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Objective: This study aimed to develop and validate machine learning models 
(MLMs) to diagnose Alzheimer’s disease (AD) using cortical complexity indicated 
by fractal dimension (FD).

Methods: A total of 296 participants with normal cognitive (NC) function and 
182 with AD from the AD Neuroimaging Initiative database were randomly 
divided into training and internal validation cohorts. Then, FDs, demographic 
characteristics, baseline global cognitive function scales [Montreal Cognitive 
Assessment (MoCA), Functional Activities Questionnaire (FAQ), Global 
Deterioration Scale (GDS), Neuropsychiatric Inventory (NPI)], phospho-tau 
(p-tau 181), amyloidβ-42/40, apolipoprotein E (APOE) and polygenic hazard 
score (PHS) were collected to establish multiple MLMs. Receiver operating 
characteristic curves were used to evaluate model performance. Participants 
from our institution (n  =  66; 33 with NC and 33 with AD) served as external 
validation cohorts to validate the MLMs. Decision curve analysis was used to 
estimate the models’ clinical values.

Results: The FDs from 30 out of 69 regions showed significant alteration. All 
MLMs were conducted based on the 30 significantly different FDs. The FD 
model had good accuracy in predicting AD in three cohorts [area under the 
receiver operating characteristic (ROC) curve (AUC)  =  0.842, 0.808, and 0.803]. 
There were no statistically significant differences in AUC values between the FD 
model and the other combined models in the training and internal validation 
cohorts except MoCA + FD and FAQ  +  FD models. Among MLMs, the MoCA + 
FD model showed the best predictive efficiency in three cohorts (AUC  =  0.951, 
0.931, and 0.955) and had the highest clinical net benefit.

Conclusion: The FD model showed favorable diagnostic performance for AD. 
Among MLMs, the MoCA + FD model can predict AD with the highest efficiency 
and could be used as a non-invasive diagnostic method.
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1 Introduction

Alzheimer’s disease (AD) is a common degenerative neurological 
disorder caused by the loss of function and death of neurons. Dementia 
is expected to affect 153 million people by 2050 (Nichols et al., 2022). 
After diagnosis, the average lifespan is just 4–8 years (Cui et al., 2019). 
Therefore, it is imperative to have an accurate diagnosis of AD.

Neuroimaging is essential for AD assessment, such as diffusion 
magnetic resonance imaging (dMRI), functional magnetic resonance 
imaging (fMRI), positron emission tomography (PET), and structural 
magnetic resonance imaging (SMRI) (Balaji et al., 2023). The PET 
scan is too expensive to be  popularized. There are no uniform 
standards for the acquisition and post-processing of fMRI and 
dMRI. SMRI has received more research focus with better stability 
and repeatability compared to fMRI/dMRI (Cao et al., 2022). Three-
dimensional (3D) T1-weighted has become a popular method to 
detect subtle changes in the brain (Ya et al., 2022).

In addition to conventional structure volume, patients with AD 
also exhibit brain cortical atrophy in the frontal and temporal cortices 
(Morys et al., 2002). Cortical atrophy is even found in the preclinical 
stages of AD, and involvement of the lateral aspects of the temporal 
pole, posterior cingulate gyrus, and frontal lobe might indicate a more 
rapid disease progression. Baron et al. (2001) suggested that patients 
with early-stage AD exhibit symmetric atrophy in both the left and 
right hemispheres. Moreover, the decline in memory function in AD 
is associated with specific regions of cortical atrophy. For example, 
AD-related deficits in recent memory and delayed recall are associated 
with atrophy in the entorhinal cortex (Di Paola et al., 2007). However, 
volumetric assessment cannot capture the inherent structural 
complexity of cortical atrophy. This complexity can be studied using 
cortical complexity, which describes the degree of complexity of 
objects that exhibit self-similarity within an appropriate spatial scale 
range (Pantoni et al., 2019).

