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Sensorineural hearing loss (SNHL) is a category of hearing loss that often 
leads to difficulty in understanding speech and other sounds. Auditory system 
dysfunction, including deafness and auditory trauma, results in cognitive deficits 
via neuroplasticity. Cognitive impairment (CI) refers to an abnormality in the 
brain’s higher intellectual processes related to learning, memory, thinking and 
judgment that can lead to severe learning and memory deficits. Studies have 
established a strong correlation between SNHL and CI, but it remains unclear 
how SNHL contributes to CI. The purpose of this article is to describe three 
hypotheses regarding this relationship, the mainstream cognitive load hypothesis, 
the co-morbidity hypothesis, and the sensory deprivation hypothesis, as well as 
the latest research progress related to each hypothesis.

KEYWORDS

sensorineural hearing loss, cognitive impairment, cognitive load hypothesis, 
co-morbidity hypothesis, sensory deprivation hypothesis

Introduction

Hearing loss (HL) is a serious condition that not only diminishes a patient’s quality of life 
but can also lead to lifelong disability. According to a global survey conducted in 2016, HL 
ranks as the fourth most prevalent disorder and one of the top five contributors to disability 
(Vos et al., 2017). Sensorineural hearing loss (SNHL), a type of HL, accounts for 90% of 
reported cases of HL (Li et al., 2017) and leads to difficulties in directly understanding speech 
and other sounds. Cross-sectional and longitudinal evidence suggests that dysfunction of the 
auditory system, including deafness and auditory trauma, leads to cognitive deficits that 
develop via neuroplasticity (Rutherford et al., 2018; Swords et al., 2018). SNHL is generally 
categorized as age-related hearing loss (ARHL), noise-related hearing loss, or drug-related 
hearing loss (DRHL).

Cognitive function (CF) refers to the processes by which the human brain receives external 
information, processes it, and converts it into internal mental activity in order to acquire 
knowledge or apply it. CF encompasses memory, language skills, visuospatial abilities, 
executive functions, computational skills, and comprehension judgments (Liu et al., 2024; 
Mellow et al., 2024). Cognitive impairment (CI) refers to a pathological process in which 
abnormalities exist in the higher intellectual processes of the brain related to learning and 
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memory as well as thinking and judgment (Sanford, 2017). Such 
impairment results in severe deficits in learning and memory 
accompanied by changes such as aphasia or dysfunction/loss of 
recognition or behaviors. The pathological changes in the brain 
associated with CI development primarily involve lesions within 
the hippocampus.

The aim of this review is to describe the current hypotheses on 
how CI results from SNHL and to provide an update on research 
progress in this field. In some experiments involving mice 
subjected to inner ear hair cell ablation (Liu et al., 2020; Qian and 
Ricci, 2020) and in animals chronically exposed to noise (Patel 
et al., 2022), CI is observed after a period of hearing impairment. 
RNA sequencing analysis has revealed that ARHL shares a 
common causative gene with Alzheimer’s disease (AD; Xue et al., 
2021). Numerous experimental studies have identified multiple 
mechanisms by which SNHL can lead to CI (Loughrey et al., 2018; 
Choi et al., 2021; Bikbov et al., 2022). In response to these findings, 
researchers have proposed three hypotheses on how SNHL brings 
about CI: the cognitive load (CL) hypothesis, the co-morbidity 
hypothesis, and the sensory deprivation hypothesis (Slade et al., 
2020; Figure 1).

CL hypothesis

The CL hypothesis suggests that the amount of information 
within the brain that can be  processed, held in memory, and 
accessed at any given time is limited due to the limited availability 
of processing resources (Wingfield, 2016). ARHL results in patients 
receiving less information from the outside world. To achieve as 
much processing and preservation as possible of the limited 
amount of acoustic information, a higher demand is placed on the 
limited processing resources of patients with HL. This means that 
these patients need more cognitive resources for auditory 
perceptual processing. As a result, cognitive resources are diverted 
from other cognitive tasks to listening efforts, leading to a depletion 
of cognitive resources (Wingfield et al., 2005; Tun et al., 2009). This 
reallocation of resources has a detrimental effect on CF and could 
theoretically lead to a decrease in cognitive performance (Humes 
et al., 2013).

