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Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease, with a 
complex pathogenesis and an irreversible course. Therefore, the early diagnosis 
of AD is particularly important for the intervention, prevention, and treatment of 
the disease. Based on the different pathophysiological mechanisms of AD, the 
research progress of biofluid biomarkers are classified and reviewed. In the end, 
the challenges and perspectives of future research are proposed.
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1 Introduction

Alzheimer’s disease (AD) is the most common type of dementia, which accounts for 
60 ~ 80% of all cases (Gauthier et al., 2022). According to the “World Alzheimer’ Report in 
2019,” there were about 55 million dementia patients in the world, and this number was 
expected to reach 152 million by 2055 (Alzheimer’s Disease International, 2019). In 2019, the 
global societal cost of dementia was around 1.3 trillion US dollars, of which 50% was from the 
economic value of unpaid care. The 2017 World Health Assembly (WHA) recognized dementia 
as a public health priority (World Health Organization, 2017). Nowadays, dementia has 
become one of the biggest public health challenges in the world.

AD can be divided into early-onset AD (EOAD) and late-onset AD (LOAD) at the age 
boundary of 60 or 65. It could also be classified into familial AD (FAD) and sporadic AD 
(SAD) based on the family history (Xie et al., 2022). LOAD is mainly SAD, accounting for 
around 95% of all cases. EOAD is relatively rare, which accounts for less than 5% of AD 
(Alzheimer’s Disease International, 2019). Jia et al. (2022) reported a 19-year-old AD patient 
with the memory impairment occurring at the age of 17, which was the youngest probable AD 
case in the world.

The amyloid plaques and the neurofibrillary tangles (NFT) are the two main pathological 
characteristics of AD (Blennow et al., 2006; Kang et al., 2022; Mahaman et al., 2022). The 
amyloid plaques are formed by deposition of extracellular β-amyloid protein (Aβ), and the 
NFT is induced by intracellular tau hyperphosphorylation. The etiology of AD is still unclear. 
However, it is generally believed that AD is induced by multiple factors, e.g., genetics, biology, 
environment, and social psychology (Vermunt et al., 2019; Kulichikhin et al., 2021). The 
potential mechanism of Aβ-induced neurodegeneration is always the research focus. Human 
soluble Aβ dimers and trimers induce progressive loss of hippocampal synapses. When 
exposes to picomolar level of soluble Aβ oligomers, pyramidal neurons in rat brain slice 
significantly reduce the density of dendritic spines and the number of electrophysiologically 
active synapses (Shankar et al., 2007). Aβ could directly incorporate into neuronal membranes 
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of hypothalamic neurons, and participate in the formation of calcium-
permeable pores, leading to an increase in intracellular calcium 
concentration of GT1-7 cells. Therefore, the disruption of calcium 
homeostasis by “Aβ-channels” is recognized as the molecular basis for 
Aβ neurotoxicity. Previous studies indicated that the lipid composition 
of cell membrane played an important role in the formation of this 
channel (Kawahara and Kuroda, 2000). Normally, tau proteins bind 
to microtubules for maintaining the stability of cytoskeleton. The 
hyperphosphorylated tau aggregates to form paired helical filaments, 
which have fewer binding sites and unable to attach to microtubules, 
thus forming NFT (Liu et al., 2019). NFT disintegrates the microtubule 
network of nerve cells, resulting in the inhibition of cell biochemical 
communication, the destruction of the cytoskeleton, and ultimately 
the production of neurotoxicity (Srivastava et al., 2021). Research data 
showed that Aβ induced the spread of tau pathology in an unknown 
way leading to neuronal death (Long and Holtzman, 2019; Karran and 
De Strooper, 2022). Once Aβ accumulation exceeding a specific 
threshold, the spread of tau pathology was significantly accelerated 
(Karran and De Strooper, 2022). However, the hypothesis that the 
interaction between Aβ and tau leads to cytopathology is still required 
further investigation.

Since the conceptual framework of preclinical AD was officially 
proposed by the National Institute of Aging and the Alzheimer’s 
Association (NIA-AA) in 2011, accumulating data suggested that 
cognitive decline occurred continuously and progressively over a long 
period (Jack et al., 2018). For example, the whole course of AD for a 
70-year-old person could take approximately 15–25 years, including 
~10-year asymptomatic stage (preclinical stage), 4-year mild cognitive 
impairment, and 6-year for ultimately developing into dementia 
(Scheltens et al., 2021). Therefore, the measurement of AD biomarker 
should be  a continuous process that begins before symptom 
appearance (Fleisher et al., 2015; Jack et al., 2018).

Cerebrospinal fluid (CSF) directly reflects pathological changes in 
brain. Core CSF biomarkers of AD include Aβ42, total tau protein 
(T-tau) and P-tau. Aβ42 reflects cortical amyloid deposition. T-tau 
indicates the density of neurodegeneration, and P-tau links to the 
pathological changes in NFT. The increased concentration of CSF 
T-tau and P-tau was found in AD patients (Reitz and Mayeux, 2014), 
and their diagnostic accuracy was around 85–90% (Visser et al., 2009). 
However, the CSF or imaging analysis of AD biomarkers is either 
invasive or expensive (e.g., 10,000 RMB/per time for positron emission 
tomography (PET), 1,500 RMB/per time for magnetic resonance 
imaging (MRI), 300 RMB/per time for computed tomography (CT), 
1,000–3,000 RMB/per time for CSF examination), or both (Teunissen 
et al., 2022).

Based on the characteristics of accessibility, sampling technology, 
repeatability and cost-effectiveness, blood biomarkers have more 
advantages than CSF and imaging analysis (Blennow and Zetterberg, 
2018). However, the detection of AD biomarkers in blood is much 
more complex than in CSF (Kulichikhin et al., 2021). First, there is a 
blood–brain barrier (BBB) in the human body. The capillary 
endothelium in BBB lacks pores (Ueno et al., 2016), and therefore ions 
and polar molecules could only cross the BBB in the presence of some 
transport proteins (Haas, 2018). However, the transporters that are 
responsible for transporting tau through BBB have not yet been 
identified (Ueno et al., 2016). When the axon is damaged, proteins are 
released from the extracellular space of the brain and only a small 
fraction could enter the bloodstream. These brain proteins are cleaved, 

modified, and degraded before or after passing through BBB 
(Kulichikhin et  al., 2021). Second, the blood-cerebrospinal fluid 
barrier (BCB) is another important barrier. BCB is porous, so small 
peptides and hydrophilic molecules could pass through it. Due to the 
death of neuronal cells and intracellular high concentration, tau is 
firstly released to CSF (Tarasoff-Conway et al., 2015), and then enters 
the blood through the barrier (Haas, 2018). Because of the existence 
of BBB and BCB, there is a difference on the concentration between 
CSF and blood biomarkers. Third, plasma contains multiple 
background proteins. Some of them are at high levels. Therefore, the 
analytical techniques of blood samples should have a high sensitivity 
and specificity in order to detect a small quantity of biomarkers in the 
complex backgrounds (Kulichikhin et al., 2021).

