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Aim: Occlusion dysfunction (OD) is increasingly linked to Alzheimer’s disease

(AD). This study aimed to elucidate the causal relationship between OD and AD

using Mendelian randomization (MR) analysis.

Materials and methods: Genome-wide association study (GWAS) meta-analysis

data obtained from FinnGen, IEU Open GWAS, and UK Biobank (UKBB) was

represented as instrumental variables. We validated the causal relationship

between periodontal disease (PD), loose teeth (PD & occlusion dysfunction),

dentures restoration (occlusion recovery), and AD.

Results: According to the MR analysis, PD and AD have no direct

causal relationship (P = 0.395, IVW). However, loose teeth significantly

increased the risk of AD progression (P = 0.017, IVW, OR = 187.3567,

95%CI = 2.54E+00−1.38E+04). These findings were further supported by the

negative causal relationship between dentures restoration and AD (P = 0.015,

IVW, OR = 0.0234, 95%CI = 1.13E-03−0.485).

Conclusion: The occlusion dysfunction can ultimately induce Alzheimer’s

disease. Occlusion function was a potentially protective factor for maintaining

neurological health.

KEYWORDS

occlusion dysfunction, Alzheimer’s disease, periodontal disease, Mendelian
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Introduction

Occlusion dysfunction (OD) commonly arises from missing teeth and severe
periodontal disease (PD) (Ramseier et al., 2017). As a chronic inflammatory disease,
PD is widespread among the elderly and has become a crucial global health issue (Eke
et al., 2015). Mechanistically, PD and related complications were closely associated with
neurodegenerative diseases, such as Alzheimer’s disease (AD) (Hajishengallis, 2022). In
which, OD serve as the risk factor for the maintenance of neurological health (Teixeira et al.,
2014). Based on the importance of neurological health, the potential causal relationships
among OD, PD, and AD deserve in-depth exploration.
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As a chronic neurodegenerative disorder with complex
etiology, AD is characterized by the accumulation of a protein
called amyloid-β (Aβ) in brains. During autopsies, PD related
Porphyromonas gingivalis (Pg) have been found in the brains of
AD patients (Jungbauer et al., 2022). These bacteria can invade
the central nervous system and cause inflammation by producing
certain molecules (Singhrao et al., 2015). Furthermore, the elevated
levels of inflammatory factors resulting from PD can contribute to
an inflammatory in the brain (Kamer et al., 2008a,b). Meanwhile,
AD patients often experience severe PD due to a combination of
factors, including the diminished ability and lack of motivation to
maintain oral hygiene (Gao et al., 2020). Currently, there is a lack of
direct clinical evidence demonstrating the clear association between
AD and PD.

Previous research has demonstrated that OD can contribute to
brain impairments and cognitive decline, such as reduced synapses,
degeneration of nerve cells, and inhibition of neurotransmitter
release (Terasawa et al., 2002; Okihara et al., 2014). Additionally,
AD is often accompanied by atrophy in both the cortical and
subcortical areas of the brain, particularly in the internal olfactory
cortex and hippocampus (Teipel et al., 2006; Wang et al.,
2020). Thus, occlusal function has emerged as a novel factor in
understanding the causes of AD.

Mendelian randomization (MR) is a novel methodology to
assess causal relationships between target exposures and diseases
or traits. While randomized controlled trials (RCTs) are considered
the gold standard approach for testing causality, they are
often constrained by financial and ethical considerations, and
confounding factors may introduce biases (Sekula et al., 2016).
MR helps overcome these issues by using genetic variants, known
as single nucleotide polymorphisms (SNPs), which are strongly
associated with the traits being studied. This approach helps
reduce biases that can occur in traditional RCTs (Ebrahim and
Davey Smith, 2008). MR research has yielded significant findings
regarding the potential causal associations between environmental
risk factors and diseases, with numerous high-impact publications
in esteemed journals (Ference et al., 2019; Jones et al., 2021).

In this study, we aimed to systematically evaluate the causal
association between PD, OD (loose teeth), occlusion recovery
(dentures restoration), and AD using MR analysis. Significantly,
our findings demonstrate a strong causal relationship between OD
and AD (p = 0.0171, IVW), providing a novel perspective on the
impact of PD on AD and highlighting the crucial role of OD in the
development of AD. This article contributes to the development of
new therapeutic strategies for the prevention and treatment of AD.