SNHL and CL

Research to date regarding CL has found increases in 
neurovascular coupling responses as a result of CL (Csipo et al., 2021). 
One study (Luan et al., 2019) found that patients with SNHL showed 
a significant increase in distal functional coupling between the 
dorsolateral prefrontal cortex and the auditory cortex. Additionally, as 
the hearing status decreases, this coupling response becomes stronger. 
As is well established, the brain is naturally divided into four regions 
by the sulcal gyrus: the frontal, parietal, occipital and temporal lobes. 
The temporal lobe is currently thought to be primarily responsible for 
language function and auditory perception, as well as involved in 
long-term memory and emotion (Buchanan et al., 2006). The superior 
temporal gyrus, where the auditory center is located, is located in the 
part of the brain between the lateral and superior temporal sulci on 
the temporal lobe (Tae et al., 2014). In the brains of patients with HL, 
activities in and loads on the auditory center are increased to allow 
patients to better recognize acoustic signals, and correspondingly, 
other areas of cognitive reserve need to be called upon for auditory 
use, such as memory, emotion, language, and other areas (Hughes 
et al., 2018). Studies related to the use of hearing aids (Qian et al., 
2016; Bucholc et al., 2022) and cochlear implants (Mertens et al., 2021) 
have demonstrated that as hearing aids and cochlear implants help to 
restore auditory perception, the onset of CI is delayed. It is 
hypothesized that hearing aids (Reinten et al., 2021) and cochlear 
implants (Chatterjee et al., 2023) improve the “effortful process” of 
sound discrimination in the daily lives of SNHL patients, and that this 
change reduces the previous over-allocation of cognitive resources, 
helping to restore balance in the CL.

Neurotransmitters and CL

Research has demonstrated that the balance between excitation 
and inhibition in the brain is disrupted under different CLs (Bezalel 
et  al., 2019). This balance is critical for the stability of cortical 
networks. Patients with ARHL have now been found to have reduced 
levels of gamma- aminobutyricacid (GABA) and glutamate (Glu) in 
the auditory center (Li et al., 2023). GABA is an important inhibitory 
neurotransmitter in the brain that is known to regulate inhibitory 

FIGURE 1

Three hypotheses regarding how SNHL leads to CI: the cognitive load 72 hypothesis, the co-morbidity hypothesis, and the sensory deprivation 
hypothesis.
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neurotransmission within the auditory system (Kotak et al., 2008). 
One study reported a correlation between the mean GABA level in the 
auditory cortex and mean binaural hearing thresholds, with greater 
HL associated with lower mean GABA levels. Further research (Dobri 
and Ross, 2021) found that older adults with ARHL have greater 
difficulty understanding speech in noisy environments as their GABA 
level declines. Bezalel et al. (2019) noted that GABA secretion in the 
dorsal anterior cingulate cortex (ACC), which plays a role in 
controlling behaviors (Vassena et al., 2020), is increased in high CL 
situations. GABA, however, is decreased in the auditory center of the 
temporal lobe in ARHL patients (Zemaitis et al., 2021), which does 
not contradict the previous decrease in total GABA. Interestingly, it 
has been suggested that increasing GABA in the auditory cortex or 
increasing the sensitivity of GABA receptors enhances the response of 
the auditory center to sound stimuli (Brecht et  al., 2017). This 
reinforces the idea that HL causes a redistribution of CL, 
resulting in CI.