In this review, the traditional and emerging AD biomarkers are 
summarized and categorized according to main AD pathologies such 
as amyloidosis, NFT, neurodegeneration, synaptic dysfunction, 
neuroinflammation, and BBB breakdown (Figure 1). The physiological 
function and the biofluid level of these markers are described. In 
addition, the research of some biomarkers on the other 
neurodegenerative diseases are also reviewed in this article.

2 Biomarkers of amyloidosis

2.1 Aβ42

Aβ40 and Aβ42 are the most common subtypes in human. Due to 
the expanded C-terminal, Aβ42 is highly hydrophobic and easier to 
aggregate than Aβ40 (Long and Holtzman, 2019). The level of CSF Aβ42 
in preclinical stage, mild cognitive impairment (MCI), and AD with 
dementia symptoms was lower than those in control groups (Bateman 
et al., 2012). It could decrease to around 50% of the healthy individuals 
(Table  1; Olsson et  al., 2016). A neuropathological examination 
showed that a decrease in CSF Aβ42 was associated with an increase in 
brain amyloid plaques (Strozyk et al., 2003). Elderly persons with a 
decrease of CSF Aβ42 were also Aβ-PET positive, and vice versa (Fagan 
et  al., 2006). The studies indicated that a reduction in CSF Aβ42 
preceded the formation of plaques (Palmqvist et al., 2016; Kulichikhin 
et al., 2021). Thus, CSF Aβ42 is considered as a robust biomarker of 
early AD diagnosis. A decrease in CSF Aβ42, coupled with an increase 
in T-tau and P-tau could help to identify the symptomatic AD 
(Blennow and Hampel, 2003). Low level of CSF Aβ42, rather than high 
level of T-tau, could predict cognitive decline (Stomrud et al., 2007). 
In addition, a significant decrease in CSF Aβ42 was observed in 
Creutzfeldt-Jakob disease (CJD), multiple system atrophy (MSA), and 
amyotrophic lateral sclerosis (ALS) (Holmberg et al., 2003), which 
indicated that CSF Aβ42 could be influenced by other factors besides 
plaque formation (Mahaman et al., 2022).

Plasma Aβ analysis is one of the most widely applied peripheral 
biomarker tests of AD (Mahaman et al., 2022). Plasma and CSF Aβ42 
had a weak positive correlation, while plasma Aβ42 levels and brain Aβ 
deposition had a negative correlation (Janelidze et al., 2016b). The 
research results regarding the relationship between plasma Aβ42 and 
cognitive impairment were not consistent. Some studies showed 
decreased plasma Aβ42 in MCI and AD (Nakamura et al., 2018), while 
others reported increased Aβ42 level and following decreased trend 
before or at the beginning of cognitive decline (Mayeux et al., 2003). 
The inconsistent results are probably caused by differences in sample 
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TABLE 1 Summarized information of AD amyloidosis biofluid biomarkers presented in this review.

Pathophysiological 
mechanism

Biomarker Biological 
matrices

Trend Purpose

Amyloidosis

Aβ42

CSF Decrease (Olsson et al., 2016) Diagnosis (Jack et al., 2018)

Blood
Controversial (Mayeux et al., 2003; Nakamura 

et al., 2018)
Research (Wang J. et al., 2018)

Aβ40

CSF No significant change (Kulichikhin et al., 2021) Research (Janelidze et al., 2016b; 

Kulichikhin et al., 2021)Blood Decrease (Janelidze et al., 2016b)

Aβ42/Aβ40

CSF Decrease (Schindler et al., 2019) Diagnosis (Jack et al., 2018)

Blood Decrease (Janelidze et al., 2016b) Research (Schindler et al., 2019)

T-tau/Aβ42 CSF
Increase (Kaplow et al., 2020) Research (Kaplow et al., 2020)

P-tau181/Aβ42 CSF

APP669-711/Aβ42 Blood Increase (Nakamura et al., 2018) Research (Nakamura et al., 2018)

BACE1
CSF

Increase (Cervellati et al., 2020) Research (Decourt and Sabbagh, 2011)
Blood

BIN1 Blood Increase (Sun et al., 2013) Research (Sun et al., 2013)

FIGURE 1

Classification of AD biofluid biomarkers described in this review based on different pathophysiological mechanisms. The inner ring indicates different 
potential mechanisms. The outer ring lists the biomarkers. Biomarkers with different colors present the corresponding research in different biological 
matrices. Black, CSF and blood; Blue, CSF; Red, blood. Aβ42, β-amyloid 42; Aβ40, β-amyloid 40; BACE1, β-secretase enzyme; BIN1, Bridging integrator 1; 
NfL, Neurofilament Light Chain; NFT, Neurofibrillary tangles; VILIP-1, Visinin-like Protein 1; SNAP-25, Synaptosome-associated protein 25; NPTX-2, 
Neuronal pentraxin 2; GAP-43, Growth-associated protein 43; NG, Neurogranin; TREM2, Triggering receptor 2; sTREM2, Soluble Triggering receptor 2; 
GFAP, Glial fibrillary acidic protein; NRG-1, Neuregulin-1; YKL-40, Human cartilage glycoprotein-39; TRAIL, TNF-related apoptosis-inducing ligand; 
PDGFRβ, Platelet-derived growth factor receptor-β; BBB, Blood–brain barrier.
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inclusion and exclusion criteria, as well as the analytical methods 
(Wang J. et al., 2018). Elevated levels of plasma Aβ42 and Aβ40 were also 
associated with other diseases, such as hypertension, diabetes and 
ischemic heart disease, indicating significant differences in metabolic 
process of amyloid proteins between blood and brain (Janelidze et al., 
2016b). Despite these differences, all studies confirmed the changes of 
blood amyloid proteins at the early stages of AD. In the future, the 
association between AD pathology and blood amyloid protein is 
required further exploration to promote its clinical application.

2.2 Aβ40

Aβ40 is the most abundant protein fragment hydrolyzed from 
APP. The concentration of CSF Aβ40 had no significant difference during 
the development of AD (Kulichikhin et al., 2021). Similar to Aβ42, there 
was a weak positive correlation between plasma and CSF Aβ40 (Janelidze 
et al., 2016b). Although Aβ40 does not have the same strong cytotoxicity 
as Aβ42, Aβ40 aggregates could be  detected in cerebral amyloid 
vasculopathy (Attems et al., 2011). The decreased plasma concentration 
of Aβ40 was observed in AD patients compared with controls (Janelidze 
et al., 2016b). Biochemical and molecular simulation showed that Aβ40 
inhibited the aggregation of Aβ42 (Jan et al., 2008).

