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Many age-related neurological diseases still lack effective treatments, making 
their understanding a critical and urgent issue in the globally aging society. 
To overcome this challenge, an animal model that accurately mimics these 
diseases is essential. To date, many mouse models have been developed to 
induce age-related neurological diseases through genetic manipulation or drug 
administration. These models help in understanding disease mechanisms and 
finding potential therapeutic targets. However, some age-related neurological 
diseases cannot be  fully replicated in human pathology due to the different 
aspects between humans and mice. Although zebrafish has recently come into 
focus as a promising model for studying aging, there are few genetic zebrafish 
models of the age-related neurological disease. This review compares the aging 
phenotypes of humans, mice, and zebrafish, and provides an overview of age-
related neurological diseases that can be mimicked in mouse models and those 
that cannot. We  presented the possibility that reproducing human cerebral 
small vessel diseases during aging might be difficult in mice, and zebrafish has 
potential to be another animal model of such diseases due to their similarity of 
aging phenotype to humans.
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1 Introduction

The quest to understand the intricacies of human age-related neurological diseases has led 
scientists to explore various animal models, each offering unique insights into the 
pathophysiology of diseases. Among these, the mouse (Mus musculus) models have been used 
as powerful tools in studying neurological disorder.

The mouse model has been a cornerstone in biomedical research for decades. Mice share 
about 85% of their DNA with humans and have similar nervous systems, making them 
excellent models for studying the age-related neurological disease (Waterston et al., 2002; Xu 
et al., 2022). The availability of sophisticated genetic manipulation techniques in mice further 
enhances their utility in disease modeling. Mouse models of age-related neurological diseases 
have provided deep insight into these diseases in humans. However, no single model can 
perfectly recapitulate all aspects of human age-related neurological disease, and it is necessary 
to combine insights from several models to understand the pathophysiology of these diseases.

Zebrafish (Danio rerio), a small tropical freshwater fish, has gained prominence in the 
scientific community due to its genetic and physiological similarities to humans. Approximately 
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70% of human genes have at least one obvious zebrafish orthologue, 
making it a valuable model for studying human diseases (Choi et al., 
2021). Moreover, their prolific breeding capabilities allow for the 
generation of large sample sizes. The transparency of zebrafish larvae 
or adult zebrafish of mutants lacking melanocytes and iridophores 
permits live imaging of cellular and molecular processes in vivo, 
providing a dynamic view of disease progression and therapeutic 
effects that is not easily achievable in other model organisms (White 
et al., 2008). In addition to these merits, recent studies revealed the 
similarities of neurological disease-related aging phenotypes between 
zebrafish and humans, suggesting that zebrafish has a potential as a 
age-related neurological disease model (Arslan-Ergul et al., 2013).

In this review, we compared the neurological disease-related aging 
phenotypes that are common or different among humans, mice, and 
zebrafish. Subsequently, we discuss the advantages and limitations of 
mouse models for age-related neurological diseases and explore the 
potential of zebrafish to overcome these limitations.

2 The age-associated phenotype 
between humans, mice, and zebrafish

When considering the creation of model organisms for 
neurodegenerative diseases accelerated by aging, it is critical to assess 
whether humans and the model organisms follow similar aging 
processes, as this can significantly impact the applicability of the 
research findings to humans. Therefore, it is useful to summarize the 
similarities and differences in aging phenotypes. Here, we compared 
the normal aging phenotypes across humans, mice, and zebrafish 
(Table 1). In mice and zebrafish, aging impairs various physiological 
functions similar to those in humans, such as basal metabolism 
(Kitazoe et  al., 2019; Yang et  al., 2019; Li et  al., 2022), locomotor 
activity (Hunter et al., 2016; Yanai and Endo, 2021; Rutkove et al., 
2023), cognitive function (Aartsen et al., 2002; Ruhl et al., 2015; Yang 
et al., 2018; Yanai and Endo, 2021), bone metabolism (Szulc et al., 
2001; Monma et al., 2019; Wan et al., 2021), regenerative capacity (Tsai 
et al., 2007; Loforese et al., 2017; Rando and Jones, 2021; Tower et al., 
2022), and reproductive capacity (Franks and Payne, 1970; Little, 
1997; Tsai et al., 2007; Aitken, 2023), indicating a degree of conserved 
aging mechanisms across these species (Table 1). In leveraging the 
advantages of each model organism to mimic or overcome human 
age-related neurological diseases, it is essential to understand 
differences that may lead to divergent phenotypes with brain aging. 
The differences in normal age-related phenotypes between mice and 
zebrafish include a lifespan and clearance systems in the brain.