Additionally, some evidence is found in the literature that Glu also 
accumulates in the brains of animals with ARHL (Tadros et al., 2007; 
Kirschmann et al., 2019). Glu is the most abundant free amino acid in 
the brain as well as the main excitatory neurotransmitter in the brain. 
Glu can be  released into the synaptic gap in a vesicular manner 
(Franco et al., 2021). Accumulation of Glu can increase CL in the 
auditory center and affect CL distribution. N-Methyl-D-aspartic acid 
receptors (NMDARs) are central mediators of glutamatergic 
neurotransmission and widely distributed, mainly regulating the 
inward flow of Ca2+ ions into neuronal cells and influencing neuronal 
activity (Joshi et al., 2019). This process is crucial in synaptic plasticity, 
which underlies activity-dependent learning and memory. Glu was 
found to be involved in regulating the channel opening of NMDARs 
(Wang et al., 2021), and overstimulation of NMDARs enhances the 
release of Glu via calcium channels. Under excitotoxic conditions, Glu 
leads to synaptic loss and elimination in hippocampal pyramidal cells 
(Companys-Alemany et  al., 2022; Keimasi et  al., 2023). It is now 
widely accepted that over-activation of NMDARs leads to the 
development of AD (Xu et al., 2021; Abad-Perez et al., 2023). However, 
recent studies have found that NMDARs are not only expressed in the 
cranial brain, but also in inner hair cells (IHCs), and that 
overactivation of NMDARs also results in Glu release in IHCs (Tang 
et al., 2014; Kaur et al., 2020; Song et al., 2021). Excessive Glu release 
causes excitatory neurotoxic effects, reducing the number of ribbon 
synapses in the cochlea and altering synaptic morphology, resulting 
in impaired signaling of the cochlear nerve and affecting the patient’s 
hearing (Hong et al., 2018). NMDARs are involved in the regulation 
of neurogenesis and spatial memory formation, with the NR2A and 
NR2B subunits playing crucial roles (Hu et al., 2008; Sun et al., 2011). 
Bone morphogenic protein 4 (BMP4) is a member of the transforming 
growth factor-β (TGF-β) family, which is involved in the regulation of 
cell proliferation and survival. Chen et al. (2014) found that BMP4 
regulates cochlear epithelial cell survival by altering the expression of 
the NR2B subunit of NMDARs. Song et al. (2021) and Ralli et al. 
(2014) found that administration of NMDA channel blockers in their 
experimental animal model delayed the onset of salicylic acid-induced 
DRHL and tinnitus. α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid receptors (AMDARs) are Glu-gated ion channels that 
mediate most of the rapid excitatory synaptic transmission in the 
brain (Diering and Huganir, 2018). In addition to NMDARs, studies 
have shown that AMDARs are also modulated by neurotransmitters 

(Brechet et al., 2017). Previous research has revealed that CI results in 
a reduction of synaptic AMPAR in the hippocampus (Chang et al., 
2006). Specifically, in the cochlea, AMDAR is primarily located in the 
nerve endings near the base of the IHCs (Hong et  al., 2018), 
Furthermore, in the cochlea, AMDAR plays a crucial role in mediating 
rapid excitatory transmission at mature spiral ganglion neurons SGNs 
afferent synapses (Lozier et al., 2023). Interestingly, changes in the 
subunit composition of synaptic AMDAR occur as a result of HL, 
leading to long-term effects on synaptic integration (Pilati et al., 2016).

Co-morbidity hypothesis

The co-morbidity hypothesis, or common etiology hypothesis, 
presumes that CI and SNHL are due to a common cause. Clinically, 
physicians have found by magnetic resonance imaging (MRI) that the 
volume of temporal gray matter (TGM) is significantly less in patients 
with AD than in normal older adults (Li et al., 2020), and the same 
shrinkage of TGM occurs in patients with ARHL (Armstrong et al., 
2019; Slade et al., 2022).