Material and methods

The datasets for exposure, including PD, loose teeth, and
dentures restoration, as well as the outcome data for AD, were
systematically searched from multiple genome-wide association
study (GWAS) meta-analysis data sources, including IEU Open
GWAS, FinnGen, and UK Biobank. Initially, all combinations of
conditions were screened using MR analysis. The datasets with the
most significant outcomes were selected for further investigation
(Figure 1). It is important to note that all the data used in this study
are publicly available (Table 1), and the download link is provided
in the Data Availability Statement section.

Instrumental variables

According to the previous study (Emdin et al., 2017),
instrumental variables must satisfy three key assumptions:
relevance, independence, and exclusion restriction. To address the
requirements of MR, we have outlined the steps for screening
instrumental variables. The screening criteria are as follows: (1)
Initially, we selected SNPs that exhibited a strong association
with the exposure (p < 5.0 × 10−8, PD; p < 5.0 × 10−6,
loose teeth; p < 5.0 × 10−7, dentures restoration). (2) The
linkage disequilibrium (LD) of these SNPs was calculated, and
only those SNPs meeting the following conditions were retained:
r2 < 0.001, kb = 10000 (3) To minimize bias, we eliminated
all palindromic SNPs among the retained ones. (4) Using the R
package "MR-PRESSO", we identified and removed a pleiotropic
among all reserved SNPs. (5) Additionally, we employed the
PhenoScanner database1 to exclude confounding factors and risk
variables (Table 2). The remaining SNPs were subsequently utilized
for MR analysis (Table 3).

Mendelian randomization

To investigate the causal relationship between exposure and
outcome, we employed four methodologies: MR Egger, Weighted
median, Inverse variance weighted (IVW), and Weighted mode.
Previous research has demonstrated that IVW analysis is the most
reliable and accurate approach (Bowden et al., 2016). Therefore, we
primarily relied on the IVW analysis, considering the additional
methods as supplementary. When the p-value of IVW analysis was
less than 0.05 and the odds ratio (OR) values exceeded 1 for all four
methods, we inferred that exposure was a significant risk factor for
AD.

Sensitivity analyses

To ensure the reliability of our findings from the MR
analysis, a sensitivity analysis was performed. Heterogeneity was
assessed using the Cochrane Q test for both MR Egger and
IVW methodologies. A Q_pval value greater than 0.1 indicates
the absence of heterogeneity among the studies. Furthermore, we
employed MR Egger to examine pleiotropy. An Egger_intercept
close to 0 or a p-value (between the intercept and 0) greater than
0.05 suggests the absence of pleiotropy in the results. Additionally,
we conducted a leave-one-out permutation analysis to evaluate the
impact of individual SNPs on the overall results.

Results

Periodontal diseases

Based on our screening criteria, we identified 5 SNPs
after excluding 1 palindromic SNP. Among these 5 SNPs, no

1 http://www.phenoscanner.medschl.cam.ac.uk/
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FIGURE 1

Flowchart of the Mendelian randomization process in this study. GWAS, Genome-wide association study; MR, Mendelian randomization.

TABLE 1 Detailed information on GWAS summary data.

Trait Sample size Population Sex Attribute GWAS ID/Cohort

Periodontal Disease-related phenotype (Socransky) 975 European mix exposure ebi-a-GCST003484

Occlusion Dysfunction (Loose Teeth) 461113 European mix exposure ukb-b-12849

Occlusion Recovery
(Dentures restoration)

498812 European mix exposure UKB

Alzheimer’s Disease
(Late onset)

54162 European mix outcome ebi-a-GCST002245

Alzheimer’s Disease
(Early onset)

171743 European mix outcome FinnGen

The GWAS IDs provided in the table can be accessed on the IEU OpenGWAS website. UKB, UK Biobank.

palindromic SNPs, outlier SNPs, or confounding SNPs were
detected. Our MR analysis revealed no causal association between
PD and AD, as indicated by the MR results (P = 0.3950, IVW,
Table 4).

Loose teeth

After applying screening criteria, we obtained a set of 13
instrumental variables (SNPs). This was achieved by removing
2 palindromic SNPs and 3 SNPs that were associated with
confounding factors. Our MR-PRESSO and leave-one-out analyses
did not identify any outlier SNPs (Figure 2).

Based on the results of the Weighted median method
(p = 0.0275, OR = 747.4632, 95%CI = 2.08E+00 -
2.68E+05) and IVW method (p = 0.0171, OR = 187.3567,
95%CI = 2.54E+00−1.38E+04), we found a significant causal
relationship between loose teeth and AD. Such a high OR
(187.3567) implies a robust risk correlation between loose teeth
and AD (Figure 3). To provide a comprehensive overview of the
MR analysis, we have included the results of different methods in
Table 4.