2.1 Lifespan

Zebrafish is known to have an average lifespan of 42 months 
(Gerhard et al., 2002; Kishi, 2004), while the lifespan of mice typically 
ranges from 25 to 26 months (Fahlström et  al., 2011) (Table  1). 
Interestingly, even genetically modified mice designed for longevity 
live as long as the wild-type zebrafish (Bartke et al., 2001). It is known 
that there is a positive correlation between body weight and a lifespan 
in vertebrates (Kuparinen et  al., 2023), suggesting that zebrafish, 
despite their relatively small size, is inherently long-lived species 
compared to other animals including mice. In addition, humans tend 

to live longer among mammals of equivalent body weight, while mice 
demonstrate a relatively shorter lifespan (Roser et  al., 2013; 
Kowalczyk et al., 2020) (Table 1). These observations suggest that 
zebrafish offers a unique opportunity to replicate aging-related 
phenotypes that are not observable in shorter-lived species. This 
aspect of zebrafish biology underscores the potential of using them 
to explore complex aging processes and their implications for human 
health, offering insights into longevity and mechanisms underlying 
age-related diseases.

2.2 Clearance systems in the brain

In the context of age-related neurological diseases, the efficiency 
of clearance systems in the brain plays a pivotal role in maintaining 
brain homeostasis. As organisms age, the efficiency of autophagy and 
the ubiquitin-proteasome system declines, leading to a disruption in 
proteostasis and subsequent accumulation of abnormal proteins in the 
brain (Kaushik and Cuervo, 2015). To clear these substances, the brain 
has several clearance mechanisms including the glymphatic system, 
which can drain these substances along cerebral small vessels 
(Nedergaard, 2013). Benveniste et  al. (2018) suggest significant 
differences in the clearance efficiency of the glymphatic system 
between humans and mice (Table 1). This assertion is supported by 
the several studies investigating the half-life of amyloid-beta (Aβ), 
mainly cleared by the glymphatic system (Wang et  al., 2023). In 
humans with Alzheimer’s disease, the half-life of Aβ is around 13 h, 
whereas in Alzheimer’s disease model mice, even aged individuals 
show a half-life of merely 2–4 h, indicating that the clearance of Aβ 
from the brain in mice is at least three times faster than that in humans 
(Cirrito et al., 2003; Barten et al., 2005; Mawuenyega et al., 2010; Qosa 
et  al., 2014). Research utilizing zebrafish larvae, in which Aβ was 
injected into the brain, and the amount of Aβ was measured between 
5 h-post-injection and 24 h-post-injection, showed only a 40% 
reduction in Aβ levels, indicating the half-life of Aβ is over 19 h in 
zebrafish larvae (Jeong et  al., 2021). These studies suggest that 
zebrafish possesses a capability for brain clearance that is similar to 
humans, while mice exhibit a significantly higher capacity compared 
to the other two species (Table 1).

One of the possible causes of this difference is variations in heart 
rate, which directly impact the efficiency of the glymphatic system. It 
has been demonstrated that the glymphatic system is stimulated upon 
artificially elevating the heart rate in mice through the administration 
of dobutamine (Iliff et al., 2013). The resting heart rate of mice is 
around 500 bpm, while it is around 60–70 bpm in humans (Wang 
et al., 2017; Benveniste et al., 2018) (Table 1). Therefore, the clearance 
capacity in the brain in humans might be much weaker than in mice. 
Notably, the resting heart rate of adult zebrafish is around 120 bpm 
(Table  1), suggesting that zebrafish may possess brain clearance 
mechanisms closer to humans than to mice (Mousavi and Patil, 2020). 
Moreover, it is implied that dysregulation of cerebral blood flow affects 
glymphatic system (Sepehrinezhad et al., 2023). The cerebral blood 
flow is decreased with aging in humans and zebrafish, whereas this 
does not change in mice (Pantano et  al., 1984; Wei et  al., 2020; 
Mizoguchi et al., 2023) (Table 1). This suggests that the efficiency of 
glymphatic system is decreased with aging in humans and zebrafish, 
but less in mice.
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These could imply that neurovascular aging related to 
neurodegenerative diseases may occur earlier in humans and zebrafish 
compared to mice. Thus, considering the difference in brain clearance 
capacity points toward the potential of zebrafish as a more 
representative model for studying human cerebrovascular aging and 
clearance mechanisms in the context of aging-related 
neurodegenerative diseases.