Cortical complexity reflects a cortical folding pattern. The cortices 
of AD patients appear smoother, indicating lower cortical complexity, 

while the cortices of normal cognitive (NC) function are more irregular 
indicating higher cortical complexity (Figure 1). Cortical complexity can 
be measured using fractal dimension (FD). FD is used to describe the 
shape complexity of irregular. As an index of cortical complexity, FD is a 
compact, unitless geometric shape characteristic that represents the 
amount of space an object occupies and yields a single quantitative 
measure of the object’s structural complexity (Stamatakis et al., 2016). 
The FD of brain gray matter (GM) can be calculated using commonly 
available high-resolution T1-weighted images, thus eliminating the need 
for additional magnetic resonance imaging (MRI) acquisitions. FD 
might help to quantify changes in the brain structure in patients with AD 
and could potentially help to identify patterns of brain atrophy in patients 
with AD (King et  al., 2010). Compared to volume assessments and 
certain cortical morphological features, FD might have greater accuracy 
and sensitivity in the elderly, which might represent a new method to 
explore the neuropathological mechanism of AD (Pantoni et al., 2019; 
Nicastro et al., 2020; D'Antonio et al., 2022), with smaller variances and 
fewer sex effects (Wu et al., 2010). Despite progress in the rapid and 
rigorous diagnosis of AD, personalized diagnosis of AD remains a 
significant challenge (Qin et al., 2022).

To improve the predictability and feature interpretability for AD, 
machine learning models (MLMs) have been applied in AD prediction. 
Thus far, many biomarkers or genetic markers-based machine learning 
(ML) have been reported with varying results in response to different 
ML methods. Chang developed a Convolutional Neural Network 
(CNN) model with amyloidβ (Aβ), the prediction accuracy of mild 
cognitive impairment (MCI) was 84.2%, while another study using a 
support vector machine (SVM) model only reached 68% accuracy 
(Chang et  al., 2021). Cullen N considered that Aβ biomarkers or 
apolipoprotein E (APOE) ε4 genotype did not contribute to the 
prediction of AD conversion (Cullen et al., 2022). It is still unclear 
whether biomarkers and genetic markers will affect the stability of 
MLMs. In addition, although FD-based ML has been widely applied for 
gliomas (Battalapalli et al., 2023), small vessel disease (Pantoni et al., 
2019), Parkinson’s disease (Mo et al., 2022), and amyotrophic lateral 

FIGURE 1

Comparison of whole brain fractal dimension between AD and NC groups [false discovery rate (FDR) corrected]. AD, Alzheimer’s disease; NC, normal 
cognitive function controls.
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sclerosis (Rajagopalan et al., 2023), scarce studies have indicated its 
application in the individualized diagnosis of patients with AD. Global 
cognitive function scales were applied to develop an MLM for the 
detection of AD (Goldstein et al., 2014; Wang B.-R. et al., 2019; Cai et al., 
2023; Yi et al., 2023), but most of these studies lack external validation. 
There is a potential risk of overfitting without external validation.

Against this backdrop, we aim to develop various MLMs to find a 
more accurate and stable MLM for predicting AD by combining FD 
values, demographic characteristics, global cognitive function scales, 
biological markers, and genetic markers. Additionally, we further used 
Shapley additive explanation (SHAP) values, a united approach for 
MLMs, to rank the importance of input features, explain the results of 
the prediction model, and visualize individual variable predictions 
(Lee et al., 2024). The diagnostic performance of the optimal model 
was validated using an external validation cohort.

