity, specificity, accuracy, positive predictive value, and 
negative predictive value were used to evaluate the two model 
performances. The DeLong test was used to compare the differences 
in AUCs. The Spearman correlation analysis was used to observe the 
correlations between age, VBM-SBM parameters, and 
radiomics features.

3 Results

3.1 Clinical characteristics

The study included 967 CN participants, of whom 302 participants 
were classified into the middle-aged group and 665 participants were 
classified into the old-aged group. Supplementary Figure 1 showed the 
age distributions from the ADNI, AIBL, NACC, and PPMI databases 
in this study. Participants’ clinical characteristics in the training, 
internal test, AIBL, NACC, and PPMI test sets were summarized in 
Tables 1, 2. No significant differences in gender, education, and Mini-
Mental State Examination or Montreal Cognitive Assessment between 

https://doi.org/10.3389/fnagi.2024.1366780
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the middle-aged and old-aged groups in all datasets (p > 0.05). A 
significant difference in education was observed between the two 
groups in the PPMI test set.

3.2 VBM and SBM measurement

VBM and SBM results between the middle-aged and old-aged 
groups were shown in Table 3 and illustrated in Figures 1, 2. In the 
VBM analysis, the GMV of the old-aged group was significantly lower 
than that of the middle-aged group within 5 clusters (p < 0.05, 
FWE-corrected). The largest cluster was localized in the right 
hippocampus (1109 mm3; x = 30, y = −30, z = −11; T = 6.11; p < 0.001). 
In the SBM analysis, the CTh of the old-aged group was significantly 
lower than that of the middle-aged group within 8 clusters, which 
were mostly localized in the bilateral parietal, bilateral frontal, left 
temporal, and left occipital lobes (p < 0.05, FWE-corrected). The GI of 
the old-aged group was significantly lower than that of the middle-
aged group within 2 clusters, of which most were localized in the 
bilateral insula and temporal lobes, whereas higher GI in the old-aged 
group was observed within the left middle and inferior temporal 
regions (p < 0.05, FWE-corrected). At the threshold of p < 0.05 FWE 
correction, there was no significant differential cluster in SD and FD 
between the two groups.

3.3 Model performance comparison

Table  4 listed 13 differential brain regions with potential for 
building the VBM-SBM model in the training set. After the univariate 
and multivariable logistic regression analysis, the model was finally 
developed with the GMV of right hippocampus (OR = 0.903; 95% CI: 
0.825, 0.988; p = 0.026), the CTh of left lingual (OR = 0.649; 95% CI: 
0.495, 0.850; p = 0.002), and the GI of left insula (OR = 0.970; 95% CI: 
0.948, 0.992; p = 0.008).

1,132 radiomics features were extracted from the GM of each 
participant. Supplementary Figure 2 showed the data distributions 
from the four databases before and after the ComBat method. Through 
features removement, selection, classification, and 5-fold cross-
validation, four radiomics features were ultimately retained for model 
construction. Supplementary Figure 3 showed the four-feature model 
according to one-standard error rule in the cross-validation set. The 
features were log-sigma-2-0-mm-3D_firstorder_Mean, log-sigma-2-0-
mm-3D_firstorder_Median, log-sigma-3-0-mm-3D_glszm_
ZoneEntropy, wavelet-HHL_firstorder_Median. The definitions of the 
four features were summarized in the Supplementary Method 1. The 
AUCs of the VBM-SBM model and radiomics model were 0.697 and 
0.778 in the training set (p = 0.018), 0.640 and 0.789 in the internal test 
set (p = 0.007), 0.736 and 0.737 in the AIBL test set (p = 0.972), 0.746 
and 0.838 in the NACC test set (p < 0.001), and 0.701 and 0.830 in the 

FIGURE 1

Differences in grey matter volume between the middle-aged and old-aged groups. GMV, grey matter volume; MAG, middle-aged group; OAG, old-
aged group. P  <  0.05, family-wise error-corrected. The color bar represents T values.
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FIGURE 2

Differences in four parameters of surface-based morphometry between the middle-aged and old-aged groups. CTh, cortical thickness; GI, gyrification 
index; MAG, middle-aged group; OAG, old-aged group. CTh and GI with the threshold of p  <  0.05 family-wise error correction. The color bars 
represent T values.

PPMI test set (p  =  0.036). The detailed comparisons of model 
performance were shown in Figure 3 and Tables 5, 6.