3 The diseases in which human 
pathology is partially mimicked by 
mouse models

For some age-accelerated disorders, such as Alzheimer’s disease 
and cerebral small vessel diseases, mouse models do not fully mimic 
the human disease. These diseases are known to be  related to 
cerebrovascular pathology, and aging might be a large risk factor of 
onset and progression of these diseases (described in detail in 
section 4).

3.1 Alzheimer’s disease

Alzheimer’s disease (AD) is the most common type of dementia. 
Two main pathological hallmarks of AD are Aβ plaques and 
neurofibrillary tangles (NFT) (Blennow et al., 2006). The Aβ plaques 
are formed by deposition of Aβ protein, and the NFT is formed by 
intracellular tau protein hyperphosphorylation, which is induced by 

Aβ (Blennow et al., 2006). There are several AD risk genes such as 
APP, PSEN1, and PSEN2. The single missense mutation of these genes 
causes the AD pathology in human (Bagyinszky et al., 2016).

Transgenic mouse models have significantly contributed to our 
understanding of Alzheimer’s disease (AD), with multiple types of 
transgenic mice of AD overexpressing mutant forms of AD risk genes 
(Sanchez-Varo et  al., 2022; Yokoyama et  al., 2022). These models 
exhibit key features of AD pathology, including Aβ plaques and 
cognitive decline. However, they have limitations, including artificial 
temporal or spatial expression patterns in transgenic overexpression 
systems, leading to complex outcomes that may not accurately 
represent the human condition. For example, as reported by 
Jankowsky et al. (2005), analyzing cognitive behavior was difficult due 
to their severe hyperactivity which is not a human AD symptom, 
using transgenic mice expressing chimeric mouse/human APP 
Swedish/Indiana (carrying KM570, 571NL, and V617F mutation). 
The authors described that hyperactivity, which is not observed in 
human, might be caused by neuronal alterations due to transgene 
expression during early postnatal development (Jankowsky et  al., 
2005). Moreover, most transgenic mice, such as single transgenic mice 
(carrying mutant APP) or double transgenic mice (carrying both 
mutant APP and mutant PSEN1), did not show the formation of NFT, 
despite exhibiting cognitive decline (Metaxas and Kempf, 2016; 
Drummond and Wisniewski, 2017; Sasaguri et  al., 2017). These 
limitations highlight the need for alternative AD models, which 
substitute for transgenic models.

To overcome the issues associated with transgenic models, 
researchers have attempted to create models using knock-in 

TABLE 1 The characteristics associated with aging among humans, mice, and zebrafish.

Phenotype Human Mouse Zebrafish References

Basal metabolism ↓ ↓ ↓
Yang et al. (2019), Li et al. (2022), and 

Kitazoe et al. (2019)

Locomotor activity ↓ ↓ ↓
Rutkove et al. (2023), Yanai and Endo 

(2021), and Hunter et al. (2016)

Cognitive function ↓ ↓ ↓
Yang et al. (2018), Yanai and Endo 

(2021), and Aartsen et al. (2002)

Bone metabolism ↓ ↓ ↓
Monma et al. (2019), Wan et al. 

(2021), and Szulc et al. (2001)

Regenerative ability ↓ ↓ ↓
Tsai et al. (2007), Loforese et al. 

(2017), and Rando and Jones (2021)

Reproductive capacity ↓ ↓ ↓

Tsai et al. (2007), Franks and Payne 

(1970), Little (1997), and Aitken 

(2023)

Lifespan

70 years

(long among similar body 

mass species)

25 month

(short among similar 

body mass species)

42 month

(long among similar body mass 

species)

Kishi (2004), Roser et al. (2013), and 

Fahlström et al. (2011)

Aβ clearance + +++ +
Mawuenyega et al. (2010), Cirrito 

et al. (2003), and Jeong et al. (2021)

Heart rate (bpm) 60–70 500 110–130
Wang et al. (2017) and Benveniste 

et al. (2018)

Cerebral blood flow ↓ → ↓
Mizoguchi et al. (2023), Wei et al. 