Pathological manifestations

The limbic system (LS; Kalus et al., 2006) includes the pear-shaped 
cortex, internal olfactory area, orbital gyrus, cingulate gyrus (CG), 
subcallosal gyrus, hippocampal gyrus, insula, temporal pole, 
amygdala, septum, preoptic area, hypothalamus, hippocampus, 
papillae, etc. The LS is extensively interconnected with the rest of the 
nervous system and is closely associated with sensation, regulation of 
visceral activity, emotion, behavior, learning, and memory (Manchella 
et  al., 2023). The CG consists mainly of the ACC and posterior 
cingulate cortex (PCC). Adults with ARHL show significant volume 
atrophy in the ACC, PCC, precentral gyrus, postcentral gyrus, and 
parahippocampus on MRI in comparison to normal individuals 
(Belkhiria et al., 2019). The PCC plays an important role in CFs such 
as episodic memory, spatial attention, and self-evaluation. The 
precentral gyrus, located in the frontal lobe, is the highest somatic 
motor center and is responsible for movement of the contralateral 
limbs. The postcentral gyrus is located in the parietal lobe and is the 
highest sensory center. The parahippocampus is also part of the LS, 
and previous studies have shown that they are closely related to 
emotion regulation (Kleen et al., 2010). In addition to the reduced 
volume of the TMG and LS, Paciello et  al. (2023) found that the 
auditory cortex (ACx) is damaged in a mouse model of ARHL, and 
Xu et al. (2023) found that rats given noise stimulation for 6 months 
exhibited not only binaural HL but also damage to the ACx.

Amyloid plaques formed by β-amyloid (Aβ) and neurofibrillary 
tangles formed by abnormally modified tau proteins are the hallmarks 
of AD (Skouras et al., 2020; Ossenkoppele et al., 2022; Tautou et al., 
2023). Aβ is a peptide produced by hydrolysis of amyloid precursor 
protein (APP), and excess Aβ accumulation in mitochondria activates 
astrocytes and microglia, damages neurons (Huang et al., 2023), and 
induces mitochondrial autophagy, promoting reactive oxygen species 
(ROS) production and accelerating neural oxidation (Dou and Tan, 
2023). At the same time, over-phosphorylation of tau protein 
eliminates its ability to form and maintain stable microtubules, 
reduces the dissociation of microtubule protein molecules, and 
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induces microtubule bundling (Kandimalla et al., 2018; Solas et al., 
2023; Zhang et al., 2023). In turn, this affects neuronal cell signaling 
and the mitosis of other cell types in the brain. Notably, some studies 
have found that Aβ and tau protein levels are significantly elevated in 
the brain of HL patients (Xu et al., 2019; Golub et al., 2021; Irace et al., 
2022; Wang et al., 2022; Zheng et al., 2022). Consistently, both Aβ and 
tau were found to be significantly elevated in patients with AD plus 
HL (Zhang et al., 2022).

Potential mechanisms

Although current clinical studies have found a link between 
SNHL and CI, no clear pathway for this process has been established. 
The co-morbidity hypothesis suggests that pathways such as oxidative 
damage, neuroinflammation and accumulation of harmful substances 
may be a common cause of both SNHL and CI.

Oxidative damage and neuroinflammation
Oxidative damage (Maurya et al., 2022) and neuroinflammation 

have long been recognized as significant features of neurodegenerative 
diseases. Previous research has indicated that oxidative damage can 
impact the activity and expression of DNA methyltransferases. 
Specifically, an elevated expression of DNA methyltransferase 1 
(DNMT1) has been linked to memory impairment in amnesic mice 
(Srivas and Thakur, 2017). Case reports have also documented that 
mutations in DNMT1 can lead to hereditary sensory and autonomic 
neuropathy with CI (Klein et al., 2011).

Adenosine is an endogenous purine nucleoside, and adenosine 
receptors, including A1R, A2R and A3R, are involved in the regulation 
of neurotransmitter release, oxidative stress responses, inflammation, 
blood flow, and a variety of intracellular signaling pathways including 
apoptosis. Activation of A1R protects inner ear hair cells, reduces hair 
cell death, and effectively protects against noise damage (Kaur et al., 
2016; Chang et al., 2017; Fok et al., 2020). Inhibition of A1R specifically 
was shown to cause cochlear nerve damage and to increase 
susceptibility to HL (Vlajkovic et al., 2017). However, intracranially, 
A1R has a neuroprotective effect (Shi et al., 2021), and disruption of 
A1R exacerbates long-term potentiation of the hippocampus, which 
can cause CI (Zhang et al., 2020). A2R represents a class of adenosine 
receptors that have been extensively studied and found to be associated 
with pathophysiological conditions such as inflammatory diseases and 
neurodegenerative disorders. In contrast to the neuroprotective effect 
of A1R in the ear, inhibition of adenosine A2A receptor (A2AR) 
increases the resistance of the cochlea to acoustic damage (Vlajkovic 
et al., 2017; Shin et al., 2021; Oliveros et al., 2022). Within the cranium, 
activation of A2AR promotes neuroinflammation, reducing synaptic 
plasticity (Merighi et al., 2022; Chen et al., 2023). However, adenosine 
A2B receptor was shown to have the opposite effect of A1R (Qiang 
et al., 2021).