2.3 Aβ42/Aβ40

The impact of total Aβ variation could be neutralized through 
normalization of Aβ42 by Aβ40 (Lewczuk et al., 2004). Several studies 
showed that CSF Aβ42/Aβ40 could better diagnose, differentiate, and 
monitor AD than CSF Aβ42 (Hansson et al., 2019). CSF Aβ42/Aβ40 and 
Aβ-PET positive had a good correlation (Kulichikhin et al., 2021). 
Compared to negative Aβ-PET population, the CSF Aβ42/Aβ40 level of 
positive Aβ-PET individuals decreased (Schindler et al., 2019). PD 
and dementia with Lewy body (DLB) had higher level of CSF Aβ40. 
Therefore, Aβ42/Aβ40 could help to distinguish AD from these diseases 
(Nutu et al., 2013; Mahaman et al., 2022). The combined application 
of CSF Aβ42/Aβ40 and other CSF biomarkers, e.g., T-tau or P-tau, gave 
a better prediction of AD (Baldeiras et al., 2018) and the conversion 
from MCI to AD (Baldeiras et al., 2018; Mahaman et al., 2022). Thus, 
CSF Aβ42/Aβ40 is proposed as a promising biomarker for preclinical 
AD diagnosis (Hansson et al., 2019; Kulichikhin et al., 2021).

In a 719-person cohort study, the plasma concentration of Aβ42/
Aβ40 significantly decreased in MCI and AD patients (Janelidze et al., 
2016b). Ovod et  al. (2017) reported that plasma Aβ42/Aβ40 was 
decreased in patients with cerebral amyloidosis. Cognitive decline and 
the risk of AD progression were associated with low plasma Aβ42/Aβ40 
levels (Verberk et al., 2020). Plasma Aβ42 alone was not an accurate 
biomarker for AD brain pathology, while Aβ42/Aβ40 could give a better 
prediction (Ovod et al., 2017; Schindler et al., 2019). Moreover, plasma 
Aβ42/Aβ40 was associated with Aβ-PET (Schindler et  al., 2019). 
Cognitively normal individuals with declined Aβ42/Aβ40 were observed 
within Aβ-PET-negative groups, indicating the early stage of AD 
before plaque formation (Schindler et  al., 2019). A mathematical 
simulation study suggested that the risk of positive Aβ-PET for the 
above population was 15 times higher than those with normal plasma 
Aβ42/Aβ40 in the next 6 years (Schindler et al., 2019). Additionally, 
plasma Aβ42/Aβ40 and Aβ42/Aβ38 had higher accuracy than Aβ42 in 

distinguishing AD from DLB, PD, or subcortical vascular dementia 
(VaD) (Janelidze et al., 2016c).

2.4 Other Aβ ratios

Elevated CSF T-tau/Aβ42 or P-tau181/Aβ42 indicated an obvious 
AD brain pathology (Kaplow et al., 2020). CSF Aβ42/P-tau181 showed 
high accuracy in predicting the progression from MCI to AD 
(Buchhave et al., 2012; Mahaman et al., 2022). A study based on mass 
spectrometry suggested that the plasma levels of APP669-711/Aβ42 
and Aβ40/Aβ42 in Aβ-PET-positive individuals were higher than those 
with negative Aβ-PET scan (Nakamura et al., 2018). These two ratios 
were associated with the levels of CSF Aβ42 (Kaneko et  al., 2014; 
Nakamura et al., 2018), and they could be used to predict the brain Aβ 
burden (Nakamura et al., 2018).

2.5 BACE1

BACE1, also known as β-secretase or β-site APP-lyase 1, is 
encoded by BACE1 gene, which is primarily expressed in neurons 
of brain and responsible for Aβ production (Vassar et al., 1999). 
It was reported that the increase of BACE1 gene expression or the 
abnormal function of β-secretase was one of the earliest processes 
in AD (Yang et al., 2003). Knocking out BACE1 in mice resulted 
in a significant decrease in Aβ and CTFβ concentration (a 
99-amino acid fragment starting with the N-terminal aspartic acid 
residue of Aβ) in the brain (McConlogue et al., 2007). In the SAD 
brain, the expression of BACE1 significantly increased (Yang 
et al., 2003). The CSF level of BACE1 protein of AD patients were 
significantly elevated (Cervellati et al., 2020). The activity of CSF 
BACE1 was higher in the individuals with the conversion from 
MCI to AD than those without (Zetterberg et al., 2008). A recent 
research (Hampel et al., 2021) and two large-scale cohort studies 
(Zuliani et al., 2020) presented similar trend of CSF BACE1 in 
peripheral blood, with a 30% increase in serum of AD compared 
to the control group. In APP/PS-1 transgenic mice, abnormal 
BACE1 expression in the retina predated behavioral defects. 
Therefore, BACE1 could be used as a sensitive biomarker for the 
early diagnosis of AD (Decourt and Sabbagh, 2011; Haas, 2018). 
However, the application of CSF BACE1 as a clinical AD 
biomarker is limited by its inter-subject variability and technical 
difference of assay in the lab (Hampel et al., 2020). The research 
focus is mainly on the BACE1 gene rather than the level of BACE1 
protein in the other neurodegenerative diseases such as PD (Li 
et al., 2020).

2.6 BIN1

Bridging integrator 1 (BIN1) is a member of amphiphysin 
proteins family. It is associated with the cytoskeleton and cell 
membrane. BIN1 plays an important role in the nervous system 
(Sudwarts et  al., 2022). BIN1 is widely expressed in mice and 
human brain (Miyagawa et  al., 2016). It participates in the 
regulation of endocytose (Wechsler-Reya et  al., 1998), and it is 
important in intracellular vesicles sorting (Pant et  al., 2009). 
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Previous study showed that BIN1 affected the AD molecular 
pathobiology through the regulation membrane trafficking of 
AD-related proteins (Miyagawa et  al., 2016). BIN1 dependent 
pathophysiological process is possibly associated with tau pathology 
through various mechanisms (Thomas et al., 2019). However, there 
is no further evidence to clarify whether this effect is regulated 
through the modulation of tau phosphorylation (Thomas et  al., 
2019), the influence of BIN1-tau interactions (Malki et al., 2017; 
Sartori et  al., 2019), or directly facilitating the propagation of 
pathogenic tau (Crotti et  al., 2019). Genome-wide association 
studies demonstrated that BIN1 was a genetic risk factor of LOAD 
(Tan et  al., 2013). The depletion of BIN1 enhanced the level of 
cellular BACE1 by impairing endosomal trafficking and decreased 
BACE1 lysosomal degradation, leading to the overproduction of Aβ 
(Miyagawa et al., 2016). A cohort study including 112 AD and 200 
control subjects showed significantly elevated levels of BIN1 mRNA 
and protein in the plasma of ADs. However, this trend is required 
further investigation in the larger-scale cohort (Sun et al., 2013).

3 Biomarkers of NFT formation

3.1 P-tau

AD-related NFT are composed of P-tau (Grundke-Iqbal et al., 
1986). CSF P-tau was elevated at the preclinical stage of AD (Sato 
et al., 2018), and it continued to rise during the early clinical stage 
(Palmqvist et al., 2019). Higher CSF T-tau and P-tau indicated faster 
disease progression (Wallin et  al., 2010). The elevated CSF T-tau 
reflected CNS degeneration, while increased P-tau was specific to AD 
(Blennow and Hampel, 2003; Skillbäck et al., 2014). Therefore, P-tau 
could help to distinguish AD from other neurodegenerative diseases 
(Hampel et al., 2004). The correlation between CSF P-tau and Aβ was 
stronger than that between CSF P-tau and tau-PET (La Joie et al., 
2018). This is probably because Aβ pathology is the reason for the 
increased CSF P-tau, while tau-PET measures NFT (Sato et al., 2018; 
Smirnov et al., 2022).