(2020), and Pantano et al. (1984)

Arrows indicate the direction of aging-dependent change (↓: decrease, →: no change). “+” indicates the ability of Aβ clearance; mice have much more efficient capacity of Aβ clearance 
compared with human and zebrafish.
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techniques. These techniques aim to mimic wild-type expression 
levels and patterns more closely. However, the expected Aβ plaque 
deposition was not detected in APP Swedish (carrying KM670, 671NL 
mutation) or London (carrying V717I mutation), and memory 
impairment was not observed in the knock-in model that carries a 
single APP mutation (carrying V642I) (Kawasumi et al., 2004; Köhler 
et  al., 2005). Subsequent efforts led to the development of APP 
knock-in mice models incorporating multiple familial Alzheimer’s 
mutations. These models include the Swedish (NL), Beyreuther/
Iberian (F), and Arctic (G) mutations. The APP NL-G-F mice, which 
harbor all three mutations, began to develop Aβ plaques at two 
months and showed memory impairment from six months (Saito 
et al., 2014). However, further research revealed that in some cases, 
APP NL-G-F mice did not exhibit the expected decline in memory 
abilities [refer to the discussion in Sakakibara et al. (2019)]. These 
suggest that introducing mutated forms of APP through knock-in 
techniques may not fully replicate the symptoms of AD. In terms of 
PSEN1/2, there are a few studies on familial mutant PSEN1 knock-in 
mouse models. These mouse models carry a single familial mutation 
such as L435F, I213T or R278I, and have shown Aβ plaques but exhibit 
no or mild memory impairment (Lalonde and Strazielle, 2005; Saito 
et al., 2011; Xia et al., 2015). Therefore, it is difficult to conclude the 
PSEN1 knock-in AD mouse models fully replicate the AD pathology.

3.2 Cerebral small vessel diseases

Cerebral Small Vessel Diseases (CSVDs) are the collective term 
for diseases that affect the cerebral small vessels. Damage to small 
vessels lead to lesions in subcortical structures like lacunar infarcts, 
white matter lesions, large hemorrhages, and microbleeds, leading to 
dementia (Pantoni, 2010). The progression of CSVDs is highly 
age-associated (Chung et  al., 2023). Characteristic pathologies of 
CSVDs include enlarged perivascular spaces and formation of 
abluminal protein deposits (Pantoni, 2010). Recent studies have 
suggested that the glymphatic system plays a pivotal role in the 
pathophysiology of CSVDs (Mestre et  al., 2017; Benveniste and 
Nedergaard, 2022). The mouse models of monogenic CSVDs such as 
CADASIL, CARASIL, Fabry disease, and RVCL, are discussed in the 
following section.

Cerebral autosomal dominant arteriopathy with subcortical 
infarct and leukoencephalopathy (CADASIL) is a prototypical 
CSVD caused by mutations in the NOTCH3 gene (Chabriat et al., 
2009; André, 2010). CADASIL is characterized by the accumulation 
of granular osmiophilic material (GOM) and the extracellular 
domain of NOTCH3 in the vascular walls, leading to the loss of 
perivascular cell (vascular smooth muscle cell and pericyte), 
vascular dysfunction, recurrent lacunar infarcts, cognitive 
impairments, depressive symptoms, and motor deficits (Kalaria 
et al., 2004; Chabriat et al., 2009; Dziewulska and Lewandowska, 
2012). Despite its clinical importance, the precise pathogenesis of 
CADASIL remains elusive, and there is currently no effective 
treatment, emphasizing the need for animal models to better 
understand and address this condition.