Pattern recognition receptors (PRRs) are important components 
of the body’s innate immune system, are widely distributed, and are 
present in a variety of forms. In the brain, glial cells are known to 
express a variety of PRRs. Toll-like receptors (TLRs) are one type of 
PRR. Different TLRs determine not only which ligands are recognized 
but also the nature of the signals generated (Blasius and Beutler, 2010). 
Among the many TLRs, TLR4 in particular has been studied more in 
HL (Müller, 2020). TLR4 is activated primarily by lipopolysaccharide 

from Gram-negative bacteria (Bowyer et al., 2020) and sequentially 
triggers the immune response of the body, and studies have found that 
overexpression of TLR4 in the brain activates the nuclear factor kappa 
B (NF-κB) signaling pathway (Wang et al., 2021; Abd El-Rahman and 
Fayed, 2022; Kwon and Lee, 2022), exacerbating the inflammatory 
response, activating microglia, damaging neurons, and causing CI 
(van Well et al., 2012; Zhang et al., 2018; Campolo et al., 2019; Potter 
et al., 2019; Tang et al., 2021; Islam et al., 2022). However, other studies 
have provided evidence that mild activation of TLR4 can enhance the 
phagocytic capacity of glial cells, clear accumulated Aβ early, and 
delay the onset of CI (Qin et al., 2016; Wu et al., 2022). In addition to 
its expression in brain tissue, TLR4 is also expressed in cochlear tissue 
(Zhang et  al., 2019) and, upon lipopolysaccharide stimulation, 
activates a range of immune responses via the NF-κB signaling 
pathway (Si et al., 2015; Liu et al., 2020). A recent study found that 
overexpression of TLR4 causes a significant increase in HL (Zhang 
et al., 2019). Therefore, we suggest that the process of chronic immune 
activity induced by the TLR4-mediated NF-κB signaling pathway may 
be one of the potential mechanisms responsible for HL with CL.

Accumulation of harmful substances
The interstitial fluid and cerebrospinal fluid are two extracellular 

fluids present in the cranium. These two extracellular fluids not only 
provide protective buffering for the brain, but also are involved in the 
transport of nutrients and waste products, the maintenance of 
electrolyte homeostasis (Voisin et al., 1999), and signal transduction. 
Maintenance of this homeostasis in the brain is regulated by the 
aquaporins (AQPs; Benga and Huber, 2012). The AQPs are cell 
membrane proteins with the main function of controlling the 
movement of water in and out of the cell (Voisin et  al., 1999). 
Aquaporin 4 (AQP4) is the major AQP found in the brain where it 
plays a significant role in water homeostasis. Current research has 
established that diminished AQP4 expression leads to reduced Aβ 
clearance and causes Aβ accumulation, leading to deficiencies in 
memory and learning ability and the development of CI (Hubbard 
et al., 2018; Chandra et al., 2021; Fang et al., 2021; Liu et al., 2022; 
Wang et al., 2022; Vasciaveo et al., 2023). In addition to regulating 
water homeostasis, AQP4 also activates astrocytes (Yang et al., 2022; 
Liu et al., 2023), and outside of the brain, it is expressed by IHCs 
(Christensen et al., 2009; Nishio et al., 2013). AQP4 is now widely 
believed to be involved in maintaining the osmotic balance during the 
K+ cycle as well as the ionic balance of the endolymphatic fluid (Li and 
Verkman, 2001; Mhatre et  al., 2002). AQP3 and AQP5 are also 
expressed in the cochlea and, like AQP4, are involved in regulating the 
ionic balance of endolymphatic fluid. Research studies have proposed 
that AQPs are closely associated with Ménière’s disease (Eckhard et al., 
2014, 2015; Nevoux et al., 2015).