3.4 Associations between age, VBM-SBM 
parameters, and radiomics features

Figure 4A showed the correlations between age and VBM-SBM 
parameters in the ADNI, AIBL, NACC, and PPMI datasets. Age was 
negatively correlated with the GMV of right hippocampus, the CTh 

of left lingual, and the GI of left insula in all datasets (p < 0.05), except 
for the CTh of left lingual in the PPMI database (p > 0.05). Figure 4B 
showed the correlations between age and radiomics features in the 
ADNI, AIBL, NACC, and PPMI datasets. Age was negatively 
correlated with log-sigma-2-0-mm-3D_firstorder_Mean, log-sigma-
2-0-mm-3D_firstorder_Median, log-sigma-3-0-mm-3D_glszm_
ZoneEntropy, and positively correlated with wavelet-HHL_
firstorder_Median in all datasets (p < 0.05). VBM-SBM parameters 
had significant correlations with radiomics features (p  < 0.05; 
Figure 4C).

https://doi.org/10.3389/fnagi.2024.1366780
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4 Discussion

VBM-SBM and radiomics methods are commonly used to analyze 
brain imaging from various perspectives. However, there has been no 

research comparing the two methods to explore their performance, 
associations, strengths, and applicable situations. In the current study, 
we built two normal brain aging models based on the GM of CN 
individuals, including a VBM-SBM model and a radiomics model. 

TABLE 4 Logistic regression analysis of differential brain regions associated with aging.

Per 0.1 increase Side Brain region
Univariable Multivariable

OR (95% CI) P-value OR (95% CI) P-value

GMV L ParaHippocampal 0.987 (0.914, 1.066) 0.744 NA NA

R Hippocampus 0.861 (0.793, 0.935) <0.001 0.903 (0.825, 0.988) 0.026

R Heschl 0.643 (0.494, 0.835) 0.001 NA NA

R Postcentral 0.977 (0.952, 1.004) 0.095 NA NA

CTh L Superior temporal 0.655 (0.519, 0.826) <0.001 NA NA

L Lingual 0.651 (0.505, 0.840) 0.001 0.649 (0.495, 0.850) 0.002

L Postcentral 0.716 (0.570, 0.899) 0.004 NA NA

R Postcentral 0.709 (0.568, 0.883) 0.002 NA NA

R Medial orbitofrontal 0.665 (0.494, 0.896) 0.007 NA NA

GI L Insula 0.967 (0.947, 0.987) 0.001 0.970 (0.948, 0.992) 0.008

R Insula 0.972 (0.954, 0.991) 0.005 NA NA

L Middle temporal 1.022 (0.998, 1.048) 0.076 NA NA

L Inferior temporal 1.020 (0.993, 1.048) 0.140 NA NA

OR, odds ratio; CI, Confidence interval; NA, not applicable; GMV, grey matter volume; CTh, cortical thickness; GI, gyrification index; L, left; R, right.
The brain regions of GMV were from Anatomical Automatic Labeling (AAL) Atlas, and the brain regions of CTh and GI were from Desikan-Killiany (DK40) Atlas.
P < 0.05 indicates statistical significance.

FIGURE 3

Performance comparisons between the training set (A), internal test set (B), AIBL test set (C), NACC test set (D), PPMI test set (E). VBM, Voxel-based 
morphometry; SBM, surface-based morphometry; AUC, area under the receiver operating characteristic curve.
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TABLE 5 Performance comparisons of models in the training and internal 
test sets from ADNI.

Training set (n  =  252) Internal test set 
(n  =  108)

Model 1 Model 2 Model 1 Model 2

AUC (95% 

CI)

0.697 (0.636, 

0.753)

0.778 (0.717, 

0.839)

0.640 (0.542, 

0.730)

0.789 (0.694, 

0.877)

Sensitivity 0.682 0.619 0.434 0.671

Specificity 0.645 0.829 0.813 0.813

Accuracy 0.671 0.683 0.546 0.713

PPV 0.816 0.893 0.846 0.895

NPV 0.467 0.485 0.377 0.510

Model 1, VBM-SBM model; Model 2, radiomics model; AUC, area under the receiver 
operating characteristic curve; CI, Confidence interval; PPV, positive predictive value; NPV, 
negative predictive value.

TABLE 6 Performance comparisons of models in the AIBL, NACC, and PPMI test sets.

AIBL test set (n =  263) NACC test set (n =  239) PPMI test set (n =  105)

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

AUC (95% CI) 0.736 (0.678, 0.788) 0.737 (0.652, 0.816) 0.746 (0.686, 0.800) 0.838 (0.778, 0.889) 0.701 (0.604, 0.787) 0.830 (0.751, 0.905)

Sensitivity 0.623 0.547 0.494 0.846 0.718 0.795

Specificity 0.843 0.843 0.909 0.740 0.606 0.758

Accuracy 0.665 0.605 0.628 0.812 0.648 0.771

PPV 0.943 0.936 0.920 0.873 0.519 0.660

NPV 0.350 0.309 0.461 0.695 0.784 0.862

Model 1, VBM-SBM model; Model 2, radiomics model; AUC, area under the receiver operating characteristic curve; CI, Confidence interval; PPV, positive predictive value; NPV, negative 
predictive value.