Several transgenic mouse models have been developed that can 
partially mimic CADASIL pathology. Transgenic mice with the rat 
Notch3 R169C mutation exhibit GOM lesions, Notch3 

accumulation, pericyte loss, and memory impairment (Joutel et al., 
2010; Ghosh et al., 2015; Ehret et al., 2021). Mice with the human 
NOTCH3 R90C mutation also showed GOM lesions, vascular 
dysfunction, and memory deficits (Ruchoux et al., 2003; Lacombe 
et al., 2005; Liu et al., 2015). However, Ruchoux et al. (2003) showed 
that these mice did not exhibit significant brain parenchyma 
damage. These suggest that the observed memory deficits might 
arise from mechanisms different from those in human 
CADASIL. Another transgenic model expressing the human 
NOTCH3 R182C mutation has been established, which develops 
GOM lesions, but does not show the white matter lesions, changes 
in cerebral blood flow, or memory impairment seen in human 
patients (Rutten et  al., 2015; Gravesteijn et  al., 2020). To more 
accurately mimic the pathological conditions of human CADASIL, 
knock-in models are increasingly developed. There are two types of 
knock-in CADASIL mouse models; one is Notch3 R170C 
(corresponding to human R169C) knock-in mice, and another is 
Notch3 R142C (corresponding to human R141C) knock-in mice 
(Lundkvist et  al., 2005; Wallays et  al., 2011). However, it is 
important to note that, to our knowledge, none of these CADASIL 
knock-in mouse models have yet exhibited memory impairments.

Cerebral autosomal recessive arteriopathy with subcortical 
infarcts and leukoencephalopathy (CARASIL) is a hereditary disease 
caused by loss-of-function mutations in the Htra1 gene, characterized 
by baldness, strokes, white matter lesions, and early-onset dementia 
(Tikka et  al., 2014). The abnormal accumulation of extracellular 
matrix proteins and TGF-β1, which are degraded by Htra1 was 
observed around small cerebral arteries in CARASIL patients (Hara 
et al., 2009). While aged Htra1 knockout mice showed the abnormal 
protein accumulation in cerebral arteries, they have not successfully 
replicated white matter lesions, strokes, or smooth muscle cell loss 
seen in the human condition (Beaufort et al., 2014; Kato et al., 2021).

Fabry disease results from mutations in the gene encoding 
α-galactosidase A (α-GalA), a lysosomal hydrolase enzyme (Germain, 
2010). This leads to decreased enzyme activity and the accumulation 
of its substrate, globotriaosylceramide (GL-3), within the lysosomes 
of various organs, including blood vessels, kidneys, heart, and dorsal 
root ganglia (Choi, 2015). The primary symptoms of Fabry disease in 
humans are burning pain, autonomic dysfunctions, posterior 
circulation stroke, cognitive impairment, and depression (Bolsover 
et al., 2014; Choi, 2015). α-GalA knockout mice have been developed 
to study Fabry disease. While these mice exhibit the accumulation of 
GL-3 (Ohshima et al., 1997; Bangari et al., 2015), they did not show 
depressive-like behavior or learning and memory deficits (Hofmann 
et al., 2017).

Retinal vasculopathy with cerebral leukodystrophy (RVCL) is 
caused by mutations in a 3′-5′ DNA exonuclease TREX1 (Richards 
et al., 2007). The primary symptoms in human RVCL patients include 
activation of immune system, leukoencephalopathy, lacunar infarcts, 
retinopathy, nephropathy, and migraines (Schuh et  al., 2015; 
Søndergaard et  al., 2017). While the pathomechanism remains 
unknown, vascular basement membranes were found to be thicker 
and multi-layered (Søndergaard et al., 2017). This suggests that the 
clearance system in the brain might be impaired in RVCL patients. 
Frame-shift mutant TREX1 knock-in mice have been developed as 
RVCL models. Although these mice replicated activation of immune 
system, they did not exhibit key manifestations such as retinopathy 
and neurological symptoms (Sakai et al., 2017).
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4 The diseases in which human 
pathology is mimicked by mouse 
models

There are several diseases in which most human symptoms can 
be  mimicked in mouse models including behavioral or cognitive 
dysfunctions. These diseases are highly associated with 
neuropathological changes, rather than vascular ones. In addition, 
aging might be a risk factor of these diseases, but the onset age is 
relatively younger compared to the diseases introduced in section 2 
(described in detail in section 4).