Several CSF P-tau proteins were reported to increase at the 
preclinical stage of AD. Both P-tau181 and P-tau217 began to increase at 
the early stage of AD, which were around 20 years before the detection 
of tau aggregation in the brain (Barthélemy et al., 2020b). Compared to 
the control groups, the CSF P-tau217 increased by 5 times in AD 
patients, while P-tau181 only increased by 1.3 times (Barthélemy et al., 
2019). CSF or plasma P-tau217 could identify patients with Aβ-PET 
positive but tau-PET negative, which indicated the changes of CSF P-tau 
before the detection of tau aggregates (Barthélemy et  al., 2020a; 
Kulichikhin et al., 2021). CSF P-tau205 increased in the advanced AD, 
and it was related to the increase of T-tau and brain atrophy (Barthélemy 
et al., 2020b). Studies reported that P-tau231 was the earliest increasing 
biomarker in AD (Ashton et al., 2021; Smirnov et al., 2022). There are 
few studies about comparison of different CSF P-tau biomarkers. One 
study showed that the levels of CSF P-tau181, P-tau199 and P-tau231 
were strongly associated with each other (Hampel et  al., 2004). By 
combining the application of two or more biomarkers, higher diagnostic 
accuracy could be obtained (Hansson et al., 2006). The fragments of the 
microtubule binding region (MTBR) where tau was much easier to 
aggregate (Blennow et al., 2020) were more reliable indicators for tau 
aggregation (Simrén et  al., 2023). A mass spectrometry study 
investigating the role of MTBR showed that CSF MTBR-tau, such as 

MTBR-tau243, MTBR-tau299 or MTBR-tau354, was a promising 
biomarker for monitoring target participation in the clinical trials (Horie 
et al., 2021).

Plasma P-tau was suggested to be the most promising analyte as a 
screening tool in clinical application. The increase of plasma P-tau was 
closely related to amyloid plaques and tau tangles (Mattsson-Carlgren 
et al., 2021). The validity of plasma P-tau as AD biomarker has been 
verified in neuropathologically confirmed cases (Lantero Rodriguez 
et al., 2020; Palmqvist et al., 2020), which was not affected by common 
co-pathologies (such as TDP-43 or α-synuclein pathology) (Smirnov 
et  al., 2022). Studies proved that plasma P-tau could predict the 
progression from cognitively unimpaired individuals to MCI and 
eventually to AD (Janelidze et al., 2020). Plasma P-tau had excellent 
accuracy in distinguishing AD from non-AD tau proteinosis (e.g., 
progressive supranuclear paralysis or cortical basal degeneration) or 
non-AD neurodegenerative diseases [e.g., DLB or frontotemporal 
dementia (FTD)] (Palmqvist et al., 2020; Ashton et al., 2021; Thijssen 
et al., 2021). Several P-tau proteins such as P-tau181, P-tau217 and 
P-tau231 have been proposed as AD blood biomarkers (Palmqvist 
et  al., 2020; Ashton et  al., 2021; Smirnov et  al., 2022). With the 
progression of the disease, plasma P-tau181 increased steadily (Suárez-
Calvet et  al., 2020; Thijssen et  al., 2020), and it could accurately 
distinguish AD from non-AD neurodegenerative diseases (Janelidze 
et al., 2020). Plasma P-tau 217 was at a high level before detection of 
tau pathology by PET.

The concentrations of P-tau181, T-tau and Aβ42 in exosomes of 
AD were associated with the corresponding CSF biomarkers. They 
were significantly higher than those in MCI and healthy controls (Jia 
et  al., 2019). Compared to the control groups, P-tau, Aβ42 and 
phosphorylated insulin receptor substrate 1 (IRS-1) of neuronal 
derived extracellular vesicles (NDEVs) in ADs showed high accuracy 
in predicting and distinguishing AD (Kapogiannis et al., 2019).

4 Biomarkers of neurodegeneration

In 2018, NIA-AA guideline proposed neurodegeneration as the 
third biomarker of AD (Table  2; Jack et  al., 2018). Although 
neurodegeneration alone was not enough as a diagnostic marker, its 
change rate could accurately predict the progression of the disease 
(Frisoni et al., 2010).

4.1 T-tau

In AD patients, the level of CSF T-tau increased (Shui et al., 2018). 
Similar to CSF P-tau181, CSF T-tau began to increase after the 
formation of amyloid plaques (Schindler, 2022). This happened 
10 ~ 15 years earlier before NFT (Bateman et al., 2012; Fleisher et al., 
2015). Therefore, CSF T-tau and P-tau181 probably reflected neuron 
dysfunction caused by Aβ plaques, rather than tau tangles. The level 
of CSF T-tau also increased in other diseases, such as stroke, acute 
neuronal injury, and CJD (Skillbäck et al., 2014). It increased within a 
few days after acute brain injury, and continued to elevate for several 
weeks until it finally fell back to the normal range (Zetterberg et al., 
2006). Previous studies reported that the highest level of CSF T-tau 
was observed in the most serious neurodegenerative diseases. For 
example, CSF T-tau level in CJD patients was 10 to 20 times higher 
than that in AD (Skillbäck et al., 2014).
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A two-year longitudinal study involving 152 people showed that 
plasma T-tau and T-tau/Aβ42 could predict the deposition of 
abnormally folded proteins in the brain (Sutphen et al., 2018). There 
was a correlation between high plasma T-tau and AD (Chen et al., 
2019). Although the plasma T-tau concentration in MCI or AD 
increased, the research data showed that the range of plasma T-tau in 
AD overlapped with that in normal population. This hinders the 
application of plasma T-tau as a diagnostic biomarker (Mahaman 
et al., 2022).

4.2 Neurofilament light chain (NfL)

Neurofilament plays an important role in maintaining the 
neuronal integrity and regulating the transport of intracellular 
components (Liu et al., 2004; Wagner et al., 2007; Yan et al., 2007; 
Bruno et  al., 2012). Because of the imbalance of tau kinase and 
phosphatase activity, abnormal hyperphosphorylation of 
neurofilaments occurred leading to the loss of their stability and 
axonal injury in the white matter and brain (Gong et al., 2000). Axonal 
injury released neurofilament proteins into interstitial fluid, and they 
could be detected in CSF (Bruno et al., 2012). The concentration of 
NfL in CSF rose at the early clinical stages of AD, correlating with 
cognitive decline and the changes of brain structure (Zetterberg et al., 
2016). A longitudinal study involving 389 subjects showed the elevated 
CSF NfL level in ADs than healthy controls (Mattsson et al., 2016). 
The lack of correlation between increased CSF NfL and Aβ pathology 
indicated that NfL was not specific to AD. Higher concentration of 
CSF NfL indicated the existence of axonal injury (Bridel et al., 2019). 
Although CSF NfL was not a specific biomarker for a disease, it could 
help clinicians to investigate whether cognitively impaired patients 
had neurological causes (Schindler, 2022). Studies showed that 
combined application of NfL with other biomarkers could greatly 
improve the accuracy of dementia diagnosis (de Jong et al., 2007; 
Mattsson et al., 2016). For example, the combination of CSF Aβ42 and 
P-tau181 with CSF NfL improved the diagnosis accuracy of early AD 
and FTD (de Jong et al., 2007).