2 Materials and methods

2.1 Source data

The data used in this article were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database at the Laboratory 
of Neuro Imaging (LONI) Website.1 For the ADNI study, written 
informed consent was obtained from all participants. The institutional 
review board approved the study protocol at each participating center 
before protocol-specific procedures were performed. Taking 2021 as 
the cut-off time point, subjects were selected randomly from within a 
clinical database category (i.e., control and mild Alzheimer’s disease). 
All participants underwent MRI imaging acquired on 3 T scanners 
[Siemens (Munich, Germany)/GE (Boston, MA, USA)/Philips 
(Amsterdam, The Netherlands) Magnetom/Tim/Trio] using a 
magnetization-prepared rapid gradient echo (MPRAGE) T1-weighted 
sequence with the following parameters: thickness = 1.2 mm, time to 
echo (TE) 3.0–3.9 ms, repetition time (TR) 2,200–2,300 ms, flip 
angle = 9°, and isotropic voxels’ size = 0.9–1 mm3.

The exclusion criteria included loss of clinical data or the presence 
of image artifacts. For more detailed information, refer to: https://ida.
loni.usc.edu/pages/access/studyData.jsp?categoryId=16.

For the study, 478 participants were selected, including 296 with 
NC function and 182 with AD. Demographic characteristics included 
age, sex, education, weight, heart rate, breath rate, temperature, and 
blood pressure. Montreal Cognitive Assessment (MoCA), Global 
Deterioration Scale (GDS), Functional Activities Questionnaire 
(FAQ), Neuropsychiatric Inventory (NPI), phospho-tau 181(p-tau 
181), amyloidβ-42 (Aβ42)/amyloidβ-40 (Aβ40), apolipoprotein E 
(APOE) genotypes, and polygenic hazard score (PHS) were extracted 
for all participants. Additionally, 66 participants from our institution, 
including 33 with NC and 33 with AD served as an external validation 
cohort. The local Medical Research Ethics Committee approved this 
study. All participants gave their written informed consent before the 
study. These 66 participants underwent scans using the same 
parameters, along with the collection of identical biological markers 
and clinical and neuropsychological assessments.

1 https://adni.loni.usc.edu/

2.2 Calculation of the FD

We conducted preprocessing of high-resolution T1-weighted 
images using the standard method in the Computational Anatomy 
Toolbox (CAT12)2 implemented in Statistical Parametric Mapping 
software (SPM12).3 The details of the procedures can be found in the 
CAT12 manual. Default settings were used throughout the analysis. 
The preprocessing steps included correction of bias-field 
inhomogeneities, segmentation into GM, white matter (WM), and 
cerebrospinal fluid, and normalization using the diffeomorphic 
anatomic registration through exponentiated lie algebra (DARTEL) 
algorithm. Following the CAT12 workflow described by Yotter et al. 
(2010), we estimated the FD of the cortex. Then, a spherical harmonic 
method was employed to reparametrize the cortical surface mesh 
based on an algorithm that reduces area distortions as a remedy for 
the topological defects. Finally, the approach of “spherical harmonic 
reconstructions” proposed by Yotter et al. (2010) was used to measure 
the local fractal dimensionality, which quantifies the cortical surface 
complexity. Mean FD values were calculated for 68 regions of interest 
(ROI), which were defined by the DK40 Atlas (Desikan et al., 2006), 
with standard procedures for ROI extraction as implemented in the 
CAT12 toolbox. The estimated FD values in each ROI were compared 
between the two groups. The statistical threshold was set at a false 
discovery rate (FDR) corrected value of p < 0.05. In summary, our 
analysis involved preprocessing of T1-weighted images, estimating 
cortical FD values using the CAT12 workflow, and reparametrization 
of the cortical surface using a spherical harmonic method.