4.1 Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder 
characterized by the accumulation of α-Synuclein in the neurons of 
the substantia nigra and striatum, and damage to dopaminergic 
neurons (Kalia and Lang, 2015; Balestrino and Schapira, 2020). PD 
primarily manifests as motor dysfunction, and approximately 40% of 
PD patients suffer from dementia (Cummings, 1988). The exact cause 
of dopaminergic neuron impairment in PD remains unclear, 
highlighting the importance of animal model research in elucidating 
these mechanisms. Genetic mouse models replicating PD often utilize 
genes considered to be causative, such as LRRK2, PRKN, and PINK1. 
Transgenic mouse models of these genes consistently exhibit motor 
dysfunction, and most of these models show age-related cognitive 
impairments (Magen and Chesselet, 2011; Magen et  al., 2012; 
Pischedda et al., 2021; Dovonou et al., 2023). Several knock-in mouse 
models harboring mutations of pathogenic LRRK2 variants have also 
been developed. These models typically replicate the characteristic 
neuronal damage and motor dysfunctions observed in PD (Chang 
et al., 2022; Dovonou et al., 2023). It is reported that LRRK2 G2019S 
knock-in mice successfully mimic the neuronal pathology in striatum 
and cognitive impairments, further contributing to our understanding 
of the broader impact of PD on cognitive functions (Hussein 
et al., 2022).

4.2 Huntington’s disease

Huntington’s disease (HD) is a disorder resulting from abnormal 
amplification of CAG repeats in the Htt gene, leading to the formation 
of insoluble aggregates and subsequent neuronal loss (Walker, 2007; 
Ross and Tabrizi, 2011). HD is characterized by involuntary, dance-
like movements of the limbs, known as chorea, cognitive impairments, 
and psychiatric symptoms (Walker, 2007). Studies using transgenic 
mice that overexpress Htt with amplified CAG repeats have 
demonstrated the manifestation of motor and cognitive impairments 
(Lione et al., 1999; Lüesse et al., 2001; Giralt et al., 2011; Kaye et al., 
2021). These models have been instrumental in mirroring the 
symptomatology of HD, providing valuable insights into the disease 
mechanisms and progression. Similar to transgenic models, knock-in 
mice carrying HD-like mutations in the Htt gene consistently exhibit 
stable motor and cognitive impairments (Simmons et al., 2009; Giralt 
et al., 2012; Menalled et al., 2012; Yhnell et al., 2016). This suggests 
that, similar to PD, HD is a disorder where phenotypic traits are 
relatively easier to replicate in mouse models.

5 The cause that mouse models 
cannot replicate some diseases and 
the potential for zebrafish to be model 
of such diseases

As mentioned above, some diseases can be accurately replicated 
in mouse models, while others cannot.

A common trait among diseases less effectively modeled in mice 
is vascular impairment. CADASIL, CARASIL, Fabry disease and 
RVCL are known as CSVDs, and 80% of AD patients also present with 
cerebral amyloid angiopathy, a type of CSVD characterized by the 
accumulation of Aβ deposits in brain arteries (Boyle et  al., 2015; 
Mestre et al., 2017; Greenberg et al., 2020). The pathology of CSVDs 
is closely related to the glymphatic system, and mice have a more 
efficient glymphatic system compared to humans, which may 
contribute to their reduced capacity to accurately phenocopy CSVDs. 
For diseases like PD and HD, studies showed that the accumulation 
of abnormal protein such as α-Synuclein and Huntingtin may 
be involved in cerebrovascular pathology (Drouin-Ouellet et al., 2015; 
Paul and Elabi, 2022). However, the primary pathology of these 
diseases is neuronal, a fact supported by the predominant expression 
of α-Synuclein and Huntingtin in neurons (Young, 2003; Gil and Rego, 
2008; Stefanis, 2012; Wong and Krainc, 2017). These suggest that the 
abnormal aggregated proteins might have a more significant impact 
on neurons in PD and HD than in CSVDs and AD.

Another commonality is the variability in disease onset. Some 
previous studies suggested the typical onset age of familial AD ranges 
from 30s to over 70 years (Percy et al., 1991; Duara et al., 1993; Lopera 
et al., 1997; Quiroz et al., 2010). Furthermore, while CADASIL has a 
relatively young onset age, the range is quite broad, with migraines 
manifesting between 5 and 61 years and lacunar infarcts occurring 
between 26 and 81 years, indicating that onset at an older age is not 
uncommon (Tan and Markus, 2016). The wide range of the onset age 
extending into later years implies that there are individuals who may 
not exhibit symptoms until they are into old age. On the other hand, 
the onset age for HD is correlated with the number of CAG repeat 
amplifications; with over 50 repeats, the onset age is around 20 years 
(Brinkman et al., 1997; Wexler, 2004). Genetic models of HD in mice 
possess at least 50 CAG repeats, with some models exhibiting upwards 
of 150 CAG repeats (Kaye et al., 2021). This suggests that the HD 
mouse models might exhibit the age-related symptoms in human HD 
at a younger age. In the case of PD, the typical onset age of familial PD 
ranges from 20s to 50s, suggesting that familial PD predominantly 
manifests at a relatively younger age (Spira et al., 2001; Shojaee et al., 
2009; Lin et al., 2019). Considering these variations and the relatively 
short lifespan of mice, mice might not be  ideal for accurately 
replicating human age-related symptoms, potentially limiting their 
effectiveness in disease modeling.