Furthermore, the Cochran’s Q test (Q_pval = 0.3774, MR
Egger; Q_pval = 0.46, IVW) and MR-Egger (p [between intercept
and 0] = 0.9564) did not reveal any evidence of heterogeneity or
horizontal pleiotropy.
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TABLE 2 SNPs associated with known confounders.

Exposure Sort SNP confounding factor Reference (PMID)

Loose teeth 1 rs1117062 Diastolic blood pressure 33766239

Loose teeth 2 rs312989 hypertension 33766239

Loose teeth 3 rs72720396 Alcohol usually taken with meals 32230811

Dentures restoration 1 rs11084095 loose teeth NA

Dentures restoration 2 rs12521680 Seen doctor for nerves, anxiety, tension or depression 21537355

Dentures restoration 3 rs148158713 Smoking 24924665

Dentures restoration 4 rs1794514 Cancer 32382138

Dentures restoration 5 rs2046850 hypertension 33766239

Dentures restoration 6 rs362270 Alcohol intake frequency 32230811

Dentures restoration 7 rs4795386 Rheumatoid arthritis 36198219

Dentures restoration 8 rs55958997 Smoking 24924665

Dentures restoration 9 rs6058638 Weight 19358976

Dentures restoration 10 rs72982972 Body mass index 19358976

Dentures restoration 11 rs7620314 Body mass index 19358976

By using PMID, the relevant literature on confounders can be accessed on the PubMed website. SNP, single nucleotide polymorphism.

Dentures restoration

Following the removal of 11 SNPs associated with confounding
factors, we included a total of 22 SNPs for our MR analysis. Our
analysis did not identify any SNPs as outliers (Figure 2).

Using the IVW analysis, we found a significant protective effect
of dentures restoration against AD risk, with an OR of 0.0234
(95%CI = 1.13E-03−0.485) and a p-value of 0.0152 (Table 4,
Figure 3).

We have also conducted tests to evaluate heterogeneity and
horizontal pleiotropy. Both the IVW test (Q_pval = 0.8618)
and the MR-Egger test (Q_pval = 0.8296, p [between intercept
and 0] = 0.6932) did not provide evidence of heterogeneity or
horizontal pleiotropy.

Discussion

Recently, the prevalence of OD in AD patients and its
significant impact on brain health have been increasingly
recognized. This condition not only arises from the mobility and
cognitive impairments in AD patients but also contributes to the
characteristic neurodegeneration and brain damage associated with
the disease (Nakamura et al., 2021). In this study, we conducted a
systematic evaluation of the causal relationships between PD, OD,
occlusion recovery, and AD using a two-sample MR analysis. Our
study yielded three key findings. Firstly, PD does not directly cause
AD. Secondly, OD is a risk factor for AD. Lastly, occlusion recovery
can reduce the risk of AD. These findings are in line with previous
studies in the field.

AD patients usually suffer from PD. Previous studies have
consistently shown a link between PD and AD (Borsa et al.,
2021). Pathogenic bacteria associated with PD can lead to brain
nerve damage and cognitive impairment through their proteins
and DNA (Chen et al., 2017; Long and Holtzman, 2019).
However, due to the limitations of epidemiologic studies, such
as confounding factors and reverse causation, evidence for a

causal relationship between PD and AD remains limited (Noble
et al., 2009). Previous studies cannot provide evidence to support
PD as a risk factor for AD (Sun et al., 2020). Accordingly,
we re-evaluated and validated this result by utilizing stronger
correlated instrumental variables (p < 5.0 × 10−8). Meanwhile,
oral dysfunction (including OD) may contribute to cognitive
impairment, such as the progression of AD (Takahashi et al.,
2023). As not a direct factor in AD development, PD can
indirectly influence the disease by causing certain intermediate
signs. Severe PD can result in tooth loosening and eventual loss,
which are frequently associated with malocclusion in patients.
Additionally, numerous studies have indicated the association
between occlusal function and the maintenance of brain nerve
health.

To verify the role of occlusal function in AD, we performed
MR analysis utilizing GWAS summary data from the UKB
on loose teeth as a proxy for OD. The results indicated a
significant causal relationship between OD and AD, supporting our
initial hypothesis.