2.3 Machine learning model development 
and validation

The FD values incorporated into the MLM are abbreviated as FDs. 
FDs combined with demographic characteristics (including age, sex, 
education, weight, heart rate, breath rate, temperature, and blood 
pressure) as clinical data, along with MoCA, GDS, FAQ, NPI, p-tau 181, 
Aβ42/Aβ40, APOE*ε4, and PHS, were used to construct the combined 
models. The FD values with a significant difference (FDR-corrected 
p < 0.05) between AD and NC groups were selected to develop the FD 
model. Furthermore, FD and combined models were analyzed using 
FeAture Explorer (FAE v0.5.9)4 (Dimitriadis et al., 2020). To remove the 
imbalance of the training cohort’s dataset and to balance the positive/
negative samples, we up-sampled by repeating random cases. We applied 
normalization to the feature matrix. Each feature vector was subtracted 
from the mean value of the vector and divided by its length. The 
dimension of the feature space was high; therefore, we applied the Pearson 
correlation coefficient (PCC) and principal component analysis (PCA) to 
the feature matrix. The feature vectors of the transformed feature matrix 
were independent of each other. Before building the model, we used three 
methods to select the features: recursive feature elimination (RFE), 
ANOVA, and Relief. They were commonly used methods to explore the 
significant features corresponding to the labels. The F-value was calculated 
to evaluate the relationship between features and the label. We sorted the 

2 http://dbm.neuro.uni-jena.de/cat/

3 https://www.fil.ion.ucl.ac.uk/spm/

4 https://github.com/salan668/FAE
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features according to their corresponding F-values and selected a specific 
number of features to build the model. We used support vector machine 
(SVM), linear discriminant analysis (LDA), logistic regression (LR), least 
absolute shrinkage and selection operator (LASSO), AdaBoost, Gaussian 
process (GP), and Naive Bayes (NB) as the classifiers. To determine the 
model’s hyperparameters (e.g., the number of features), we applied 10-fold 
cross-validation on the training dataset. The hyperparameters were set 
according to the model performance on the validation dataset. The 
model’s performance was evaluated using receiver operating characteristic 
(ROC) curve analysis. The area under the receiver operating characteristic 
(ROC) curve (AUC) was calculated for quantification. The accuracy 
(Acc), sensitivity (Sen), specificity (Spe), and AUC precision-recall 
(AUC-PR) were also calculated. We also estimated the 95% confidence 
interval (CI) by bootstrapping with 1,000 samples. The best modeling 
approach was selected by comparing the other model’s highest AUC value 
and accuracy rate. One-stand error in FAE software was used to reduce 
the risk of overfitting. The flowchart of this study is shown in Figure 2.

2.4 Statistical analysis

Data were tested for normal distribution using the Kolmogorov–
Smirnov test. Continuous variables were expressed as the 
mean ± standard deviation using a t-test. The non-normal distribution 
variables were expressed as median (interquartile range, IQR) and 
compared using a non-parametric test. The chi-squared and Fisher’s 
exact tests were used to compare categorical variables. All statistical 
analyses were two-sided, and a false discovery rate (FDR)-corrected 
p < 0.05 was considered statistically significant. All statistical analyses 
were performed using Statistical Package for the Social Sciences 
(SPSS) (version 26.0; Chicago, IL, USA). The CAT12 software in the 
SPM12 toolbox was used to compare FDs between the AD and NC 
groups. After FDR (p < 0.05) correction, the regions with statistical 
differences in FDs were obtained to develop machine learning models.

The performance of the model to predict AD was evaluated using 
the ROC. The ROC curve was plotted. The optimum threshold point 

of the ROC curve is determined using the Jorden index, and the Sen, 
Spe, Acc, AUC, and AUC-PR values were recorded to evaluate the 
diagnostic efficiency of each model. We used the DeLong test (DeLong 
et al., 1988) to compare the performances of the different models. 
Decision curve analysis (DCA) was used to compare the net benefits 
of various models at different threshold probabilities to increase the 
possibility of practical application in clinical practice. The decision 
curve was plotted using the “rmda” (risk model decision analysis) 
module of the R package (2020, R Core Team).5

2.5 Model explanation

We calculated the SHAP values to shed light on the model’s 
predictions. The SHAP method is an approach that could rank the 
importance of input features and explain the prediction model results 
(Hu et al., 2024). We used the SHAP summary bar plot and SHAP bees 
warm plot to visualize the contribution of each feature to the model’s 
predictions for specific instances. In contrast, the waterfall plot 
provides a detailed, step-by-step breakdown of how each feature 
moves the model’s output from the expected value to the actual 
prediction (Lee et al., 2024). All computations were executed using 
Python (version 3.12.2) and SHAP (version 0.42.1).