In addition to TLRs, the nucleotide-binding oligomerization 
domain-like receptor family is the most representative class of PRRs. 
NLR pyrin domain-containing 3 (NLRP3) is a member of this family 
that is associated with many diseases. Studies have shown that 
microglia-mediated activation of NLRP3 is closely related to cognition 
(Guo et  al., 2020; Feng et  al., 2021). Mitochondrial damage or 
production of mitochondrial ROS (mtROS) is an important regulator 
of NLRP3 activation. mtROS activates NLRP3 in microglia, which in 
turn promotes activation of caspase-1, a downstream protein of 
NLRP3, and the secretion of IL-1β and IL-18, which in turn stimulates 
a neuroinflammatory response (Tian et al., 2021; Barczuk et al., 2022; 
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Liang et  al., 2022; Li et  al., 2023; Su et  al., 2023). Two trials have 
reported that treatment with NLRP3 inhibitors is effective at 
alleviating the onset of CI (Zheng et al., 2022; Lin et al., 2023). NLRP3 
has also been found to be associated with both AD and HL. In both 
genetic deafness (Nakanishi et al., 2018; Ma et al., 2022) or SNHL 
(Kim et al., 2021), NLRP3 is thought to induce inflammatory damage 
in IHCs and SGNs via ROS activation and to reduce the occurrence 
of autophagy. The study by Sai et al. (2022) showed that noise exposure 
activates NLRP3 inflammation in the cochlea and increases the 
production of IL-18 and IL-1β, inducing inflammation in the cochlea. 
Tang et al. (2021) found that exogenous application of the chemical 
BDE-47 activates ROS and NLRP3 inflammatory vesicles in cochlear 
hair cells as well as the p38 MAPK pathway, causing HL.

Sensory deprivation hypothesis

The sensory deprivation hypothesis shares some conceptual 
commonalities with the CL hypothesis, but it places greater emphasis 
on the long-term reallocation of cognitive resources toward hearing in 
patients with SNHL due to chronic sensory deprivation, which leads to 
cognitive decline (Lindenberger and Baltes, 1994; Humes et al., 2013). 
This hypothesis highlights that prolonged sensory deprivation leads to 
compensatory cortical reorganization and neural alterations that hinder 
general cognitive and affective processes. Previous studies have provided 
evidence supporting cortical alterations in ARHL, including an 
increased reliance on frontal brain regions during speech perception 
(Du et al., 2016; Rosemann and Thiel, 2018) and a reduction in gray 
matter in the auditory cortex caused by diminished hearing ability 
(Eckert et al., 2019). While inadequate sensory input directly affects 
cognition through deprivation, it may also indirectly impact cognition 
through reduced socialization and communication or increased 
depression (Dawes et al., 2015; Stahl, 2017). This hypothesis suggests 
that decreased social interaction associated with social isolation and 
depression may mediate the causal relationship between HL and 
cognitive decline (Dawes et al., 2015; Whitson et al., 2018). Indeed, 
significant associations have been found between depressive symptoms, 
heightened social isolation, and diminished quality of life among 
patients with SNHL (Panza et al., 2019). According to this perspective, 
neural changes resulting from SNHL, such as reduced ACC activation, 
can directly influence mood and emotion regulation (Husain et al., 
2014). The anterior ventral location of the ACC within the corpus 
callosum plays a crucial role in depressive symptoms, and thus, a 
reduction in ACC volume can lead to impaired emotion processing 
(Belkhiria et al., 2019).