Blood NfL was closely related to CSF NfL (Hansson et al., 2017), 
and it has become an easy-to-obtain biomarker for reflecting the 
intensity of neuronal damage and neurodegeneration (Simrén et al., 
2023). Some studies proposed that blood NfL was an effective tool 
for the early diagnosis of AD (Fortea et al., 2018). Elevated plasma 
NfL concentrations were observed in SAD (Ashton et al., 2021). 
Compared to the healthy controls, the plasma NfL level of AD 
increased by nearly 150% (Mattsson et al., 2017). The increased NFL 
was related to the cognitive decline, brain atrophy and low 

metabolism (Mattsson et al., 2017). Weston et al. pointed out that 
serum NfL increased in asymptomatic FAD, and it was associated 
with the stage and severity of the disease (Weston et al., 2017). Due 
to the concomitant pathologies of axons and peripheral axons, big 
difference in plasma NfL levels among healthy elderly population 
limited its specificity (Simrén et al., 2023). Nevertheless, the plasma 
NfL was more specific in autosomal dominant AD (ADAD) and 
Down syndrome because of the younger onset age of these disease 
process (Simrén et al., 2023).

4.3 VILIP-1

Visinin-like Protein 1 (VILIP-1) is a new biomarker for 
reflecting the pathological changes of AD. It is a calcium-binding 
protein of neuronal calcium sensor (NCS), which plays an 
important role in neuronal signaling cascades (Burgoyne and Weiss, 
2001). In AD and other neurodegenerative diseases, neurons 
showed abnormal Ca2+ homeostasis, which resulted in the aberrant 
regulation of Ca2+ ion channels and reduction of Ca2+ buffering 
capacity (Marambaud et al., 2009). VILIP-1 participated in calcium-
mediated neuronal injury through regulation of Ca2+ ions. The 
expression of VILIP-1 was closely related to Aβ plaque and NFT in 
ADs (Braunewell et al., 2001; Braunewell, 2012). CSF VILIP-1 could 
predict the change rate of global and focal brain atrophy which was 
similar as T-tau and P-tau181 (Luo et al., 2013). The CSF VILIP-1 
level of ApoE ε4 carriers was significantly increased, and it was 
positively correlated with tau and P-tau levels (Wang et al., 2020). 
A meta-analysis indicated enhanced levels of CSF VILIP-1 in AD 
compared to the control group. In addition, the CSF VILIP-1 level 
was higher in MCI patients who progressed to AD than stable MCIs 
(Mavroudis I. A. et al., 2021). Similarly, several longitudinal studies 
pointed out that the concentration of VILIP-1 and/or VILIP-1/Aβ42 
in CSF could be applied to diagnose diseases at an early stage, and 
predicted the future cognitive impairment of normal individuals 
(Luo et al., 2013). For example, the VILIP-1/Aβ42 and VILIP-1 in 
the CSF could help to differentiate AD from CJD (Halbgebauer 
et al., 2022b). No significant difference of VILIP-1 was observed 
between AD and DLB (Mavroudis I. A. et al., 2021). Serum VILIP-1 
could not discriminate AD from PD, ALS, and behavioral variant 
frontotemporal dementia (bvFTD) (Halbgebauer et al., 2022b). It 
was reported that serum VILIP-1 was correlated with acute 
ischemic stroke (Stejskal et al., 2011; Liu D. et al., 2020) and the 
neuronal injury caused by epileptic seizures (Tan et al., 2020). To 
date, there is no convincing data supporting the correlation between 
plasma VILIP-1 and AD or other neurodegenerative diseases.

TABLE 2 Summarized information of AD neurodegeneration biofluid biomarkers presented in this review.

Pathophysiological 
mechanism

Biomarker Biological 
matrices

Trend Purpose

Neurodegeneration

T-tau
CSF Increase (Shui et al., 2018) Diagnosis (Jack et al., 2018)

Blood Increase (Chen et al., 2019) Research (Mahaman et al., 2022)

NfL
CSF Increase (Zetterberg et al., 2016) Research (Mattsson et al., 2017; Bridel 

et al., 2019)Blood Increase (Mattsson et al., 2017)

VILIP-1
CSF Increase (Braunewell, 2012; Halbgebauer et al., 

2022b)

Research (Mroczko et al., 2015; 

Halbgebauer et al., 2022b)Blood
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5 Biomarkers of synaptic dysfunction

Synaptic dysfunction is closely correlated with the loss of synaptic 
integrity and neuropathological changes in the brain, which is another 
important pathophysiological mechanism of cognitive decline in 
AD. Synaptic dysfunction is largely driven by Aβ and tau pathology, 
and/or by the indirect consequence of neuroinflammatory response 
(Jackson et al., 2019). Therefore, synaptic alterations are considered as 
an early pathological event of AD (Scheff et al., 2007). Biomarkers 
indicating synaptic integrity and plasticity are helpful for early 
diagnosis and prognosis monitoring of AD (Table 3; Marambaud 
et al., 2009).

5.1 Presynaptic protein

Synaptosome-associated protein 25 (SNAP-25) exists in synaptic 
vesicles (Geppert et al., 1994). CSF SNAP-25 is a key participant in 
synaptic degeneration (Zhang et al., 2018). An increasing trend of CSF 
SNAP-25 was observed in the AD patients (Öhrfelt et al., 2016). The 
significantly reduced SNAP-25 in the cerebral cortex indicated the 
synaptic dysfunction (Davidsson and Blennow, 1998). It was reported 
that CSF SNAP-25 could differentiate AD from PD, FTD and ALS, and 
high concentration of CSF SNAP-25 could be applied as a biomarker 
for both AD and CJD (Halbgebauer et al., 2022a). CSF SNAP-25 level 
was correlated with APOE ε4 (Wang S. et al., 2018). MCI patients 
carrying APOE ε4 showed higher CSF SNAP-25 than non-carriers 
(Wang S. et al., 2018). There is few research on the correlation between 
blood SNAP-25 and AD. A study presented the reduced SNAP-25 in 
the neuron-derived exosomes (NDEs) isolated from serum, and it was 
associated with the cognition evaluated by Mini-Mental State 
Examination (MMSE) (Agliardi et al., 2019).

The increase of growth-associated protein 43 (GAP-43) was 
considered as another biomarker reflecting AD-related synaptic 
dysfunction. CSF GAP-43 increased with the cognitive decline, and it 
was correlated with Aβ plaque and NFT in hippocampus, amygdala, 
and cortex (Sandelius et al., 2019). CSF GAP-43 could predict the 
progression from MCI to AD, and this correlation was suspected to 
be related with APOE ε4 (Zhu et al., 2023). Elevated level of CSF 
GAP-43 was specific to AD compared to the other neurodegenerative 
diseases, e.g., MCI, ALS, behavioral variant FTD (bvFTD), PD, DLB, 
primary progressive aphasia (PPA), progressive supranuclear palsy, 
corticobasal syndrome, and posterior cortical atrophy (PCA). 
Therefore, it was considered as a promise AD biomarker for the 
clinical research. However, another study reported a temporary 

increase of CSF GAP-43 after ischemic stroke (Sandelius et al., 2018). 
A blood neuro-exosomal study presented that exosomal GAP-43 
could predict MCI 5–7 years in advance (Jia et al., 2021).