3 Results

3.1 Demographic and clinical 
characteristics

The demographic and clinical characteristics are shown in 
Table 1. In the ADNI cohort, only education, the whole-brain mean 

5 https://www.R-project.org/

FIGURE 2

The flowchart of the machine learning steps. AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; Aβ40, amyloidβ-40; Aβ42, 
amyloidβ-42; APOE, apolipoprotein E; ANOVA, analysis of variance; AUC, area under the ROC curve; DCA, decision curve analysis; DICOM, Digital 
Imaging and Communications in Medicine; NC, normal cognitive function; GP, Gaussian process; LASSO, least absolute shrinkage and selection 
operator; LDA, linear discriminant analysis; LR, logistic regression; NB, Naive Bayes; NifTi, Neuroimaging Informatics Technology Initiative; PCA, 
principal component analysis; PCC, Pearson correlation coefficient; PHS, polygenic hazard score; PR, precision-recall; RFE, recursive feature 
elimination; ROC, receiver operating characteristic; SVM, support vector machine.
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FD, MoCA, GDS, FAQ, p-tau 181, Aβ42/Aβ40, and PHS showed 
significant differences between the AD and NC groups (p < 0.05). 
There were much more significant differences between AD and NC 
groups in the external validation cohort except for age, weight, 
heart rate, breath rate, temperature, blood pressure, and APOE*ε4 
(p > 0.05).

3.2 Brain cortical complexity alterations in 
AD

The statistical analysis of the FDs from 69 regions revealed 30 
regions that showed a significant difference (all FDR-corrected 
p < 0.05), including in the left hemisphere (banks superior temporal 
sulcus, inferior parietal cortex, inferior temporal gyrus, lateral 
occipital cortex, insula, frontal pole, para hippocampal, peri calcarine 
cortex, superior temporal gyrus, caudal middle frontal gyrus, 
fusiform gyrus, pars opercularis, posterior-cingulate cortex, lingual 
gyrus, transverse temporal, precuneus gyrus) and right hemisphere 
(banks superior temporal sulcus, inferior parietal cortex, inferior 
temporal gyrus, lateral occipital cortex, insula, frontal pole, para 
hippocampal, pericalcarine cortex, middle temporal gyrus, rostral 
anterior cingulate cortex, supramarginal gyrus, pars orbitalis, 
entorhinal cortex, and lateral orbital frontal cortex) (Figure 1 and 
Table 2). A univariate ROC curve was chosen to analyze the AUC of 
FDs from each brain region (Table 2).

3.3 Model establishment

The machine learning models included the FD model and other 
combined models. The combined models were established using FD 
and clinical data, cognitive function scales, biological indicators, and 
genetic indicators. The detailed constituent factors and pipelines of all 
models are shown in Table 3. The feature distribution is shown in 
Supplementary Figure S1.

3.4 Model evaluation results

The MoCA + FD model shows the most vital ability to discriminate 
AD and NC in the training cohort (0.951 [95% CI: 0.929–0.973]) and 
internal validation cohort (0.931 [95% CI: 0.885–0.976]) (Table 4 and 
Figure 3A). It also showed superior performance in predicting AD in 
the external validation cohort. Among 34 participants with NC 
predicted using the MoCA + FD model, 32 (94.1%) were confirmed. 
In addition, among 32 participants with AD predicted by the 
MoCA + FD model, 31 participants (96.8%) were confirmed 
(Supplementary Figure S2). Overall, the MoCA + FD model achieved 
a favorable AUC of 0.955 ([95% CI: 0.908–1.0]) in the prospective 
validation cohort. In addition, the MoCA + FD model also had the 
highest precision-recall AUC of 0.979. The AUCs of the combined 
models were slightly higher than the standalone FD model across all 
cohorts. The MOCA + FD model showed the highest diagnostic 

TABLE 1 Demographics and clinical characteristics of the participants.