As zebrafish possesses the less effective clearance capacity in the 
brain and a long lifespan, diseases that are not fully replicable in 
mouse models might be  more successfully modeled in zebrafish. 
Although there are currently only a few examples of genetic models 
used to analyze adult disease states in zebrafish, some studies suggest 
they offer advantages over mice. In zebrafish with a knockout of 
PSEN1, a risk gene for AD, adult fish exhibit anxiety-like behaviors, a 
contrast to mice with PSEN1 knockout, which do not show changes 
in memory capabilities or anxiety-like behaviors (Saura et al., 2004; 
Sundvik et  al., 2013; Soto-Faguás et  al., 2021). Another study 
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established that a zebrafish model expressing human APP carrying the 
Swedish mutation under the control of zebrafish appb promotor (Pu 
et al., 2017). This model showed the Aβ deposition and neuron loss in 
the telencephalon which controls zebrafish memory, subsequently 
learning ability was impaired (Pu et al., 2017). In contrast, the mouse 
model carrying APP Swedish mutant showed Aβ deposits but did not 
exhibit neuronal loss and profound impairment in learning ability, 
even in their old age (King and Arendash, 2002; Walker et al., 2002).

A recent study established a zebrafish model for Fabry disease by 
knocking out the gla gene encoding α-GalA (Elsaid et al., 2022a). This 
study found that this zebrafish model could replicate the nephropathy 
phenotype seen in adult stage, a typical pathology of Fabry disease. 
Another study showed that the changes in gene expression in the gla 
knockout zebrafish is consistent to that in the gla knockout human cell 
line (Consolato et  al., 2022; Elsaid et  al., 2022b). However, this 
zebrafish model has not been analyzed for the neuronal pathology.

In contrast, the genetically modified zebrafish models for 
CADASIL, CARASIL and RVCL have not been established.

The zebrafish models for PD and HD are well established (Kumar 
et al., 2021; Doyle and Croll, 2022). These models can replicate human 
pathology like as mouse models. By employing zebrafish, it is possible 
to conduct analyses that are not feasible with mice such as drug 
screening and live imaging (Zhan et  al., 2024). Therefore, it is 
meaningful to develop zebrafish models for diseases for which mouse 
models already have been well established.

Collectively, as discussed above, zebrafish have potential for 
modeling age-related neurological diseases particularly accompanied 
by the vascular pathology, and some zebrafish models of AD show the 
symptoms that cannot be replicated in mouse models. Further studies 
are needed to establish the genetic model in zebrafish that closely 
mirrors human patients. It is crucial that we integrate the insights 
from various models to unravel the pathomechanism of human 
age-related neurological diseases.

6 Conclusion

Exploring the therapeutic target for the age-related neurological 
disease is one of the most urgent challenges in today’s global aging 
society. To address this challenge, researchers should integrate insights 
obtained from various animal models because each has advantages 
and disadvantages. We discussed the normal age-related phenotypes 
of zebrafish which shows similarities to humans, but not mice in 
aspects such as a lifespan and clearance systems in the brain. In 
addition, we provided an overview of age-related neurological diseases 
that can be mimicked in mouse models and those that cannot, using 

specific examples. Based on the discussion above, it is suggested that 
diseases that cannot be effectively replicated in mouse models often 
involve brain vascular pathology. This might be  due to the more 
efficient clearance system in the mouse brain compared to humans 
and zebrafish. Another reason why zebrafish mimics human 
age-related neurological disease is their longer lifespan compared to 
mice. The longevity of zebrafish enables replication of symptoms and 
pathologies that worsen with age. In conclusion, zebrafish has a great 
potential for mimicking human age-related neurological disease, due 
to their similar clearance system in the brain and lifespan to humans.
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