HL inflect mental illness

A significant relationship was identified between HL and 
emotional loneliness (Jayakody et  al., 2022). A study in the 
United  Kingdom reported that the adverse effects of HL are not 
limited to hearing impairment but may also include negative effects 
on psychosocial health (Tsimpida et  al., 2022). In another study, 
middle-aged and elderly patients with HL were more likely to have 
diminished health status, depression, and suicidal ideation compared 
with participants without HL (Park et al., 2022). Additional studies 
(Chern et al., 2022; Huang et al., 2022) have suggested that HL can 

contribute to psychosocial disorders in patients. An MRI study 
revealed that gray matter volume in the middle cingulate cortex is 
positively correlated with high-frequency hearing impairment in 
patients with ARHL (Ma et al., 2022). These results suggest that HL 
can influence mental health.

Conclusion

An epidemiological investigation estimated that by 2023, 6.7 
million Americans aged 65 years and older would have AD and that 
73% of Americans 75 years or older would be affected (Alzheimer's 
and dementia: the journal of the Alzheimer's Association, 2023). In 
this review, we explore three hypotheses for the co-occurrence of 
SNHL and CI: the CL hypothesis, the co-morbidity hypothesis, and 
the sensory deprivation hypothesis. The CL hypothesis emphasizes 
that when acoustic signals are received, the CL is redistributed in the 
brain of patients with SNHL, increasing the burden on the auditory 
center and resulting in a constant high load on the auditory center, 
leading to a decrease in CL elsewhere and a decline in CF. The 
co-morbidity hypothesis suggests that SNHL and CI are diseases of 
the same type and occur due to a common cause. Indeed, SNHL and 
CI are extremely similar in terms of pathological changes, including 
volumetric atrophy of functional brain areas and deposition of the 
toxic and harmful substances Aβ and tau. Chronic neuroinflammation 
and long-term oxidative damage are now considered to be  the 
common cause of their pathogenesis. In addition, accumulation of 
toxic substances and alterations in ion channel expression also may 
play a role in the development of these conditions. Both the general 
CL hypothesis and the co-morbidity hypothesis address the direct 
causes of SNHL and CI. In contrast, the sensory deprivation 
hypothesis proposes that an indirect pathway contributes to CI in 
patients with SNHL. The sensory deprivation hypothesis suggests 
that long-term auditory decline affects people’s psycho-spiritual 
health, increases their sense of isolation, and increases their risk of 
psycho-spiritual disorders. However, it is currently believed that 
psychosocial illness and CI are mutually reinforcing. Long-term 
auditory decline contributes to a high risk of psychosocial illness and 
increases the risk of CI. We propose that the co-occurrence of SNHL 
and CI is the result of a combination of direct and indirect causes.

However, there are limitations to the three hypotheses mentioned 
above. While there is some evidences for all three hypotheses, these 
evidences are fragmented and still lack a relatively complete basis. The 
sensory deprivation hypothesis suggests that the absence of sensation 
causes cortical changes, however, one study found a limited effect of 
HL on these changes (Parker et  al., 2020). CL is thought to 
be exacerbated by hearing impairment, but this change has also been 
noted in some cases of visual impairment (Golzan et al., 2017; Vu 
et al., 2021). Age has long been recognized as one of the main causative 
factors in the co-morbidity hypothesis; however, aging can lead to a 
variety of diseases and sensory loss, such as cardiovascular disease 
(Yang et al., 2023), cerebrovascular disease (Romay et al., 2024), and 
vision decline (Vanhunsel et al., 2021). All of these diseases can lead 
to CI and these findings seem to support that age, rather than ARHL, 
is the underlying cause of CI.

A survey of populations in the UK and France found that HL is 
significantly and positively associated with an increased risk of AD 
during an exposure window of 2–10 years prior to AD diagnosis 
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(Nedelec et al., 2022). Despite the limitations of the three hypotheses 
mentioned in this review, they are still the prevailing viewpoints and 
have implications for the study of SNHL and CI. As the incidence of 
SNHL increases each year, we should recognize the dangers of this 
disabling disease. Hearing aids and cochlear implants have been 
shown to be effective at improving hearing and delaying the onset of 
CI. As these devices improve a patient’s hearing, they not only reduce 
the load on the auditory center but also improve the patient’s ability 
for interpersonal communication, which can reduce their sense of 
isolation and risk of psychosocial disorders.
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