Tooth loss correlates with the decline of cognition-related brain
regions (Kobayashi et al., 2018). Occlusion dysfunction reduces
sensory input from receptors around the teeth, subsequently
resulting in degeneration of primary nerve cells involved
in brain neurotransmission (Kubota et al., 1988). A study
confirmed that tooth loss results in the denervation of nerve
endings at the root apex of the apical trigeminal nucleus
Vmes (Goto et al., 2020). Vmes is the only primary sensory
neuron located within the central nervous system. Recent
studies suggest that this alteration may permit the activation
of inflammatory microglia, which, in turn, activate pathways
involving pro-phosphorylating kinases and oxidative stress.
This leads to tau hyperphosphorylation and aggregation, and
consequent degeneration of the locus coeruleus (LC) located
near Vmes (Matsumoto et al., 2023). Additionally, the LC is
primarily responsible for the release of norepinephrine, which
has been shown to have an inhibitory effect on inflammation.
Therefore, the degradation of the LC enhances the inflammatory
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TABLE 3 Instrumental variables for MR analysis.

Exposure Sort SNP EA OA Beta SE P-value

PD 1 rs1156327 C T −1.452 0.230 3.01E-10

PD 2 rs1633266 T C −0.932 0.168 3.09E-08

PD 3 rs17184007 C T 1.346 0.232 6.86E-09

PD 4 rs17718700 C T 1.217 0.223 4.58E-08

PD 5 rs3811273 G A 1.216 0.203 2.06E-09

Loose teeth 1 rs11049359 C T 0.003 0.0005 2.60E-08

Loose teeth 2 rs11220245 G A 0.002 0.0005 2.70E-07

Loose teeth 3 rs279743 C T −0.002 0.0004 3.70E-06

Loose teeth 4 rs2947122 A G 0.003 0.0006 1.20E-06

Loose teeth 5 rs34438171 T C 0.003 0.0006 4.30E-06

Loose teeth 6 rs3763469 C T −0.003 0.0005 6.80E-07

Loose teeth 7 rs4801882 A G 0.002 0.000 1.00E-07

Loose teeth 8 rs61823158 G A −0.004 0.0008 4.10E-07

Loose teeth 9 rs6586364 T G 0.003 0.0007 1.80E-06

Loose teeth 10 rs7028167 C A 0.002 0.0005 4.00E-06

Loose teeth 11 rs714962 G A 0.002 0.0004 2.60E-06

Loose teeth 12 rs72664597 G A 0.004 0.0008 4.80E-07

Loose teeth 13 rs982894 G A 0.002 0.0004 4.20E-06

Dentures restoration 1 rs10048146 G A 0.008 0.001 3.50E-13

Dentures restoration 2 rs10956340 C A −0.005 0.001 8.06E-08

Dentures restoration 3 rs10987017 G A 0.005 0.001 8.28E-08

Dentures restoration 4 rs111659883 T C −0.005 0.001 3.55E-07

Dentures restoration 5 rs1122171 T C 0.012 0.001 4.55E-44

Dentures restoration 6 rs117737827 T C 0.007 0.001 1.61E-09

Dentures restoration 7 rs121908120 A T −0.022 0.003 3.54E-17

Dentures restoration 8 rs1482698 C G 0.005 0.001 4.89E-10

Dentures restoration 9 rs2238651 T C 0.005 0.001 2.61E-07

Dentures restoration 10 rs2270764 G A 0.008 0.001 7.80E-20

Dentures restoration 11 rs2421616 G A −0.004 0.001 4.75E-07

Dentures restoration 12 rs2514310 G A −0.005 0.001 2.43E-07

Dentures restoration 13 rs4233366 T C 0.005 0.001 4.52E-07

Dentures restoration 14 rs4445705 T A −0.007 0.001 1.65E-07

Dentures restoration 15 rs62254667 G A 0.030 0.005 2.03E-08

Dentures restoration 16 rs72694438 A G 0.006 0.001 1.39E-08

Dentures restoration 17 rs7367207 T C 0.006 0.001 1.01E-10

Dentures restoration 18 rs77083638 G A 0.007 0.001 2.18E-07

Dentures restoration 19 rs7864794 T G 0.007 0.001 7.26E-08

Dentures restoration 20 rs924394 A G −0.006 0.001 1.86E-09

Dentures restoration 21 rs933292 A G 0.006 0.001 2.21E-07

Dentures restoration 22 rs9831002 G T 0.005 0.001 9.96E-11

PD, Periodontal Disease; EA, effect_allele; OA, other_allele; SE, standard error.

response, further increasing the number of inflammatory

microglia and creating a vicious cycle. Additionally, other

studies show that OD contributes to decreased expression of

brain-derived neurotrophic factor (BDNF) (Takeda et al., 2016)

and affects neurotransmitter release, such as the dopamine

and acetylcholine in the hippocampus (Makiura et al., 2000;
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TABLE 4 MR estimates for the association between exposures and outcome.