Variables ADNI cohort External validation cohort

AD (n  =  182) NC (n  =  296) P AD (n  =  33) NC (n  =  33) p-value

Age (years) 75.80 ± 8.20 75.86 ± 5.92 0.934 67.61 ± 10.36 62.36 ± 8.23 0.026*

Sex (M/F) 103/79 153/143 0.297 12/21 12/21 0.001***

Education (years) 16.00 (5.00) 16.00 (4.00) 0.002** 6.36 ± 4.93 9.18 ± 4.53 0.019*

Weight (kg) 71.81 ± 17.83 72.98 ± 19.37 0.508 76.48 ± 14.69 78.67 ± 16.85 0.575

Heart rate 64.59 ± 9.75 65.52 ± 11.79 0.356 65.33 ± 9.29 65.09 ± 10.09 0.919

Breath rate 16.00 (2.00) 16.00 (4.00) 0.467 16.30 ± 2.88 15.96 ± 2.42 0.613

Temperature (°C) 36.44 (0.59) 36.39 (0.57) 0.193 36.43 ± 0.36 36.4 ± 0.32 0.661

SBP (mm Hg) 132.35 ± 17.49 132.18 ± 15.88 0.916 132.67 ± 16.81 130.96 ± 16.01 0.676

DBP (mm Hg) 74.16 ± 9.06 73.53 ± 9.79 0.480 73.75 ± 9.93 72.48 ± 9.47 0.596

Whole-brain mean FD 2.56 ± 0.03 2.58 ± 0.03 0.001*** 2.52 ± 0.02 2.54 ± 0.03 0.003**

MoCA 21.00 (6.00) 28.00 (3.00) 0.001*** 8.33 ± 5.68 23.12 ± 5.50 0.001***

GDS 1.00 (1.25) 0.00 (1.00) 0.001*** 1.00 (2.00) 0.00 (1.00) 0.007**

FAQ 11.47 ± 8.38 1.58 ± 4.42 0.001*** 15.3 ± 5.39 0.15 ± 0.71 0.001***

NPI 1.00 (4.00) 0.00 (3.00) 0.219 6.00 (15.50) 0.00 (1.00) 0.001***

APOE*ε4 (Y/N) 128/54 83/213 0.191 11/22 9/24 0.592

p-tau 181 23.73 ± 8.16 16.51 ± 10.81 0.035* / / /

Aβ42/Aβ40 0.17 ± 0.09 0.20 ± 0.08 0.001*** / / /

PHS 0.22 (0.23) 0.09 (0.07) 0.001*** / / /

Aβ40, amyloidβ-40; Aβ42, amyloidβ-42; APOE, apolipoprotein E; ADNI, Alzheimer’s Disease Neuroimaging Initiative; DBP, diastolic blood pressure; FAQ, Functional Activities 
Questionnaire; FD, fractal dimension; GDS, Global Deterioration Scale; MoCA, Montreal Cognitive Assessment; NC, normal cognitive; NPI, Neuropsychiatric Inventory; polygenic hazard 
score; PHS; p-tau 181, phospho-tau 181; SBP, systolic blood pressure. Continuous variables were expressed as the mean ± standard deviation. The non-normal distribution variables were 
expressed as median (interquartile range, IQR). *p < 0.05; **p < 0.01; ***p < 0.001.
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performance for the cognitive function scale combined models in all 
cohorts. The results demonstrated that all models were reliable, with 
no overfitting. The p-tau + FD, Aβ42/Aβ40 + FD, and PHS + FD models 
also demonstrated slightly higher performance than the standalone FD 
model in both the training and internal validation cohorts. However, 
we  did not conduct an external validation cohort due to the 
inconsistency of detection methods and different orders of magnitude.