Neuronal pentraxin 2 (NPTX-2) is a protein correlated with the 
inhibitory circuit dysfunction. NPTX-2 showed different trends from 
the above biomarkers. The level of NPTX-2 in AD cerebral cortex and 
CSF decreased, and it had a strong correlation with cognitive ability and 
the volume of hippocampus (Xiao et al., 2017; Nilsson et al., 2021). 
Reduced CSF NPTX-2 level can predict early AD in adults with Down 
syndrome (Belbin et al., 2020). A longitudinal CSF proteomics study 
found that the change rate of NPTX-2 concentration was significantly 
associated with cognitive decline. CSF NPTX-2 was suggested as a 
strong biomarker for accelerated cognitive decline (Libiger et al., 2021). 
NPTX-2 regulates the complement activity and the loss of microglial 
synapses in the brain. Reduced NPTX-2 level may exacerbate 
complement-mediated neurodegeneration in FTD (Zhou J. et al., 2023). 
Studies reported significantly reduced CSF NPTX-2 level in FTD (Das 
et al., 2023) and DLB (Boiten et al., 2020), indicating that CSF NPTX-2 
was not a specific AD biomarker. NPTX-2/tau was closely related to the 
cognition of AD and MCI, and it had the best discrimination on AD 
(Galasko et al., 2019). The correlation between serum NPTX-2 and AD 
still remains unclear. There was an independent correlation between the 
serum NPTX-2 and cognition of VaD patients (Shao et  al., 2020). 
Reduced NPTX-2 level was observed in the plasma NDEs of AD 
patients, but this change could not be  detected 6–11 years before 
dementia (Goetzl et al., 2018).

α-syn induced hyperphosphorylation and aggregation of tau 
protein (Duka et al., 2006). There was a correlation between CSF α-syn 
and MMSE score (Korff et al., 2013). Compared to the cognitively 
normal population, the level of CSF α-syn in AD increased (Hall et al., 
2012). CSF α-syn in AD was significantly higher than those in PD and 
other neurodegenerative diseases (Wang et al., 2015). More research 
found that α-syn was a protein associated with familial PD, and it has 
identified as a major protein of the neuropathological hallmark for 
idiopathic PD (Fayyad et al., 2019).

5.2 Postsynaptic protein

Neurogranin (NG) is the most well-studied postsynaptic protein. It 
is a protein composed of 78 amino acids, which is involved in synaptic 
dysfunction or neuronal injury (Represa et al., 1990). NG participates in 
the induction of synaptic plasticity by accelerating the dissociation of 
calmodulin, e.g., long-term potentiation (LTP) and long-term depression 
(LTD) (Kubota et al., 2007). High levels of CSF NG reflected the loss of 

TABLE 3 Summarized information of AD synaptic dysfunction biofluid biomarkers presented in this review.

Pathophysiological 
mechanism

Biomarker Biological 
matrices

Trend Purpose

Synaptic dysfunction

SNAP-25
CSF Increase (Öhrfelt et al., 2016) Research (Öhrfelt et al., 2016; 

Agliardi et al., 2019)Blood NDEs Decrease (Agliardi et al., 2019)

GAP-43 CSF Increase (Sandelius et al., 2019) Research (Sandelius et al., 2019)

NPTX-2
CSF

Decrease (Goetzl et al., 2018; Nilsson et al., 2021)
Research (Goetzl et al., 2018; Nilsson 

et al., 2021)Blood NDEs

NG
CSF Increase (Portelius et al., 2018)

Research (Liu W. et al., 2020)
Blood exosome Decrease (Liu W. et al., 2020)
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brain neurogranin protein (Saunders et al., 2023), and it was positively 
correlated with Aβ plaque and tau pathology (Pereira et  al., 2017; 
Portelius et  al., 2018). The content of CSF NG48-76 increased 
significantly indicating the neurodegenerative process in the brain 
(Kvartsberg et al., 2015). CSF NG in MCI and AD was higher than 
cognitive normal population, and it could help to predict the progression 
from MCI to AD (Kester et al., 2015). CSF NG can predict MCI 5–7 years 
in advance (Jia et al., 2021), but it could not differentiate MCI from FTD 
or DLB (Mavroudis et  al., 2020). The specificity of CSF NG as a 
biomarker for AD diagnosis is controversial. Studies indicated that the 
elevation of CSF NG was highly specific to AD (Portelius et al., 2018), 
while others presented opposite conclusion (Willemse et al., 2021). Blood 
NG did not show a good trend. Plasma NG had no significant change or 
in a similar range between AD and healthy controls (De Vos et al., 2015; 
Kvartsberg et al., 2015). NG level in NDEVs of MCI and AD decreased, 
and it was correlated with the cognitive decline (Goetzl et al., 2016; 
Winston et  al., 2016; Liu W. et  al., 2020). A meta-analysis reported 
decreased NG level in plasma exosomes, and plasma NG was closely 
correlated with the cognitive decline (Liu W. et  al., 2020). The 
interpretation of NDEVs biomarkers should be  taken with caution 
because of their controversial origin (Mahaman et al., 2022).

6 Biomarkers of neuroinflammation

Neuropathologist Alois Alzheimer firstly observed lipid 
accumulation and fibrous structures in glial cells of dementia 
population’s brain (Simrén et al., 2023). Glial cells in CNS include 
astrocytes and microglia, and they were reported to be involved in AD 
pathophysiology (Table 4; Simrén et al., 2023).

6.1 TREM2 and sTREM2

Triggering receptor 2 (TREM2) is a cell surface receptor mainly 
expressed in CNS microglia, and it plays an important role in 
regulating energy metabolism and phenotypic transformation of 
microglia. TREM2 acts as a key regulator, allowing microglia to 

switch between steady state and activated state (disease-associated 
microglia) (Keren-Shaul et al., 2017). Heterozygous loss-of-function 
variants in TREM2 were associated with the increasing AD risk 
(Guerreiro et al., 2013), and another study presented that they also 
increased the risk of the other neurodegenerative diseases, such as 
FTD, PD, and ALS (Carmona et  al., 2018). Studies reported that 
TREM2 tripled the risk of AD (Guerreiro et  al., 2013), probably 
through its influence on tau pathology (Lill et  al., 2015) and Aβ 
clearance pathway (Kleinberger et al., 2014). CSF TREM2 level was 
deranged at the early stage of AD, and it was closely related to 
neurodegenerative biomarkers such as T-tau and/or P-tau (Heslegrave 
et al., 2016; Suárez-Calvet et al., 2016b). Compared to the healthy 
controls, the levels of TREM2 mRNA and protein in peripheral blood 
of AD were higher (Hu et  al., 2014). TREM2 level in MCI-AD 
patients was significantly higher than that in AD or healthy controls 
(Casati et al., 2018).