Exposure MR method No. of
SNP

OR 95% CI P-value SE

PD MR Egger 5 1.083 0.757 - 1.550 0.691 0.183

PD Weighted median 5 0.979 0.913 - 1.049 0.538 0.035

PD IVW 5 0.977 0.927 - 1.030 0.395 0.027

PD Weighted mode 5 0.986 0.900 - 1.081 0.778 0.047

Loose teeth MR Egger 13 331.197 4.29E-07 - 2.56E+11 0.590 10.442

Loose teeth Weighted median 13 747.463 2.08E+00 - 2.68E+05 0.028 3.001

Loose teeth IVW 13 187.357 2.54E+00 - 1.38E+04 0.017 2.194

Loose teeth Weighted mode 13 3978.370 1.19E-01 - 1.33E+08 0.145 5.317

Dentures restoration MR Egger 22 0.135 1.52E-05 - 1.19E+03 0.670 4.638

Dentures restoration Weighted median 22 0.024 2.33E-04 - 2.566 0.118 2.375

Dentures restoration IVW 22 0.023 1.13E-03 - 0.485 0.015 1.547

Dentures restoration Weighted mode 22 0.018 6.90E-05 - 4.912 0.176 2.850

IVW, Inverse-Variance Weighted; OR, odds ratio; SE, standard error; CI, confidence interval.

FIGURE 2

Forest plots for leave-one-out analysis in sensitivity analyses. MR analysis after removing SNPs one by one. AD, Alzheimer’s disease.

Kushida et al., 2008). As reduced brain volume and dysfunction
are observed in AD patients (Teipel et al., 2006; Wang et al.,
2020), OD can contribute to the development of AD through
mechanisms such as Tau deposition, reduced neurotransmitter
secretion, and decreased BDNF expression, all resulting from
neurodegeneration. Additionally, it has been shown that
chewing dysfunction may contribute to the development of
AD by decreasing blood flow to the brain and affecting diet
(Blazer, 2022).

As the effective therapeutic for occlusion recovery, dentures
restoration significantly improved occlusal function in individuals
with tooth loss (Campos et al., 2017). In addition, the MR
analysis results indicate a significant reduction in the risk of

AD associated with occlusion recovery, which is consistent with
a controlled clinical trial (Okamoto, 2011). In which, improved
occlusion function facilitates neurostimulation into the brain,
promotes neurotransmitter transmission, and prevents the atrophy
of cerebral nerves. Consequently, dental prostheses and occlusion
recovery can slow down the progression of AD. This finding
corroborates the idea that OD contributes to the progression of AD
and emphasizes the importance of oral care or occlusal function for
AD patients (Gao et al., 2020).

In this study, we utilized SNPs strongly associated with
exposure and outcome to achieve randomization, bypassing
the limitations of traditional RCTs. The heritability of exposure
and outcome is crucial for determining if SNPs are robust
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FIGURE 3

Scatter plots of causality. Perform linear regression on the results of the four different methods in MR analysis. The slope is equal to the beta. AD,
Alzheimer’s disease.

proxies. Research indicates that AD (Loy et al., 2014; Quan
et al., 2023) and PD (Loos and Van Dyke, 2020; Shaddox
et al., 2021) are strongly hereditary, and loose teeth, a
marker of advanced PD, have a clear genetic relationship
(Morelli et al., 2020). Given the correlation between dentures
restoration and occlusal function recovery, we use dentures
restoration as a proxy. Occlusion function, influenced by genetic
factors affecting teeth characteristics, can be compromised
by genes increasing susceptibility to PD bacteria, leading to
teeth loosening and dysfunction (Esberg et al., 2019). These
genetic factors also affect the feasibility of occlusal function
recovery, indicating a strong genetic correlation with dentures
restoration.

While our study follows a rigorous logic and the results are
cross-validated, there are limitations to be considered. The AD
GWAS data obtained from the UK Biobank relied on self-reports,
which may introduce inaccuracies due to self-cognitive biases.
Nevertheless, a meta-analysis by Marioni et al. (2018) has suggested
that self-reported AD can accurately represent a clinical diagnosis
(Marioni et al., 2018). Additionally, as our study is based on a
European population, the generalizability of our findings to other
populations may be limited, and further validation in other races is
needed in future research.

Conclusion

Overall, our study provides important insights into the
relationships between PD, OD, occlusion recovery, and AD. These
findings contribute to a better understanding of the role of OD
in AD development and emphasize the significance of occlusion
recovery in the prevention of AD. Importantly, the preservation of
optimal occlusion function represents a viable strategy to safeguard
neurologic integrity.
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