The radiomics model had significantly higher AUCs than the 
VBM-SBM model in the training, internal test, NACC test, and PPMI 
test sets. The correlations between age and four radiomics features 
were generally stronger than correlations between age and three 
VBM-SBM parameters, and weak relationships were found between 
the VBM-SBM parameters and radiomics features.

Previous researchers have used VBM and SBM to explore their 
relationships with age, however, this study applied the differential 
brain regions to the construction of a brain aging model. It was 
reported that the results of morphometric analysis varied with 
populations and thresholds, but there were still some frequently 
mentioned (Goto et al., 2022). In the literature on VBM research, it 
was found that the GMV of multiple brain regions significantly 
decreases with age, such as the temporal, occipital, and parietal lobes 
(Fleischman et al., 2014; Zheng et al., 2019). In our study, 5 regions 
from the temporal and parietal had significant differences between the 
middle-aged and old-aged groups. Finally, the right hippocampus, the 
largest cluster size, was selected to construct the model. In the SBM 
analysis, research on CTh showed that cortical thinning was more 
widespread than GMV loss (Fleischman et al., 2014). We found that 
the CTh of 12 regions had significant decreases with age, which could 
be observed in the temporal, occipital, parietal, and frontal lobes. This 
finding was consistent with previous research (Fjell et al., 2009). After 
the selection through logistic regression, the left lingual participated 
in the model construction. GI, a quantification of cortex folding 
structure, changes with aging and relates to the development of 
cognitive function across the lifespan (Cao et al., 2017). Studies have 

reported that global cortical gyrification gradually decreases with age, 
while significantly differential regions for local cortical gyrification 
vary in sample size and age distribution (Lamballais et  al., 2020; 
Madan, 2021). We found the 8 regions of the old-aged group had a 
significantly lower GI than that of the middle-aged group, and the 
bilateral insular regions accounted for a large proportion. The left 
insula was finally included to the model. Higher GIs in 2 regions from 
the temporal lobe of the old-aged group were also observed in 
this study.

The ranges of AUCs of the VBM-SBM model and radiomics model 
were 0.640 ~ 0.746 and 0.737 ~ 0.838, respectively. In the training set, the 
radiomics model had an AUC of 0.778, which was significantly higher 
than the VBM-SBM model (AUC = 0.697). For the test sets, the 
VBM-SBM model had an AUC range of 0.701 ~ 0.746  in the three 
external test sets, but an AUC of 0.640  in the internal test set. The 
radiomics model had an AUC range of 0.737 ~ 0.838 in four test sets. 
These indicate that the radiomics model can better distinguish the 
age-related groups and have higher generalization; however, it suffers 
from a deficiency in biological interpretability, and the selected features 
have some challenges in clinical application. For the VBM-SBM model, 
it can locate important brain regions and the parameters are often used 
in clinical practice, but its performance is slightly weak, and the 
processing is relatively cumbersome and time-consuming. Overall, both 
approaches have their advantages and disadvantages, and investigators 
can choose based on their study objectives. For researchers prioritizing 
performance and generalization, radiomics offers a good choice, while 
those emphasizing interpretability and clinical practice may find 
VBM-SBM more suitable.

By observing the correlations between age and VBM-SBM 
parameters, and age and radiomics features, we  noted that the 
correlations between age and the four radiomics features were 
generally stronger than the correlations between age and the three 
VBM-SBM parameters. This suggests that the radiomics features have 
closer relationships with age than the VBM-SBM parameters in brain 
aging analysis. We  also compared the relationships between the 
VBM-SBM parameters and radiomics features, the results showed that 
though the indicators from the two methods had significant 
correlations, the associations were relatively weak, which means that 
VBM-SBM and radiomics analyze brain aging from different 
dimensions and perform their respective functions.

Several limitations in our investigation need to be acknowledged. 
Firstly, the retrospective data were from four databases, which had 
inherent biases in selecting subjects and might not represent real-
world situations. Secondly, the age span between groups was relatively 
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narrow, which could limit the transferability of the model 
performance. Thirdly, the selection thresholds of VBM-SBM 
parameters and radiomics features were based on the current study, 
which can be  varied according to different research goals and 
situations. Finally, there are many methods and software available for 
morphometry and radiomics analysis of the brain. Therefore, the 
results of the model performance might change under different 
experimental conditions.

5 Conclusion

In conclusion, the radiomics model performed better than the 
VBM-SBM model. Radiomics focuses on the generalization and 
VBM-SBM has the interpretability. VBM-SBM and radiomics analyze 
brain aging from different dimensions and perform their 
respective functions.
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