After hydrolysis of the TREM2 protein, the soluble fragments of 
sTREM2 are produced outside the cell (Colonna and Wang, 2016). 
Transgelin-2 (TG2) is expressed on neurons. The sTREM2-TG2 
interaction mediates the crosstalk between neurons and microglia 
(Zhang et al., 2023). The concentration of CSF sTREM2 in AD was 
higher than the healthy controls (Piccio et al., 2016; Suárez-Calvet et al., 
2016b). Before the appearance of expected symptoms and after the 
increasing of Aβ and T-tau, the level of CSF sTREM2 in ADAD mutation 
carriers was higher than non-carriers (Suárez-Calvet et al., 2016a). It was 
suggested that sTREM2 was potential to predict the progression from 
MCI to AD. The MCI patients with low CSF or high plasma sTREM2 
levels had a higher risk of progression to AD. In addition, the 
concentration of CSF sTREM2 was closely correlated with sTREM2 in 
plasma (Zhao et al., 2022). The dynamically changes of CSF sTREM2 was 
observed in preclinical AD. In the absence of neurodegeneration and tau 
deposition, Aβ pathology was correlated with the decreased CSF 
sTREM2. However, tau pathology and neurodegeneration are associated 
with the increased CSF sTREM2 (Ma et al., 2020). A meta-analysis 
reported that CSF sTREM2 was significantly elevated in the entire 
continuum of AD compared to controls. However, an increasing trend 
of CSF sTREM2 was also observed in PD, multiple sclerosis (MS), FTD 
and DLB (Zhou W. et al., 2023).

TABLE 4 Summarized information of AD neuroinflammation biofluid biomarkers presented in this review.

Pathophysiological 
mechanism

Biomarker Biological 
matrices

Trend Purpose

Neuroinflammation

TREM2 & 

sTREM2

CSF Controversial (Ma et al., 2020) Research (Hu et al., 2014; Suárez-Calvet et al., 

2016b)Blood Increase (Hu et al., 2014)

TAM receptor CSF Increase (Brosseron et al., 2022, 2023) Research (Brosseron et al., 2022, 2023)

Blood

YKL-40 CSF Increase (Janelidze et al., 2016a) Research (Janelidze et al., 2016a; Villar-Piqué 

et al., 2019)Blood Increase (Craig-Schapiro et al., 2010)

GFAP CSF Increase (Benedet et al., 2021) Research (Benedet et al., 2021; Cicognola et al., 

2021; Katsipis et al., 2021)Blood Increase (Benedet et al., 2021)

Saliva Decrease (Katsipis et al., 2021)

NRG-1 CSF Increase (Chang et al., 2016; Mouton-Liger 

et al., 2020)

Research (Chang et al., 2016; Mouton-Liger et al., 

2020)Blood

TRAIL Blood Decrease (Wu et al., 2015) Research (Wu et al., 2015)
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6.2 TAM receptor

TAM receptors are widely expressed in various types of cells and 
tissues in the immune, neurological, vascular, and reproductive 
systems (Zhou S. et  al., 2023). Axl and Mertk are expressed in 
microglia, but Tyro3 is not (Fourgeaud et al., 2016). The TAM system 
is an important regulator for microglia to recognize and engulfment 
of amyloid plaques. Axl and Mertk proteins were correlated with AD 
(Huang et  al., 2021). Axl reduces inflammatory responses, while 
Mertk plays a role in the phagocytosis of aggregated proteins and 
cellular debris (Zhou S. et  al., 2023). Research reported that Aβ 
plaque-associated microglia exhibited hyperreactivity upon systemic 
inflammation and upregulated phagocytic genes in the transgenic AD 
mouse model, including Axl (Yin et al., 2017). Microglial phagocytosis 
driven by TAM does not inhibit, but promotes the formation of 
amyloid plaques. Mertk is the major participant in this process (Huang 
et  al., 2021). Phosphatidylserine (PtdSer) serves as the ligand 
decorating the plaques for TAM receptors. Mertk, expressed by 
activated microglia, recognized, and phagocytosed neurons exposed 
to PtdSer, thereby promoting tau-induced neuronal loss 
(Pampuscenko et al., 2020; Zhou S. et al., 2023). The increasing of 
soluble Axl level in CSF reflected the pathophysiology of AD and was 
positively correlated with P-tau181 (Brosseron et al., 2022). However, 
extensive clinical data showed that CSF Axl was correlated with larger 
brain volume and slower cognitive decline, which indicated that Axl 
had a protective effect on related processes (Brosseron et al., 2022). 
The serum Axl was significantly elevated in AD, and it was negatively 
correlated with cognition and structural imaging (Brosseron et al., 
2023). However, the specificity of Axl as an AD biomarker is still 
required further investigation.

6.3 YKL-40

Human cartilage glycoprotein-39 (YKL-40) is a biomarker of 
inflammation, as well as the activated astrocytes (Olsson et al., 2016). 
It is primarily produced by astrocytes in the brain and it can predict 
the neurotoxicity induced by inflammation and other stress signals 
(Connolly et al., 2023). The research focus on the role of YKL-40 in 
AD is limited. It was presented that YKL-40 may promote AD 
progression via altering amyloid burden and neuroinflammatory 
processes (Connolly et  al., 2023). Another study indicated a 
correlation between YKL-40 and tau pathology (Baldacci et  al., 
2017a). YKL-40 showed good performance in distinguishing 
tau-positive patients from controls (Baldacci et al., 2017b). A meta-
analysis found that CSF YKL-40 could serve as a biomarker to predict 
the progression from MCI to AD, as well as for the prognosis of 
MCI. CSF YKL-40 was significantly elevated in AD, MCI, MCI-AD, 
and stable MCI compared to the controls, and it was higher in 
MCI-AD than in the stable MCI (Mavroudis I. et al., 2021). The level 
of CSF YKL-40 increased in AD and FTD, and it was relatively low in 
DLB (Craig-Schapiro et al., 2010; Janelidze et al., 2016a). Another 
study showed that the level of CSF YKL-40 in AD increased compared 
to non-dementia control groups, DLB and PD (Wennström et al., 
2015). The above results suggested that CSF YKL-40 could be used as 
a non-specific neuroinflammatory biomarker to distinguish AD from 
PD and DLB (Wennström et al., 2015). The application of plasma 
YKL-40  in diagnosis of AD is controversial. It was reported that 
higher plasma YKL-40 in Clinical Dementia Rating (CDR) 1 and 0.5 

than CDR 0 (Craig-Schapiro et al., 2010). Another study indicated the 
possibility of YKL-40 for predicting the progression from MCI to mild 
AD (Choi et al., 2011). Some studies presented no statistical difference 
of plasma YKL-40 between AD and controls. However, the 
significantly increased plasma YKL-40 was observed in CJD and LBD 
(Craig-Schapiro et al., 2010; Villar-Piqué et al., 2019).

6.4 GFAP

Glial fibrillary acidic protein (GFAP) is the main intermediate 
filament of the glial cytoskeleton (Pekny and Nilsson, 2005). GFAP 
mediates insulin-like growth factor 1 signaling pathway that 
involved in AD pathology (Wang et al., 2023). CSF GFAP increased 
with plaque deposition (Benedet et al., 2021), and it could be used 
to predict the progression from MCI to AD (Cicognola et al., 2021). 
In addition, studies found that CSF GFAP can effectively 
differentiate healthy population from preclinical ADs (Wojdała 
et al., 2023). Plasma GFAP is considered as an early biomarker for 
Aβ pathology, but it is not related with tau pathology (Pereira et al., 
2021). Plasma GFAP was sensitive to AD pathology in LBD, 
especially to Aβ plaque accumulation (Cousins et al., 2023). Studies 
showed that plasma GFAP level continued to increase as the disease 
progression (AD dementia>MCI > cognitively normal elderly with 
Aβ positive), but CSF GFAP did not reflect the consistent trend 
(Verberk et  al., 2020; Chatterjee et  al., 2021). The reason why 
plasma GFAP performs better than CSF GFAP as AD biomarker is 
still unclear. This is probably correlated with the direct release of 
GFAP into the blood by astrocytic end-feet, and/or different 
biological degradation between these two matrices (Simrén et al., 
2022). Additionally, plasma GFAP can serve as a biomarker for 
adult AD in Down syndrome, and it could be applied in clinical 
practice and trials (Montoliu-Gaya et  al., 2023). Notably, 
significantly decreasing GFAP concentration was observed in saliva 
of MCI and AD compared to controls. Salivary GFAP is suggested 
as an excellent biomarker for distinguishing MCI or AD from the 
controls (Katsipis et al., 2021).

6.5 NRG-1

Neuregulin (NRG) plays an important role in the development of 
nervous system (Esper et  al., 2006). NRG-1 is the first and best 
characterized NRG gene (Pankonin et al., 2009). Soluble NRG (sNRG) 
was preferentially accumulated on the surface of white matter 
astrocytes (Pankonin et  al., 2009). NRG-1 signaling exerts 
neuroprotection through the activation of the phosphatidylinositol 
3-kinase/Akt (PI3K/Akt) pathway to prevent the neurotoxicity 
induced by Aβ42 (Baik et  al., 2016). Another study presented 
prevention of AD via blocking NRG-1 signaling on microglia (Liu 
et al., 2023). Both the above studies are based on the animal models. 
Research found that ADs and MCI-ADs had higher CSF NRG-1 than 
controls and non-AD dementias, and the CSF NRG-1 was correlated 
with cognitive evolution (Mouton-Liger et al., 2020). Plasma sNRG-1 
level in AD increased and there was a significant correlation between 
plasma sNRG-1 and MMSE score. The lower MMSE score was 
correlated with the higher plasma sNRG-1 concentration (Chang 
et al., 2016). In addition, plasma NRG-1 was found to be correlated 
with CSF GAP-43, SNAP-25, and NG (Vrillon et al., 2022). Therefore, 
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sNRG-1 was suggested as a sensitive plasma biomarker (Chang 
et al., 2016).

6.6 TRAIL

Previous study presented the involvement of TNF-related 
apoptosis-inducing ligand (TRAIL) in Aβ induced neurotoxicity in a 
human neuronal cell line (Cantarella et al., 2003). Blockade of the 
TRAIL-death receptor DR5 prevented Aβ-neurotoxicity (Uberti et al., 
2007). It was reported that the TRAIL was specifically expressed in the 
brains of ADs (Uberti et al., 2004). The reduced plasma TRAIL level 
was observed in AD group compared to controls (Wu et al., 2015), and 
it was significantly associated with its level in CSF (Wu et al., 2015). No 
significant difference was observed in the serum TRAIL between ADs 
and controls. However, a negative correlation was indicated between 
serum TRAIL and MMSE scores of AD patients (Genc et al., 2009).

7 Biomarkers of BBB breakdown

ApoE ε4 could accelerate the breakdown of BBB and damage the 
pericapillary cells of the brain (Halliday et al., 2016). High level of 
platelet-derived growth factor receptor-β (PDGFR-β) in CSF could 
predict the cognitive decline of ApoE ε4 carriers (Montagne et al., 
2020). Brain capillary injury and BBB breakdown occurred in the 
hippocampus of patients with early cognitive impairment (Nation 
et al., 2019). However, the BBB disruptions were not correlated with 
alterations in Aβ and/or tau levels (Nation et al., 2019; Montagne et al., 
2020). BBB breakdown was proposed as an early biomarker for human 
cognitive impairment that was uncorrelated to Aβ and tau pathology 
(Mahaman et al., 2022).

The ratio of CSF to serum albumin was applied as a standard method 
to measure BBB function (Tibbling et al., 1977; Skillbäck et al., 2017; 
Menendez-Gonzalez and Gasparovic, 2019). The mean value of this ratio 
was slightly higher in AD patients with vascular factors when compared 
to the healthy controls, but no significant difference was observed in AD 
group without vascular factors (Blennow et al., 1990). It is suggested that 
the BBB damage in AD was associated with clinical vascular factors but 
not a result of the disease itself (Blennow et al., 1990). This ratio might 
help to exclude some of the cerebrovascular diseases and indirectly assist 
the diagnosis of AD (Reitz and Mayeux, 2014).

8 Outlook

The Ronald and Nancy Reagan Research Institute of the Alzheimer’s 
Association, and the National Institute on Aging Working Group 
proposed that “ideal” biomarkers for AD diagnosis should meet the 
following criteria (Khan and Alkon, 2015): (1) the basic characteristics 
of AD neuropathology could be  detected; (2) the application of 
biomarkers should be validated in neuropathologically confirmed AD 
cases; (3) biomarkers could diagnose AD at the early stage with high 
sensitivity and specificity; and (4) the analysis should be repeatable, 
reliable, non-invasive, simple and cost-effective (Kulichikhin et  al., 
2021). Several challenges still exist. First, the diagnosis of AD mainly 
depends on the clinical features. Some clinical features are overlapped 
between AD and non-AD dementia patients, resulting in a high rate of 
misdiagnosis at the early stage of AD, especially in non-specialist clinical 

centers (Engelborghs et al., 2008). Second, other dementias, e.g., VaD 
and DLB, have the pathological characteristics of AD (Schneider et al., 
2009), which hinders the application of some AD biomarkers. Third, Aβ 
plaques and NFT are also presented in the elderly population without 
cognitive impairment (Price and Morris, 1999). Fourth, the detection 
of most AD biomarkers has not been standardized. Most of the results 
are preliminary and retrospective, and lacking comparison between 
patients (Sunderland et al., 2003; Mahaman et al., 2022). Finally, more 
meta-analysis or the correlation analysis studies among different 
biomarkers are insufficient. Further investigation to rank and confirm 
their importance is required.

In the future, the research could focus on demonstrating the 
accuracy of AD biomarkers, especially for the blood-based biomarkers. 
The relationship between AD biomarkers and the pathogenesis of AD 
needs further exploration. Large-scale head-to-head studies are required 
to determine the most appropriate application scenario of biomarkers at 
different stages of AD, involving diagnosis, prediction, prognosis, and 
clinical trial design (Ossenkoppele et al., 2019).
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