The DeLong test was used to compare the diagnosis efficiency of 
the various models. When applying Delong’s test to compare the AUC 
values of each model, it was found that there were no statistically 
significant differences in the AUC values between the FD model and 
the other combined models in both the training and internal 
validation cohorts except for the MoCA + FD and FAQ + FD models 
(p > 0.05). The MoCA + FD model was superior to all other models in 
both the training and internal validation cohorts (p < 0.05). In the 
external validation cohort, the AUC values of all the models were 
above 0.8 (Supplementary Tables S1–S3). The FD model performed 
slightly worse, possibly due to the small sample size.

The DCA curves of the seven diagnostic models showed that 
within a larger threshold probability range, the MoCA + FD combined 
models had the highest clinical net benefit in both the training and 
internal validation cohorts (Figure 3B).

3.5 SHAP value

Global explanation described the overall functionality of the 
model. As shown in SHAP summary plots and bees warm plot, the 
contributions of the feature to the model were evaluated using the 
average SHAP values and exhibited in descending order. In the FD 
model, the right rostral anterior cingulate cortex, left posterior 
cingulate cortex, and left frontal pole stood out (Figures 4A,C). In the 
MoCA + FD model, the MoCA, left posterior cingulate cortex, and 

right rostral anterior cingulate cortex stood out (Figures 4D,F). E[f(x)] 
refers to the average predicted output of the model across the entire 
dataset, providing insights into the model’s overall prediction 
tendency. In the FD model, among the variables, the left posterior 
cingulate cortex boosted the prediction by 0.05 and was ranked as the 
most influential factor (Figure 4B). In the MoCA + FD model, the 
MoCA was the most influential factor (Figure 4E). Additionally, the 
SHAP dependence plot elucidates how a single feature affects the 
output of the prediction model. The real values versus the SHAP 
values of these 10 features are shown in Supplementary Figure S3, and 
SHAP values higher than zero correspond to a positive class prediction 
in the model, in other words, a higher risk of AD.

4 Discussion

This study has observed significant alteration of brain cortical 
complexity in AD. Furthermore, as a new indicator, FD exhibits good 
and stable diagnostic performance when constructing MLMs for AD 
prediction. The diagnostic performance was further improved using 
the combined model. The MoCA + FD model exhibited the best 
diagnostic efficacy and highest net benefits compared to other 
combined models. The reliability and absence of overfitting of these 
optimal models were verified using an external validation cohort.

FD is one of the characteristic parameters used to describe 
structural complexity. Nicastro et al. (2020) demonstrated that the FD 
of the cortical complexity is a promising imaging tool to assess specific 
morphological patterns of GM damage in degenerative conditions, 
and the FD in disease-related regions was also associated with the 
severity of cognitive impairment (Nicastro et al., 2020). We found that 
FDs from 69 regions revealed that 30 regions showed a significant 
difference. Some of these regions were affected in both hemispheres, 
including the banks of the superior temporal sulcus, inferior parietal 

TABLE 2 Fractal dimension values with differences between the AD and NC groups.

Left hemispheres AUC (95% CI) P (FDR) Right hemispheres AUC (95% CI) P (FDR)

L-banks superior temporal sulcus 0.610 (0.558–0.662) 0.001 R-banks superior temporal sulcus 0.586 (0.534–0.639) 0.015

L-inferior parietal cortex 0.585 (0.533–0.637) 0.015 R-inferior parietal cortex 0.605 (0.552–0.659) 0.015

L-inferior temporal gyrus 0.582 (0.529–0.635) 0.032 R-inferior temporal gyrus 0.643 (0.591–0.695) 0.001

L-lateral occipital cortex 0.557 (0.504–0.611) 0.004 R-lateral occipital cortex 0.565 (0.512–0.619) 0.024

L-insula 0.629 (0.576–0.682) 0.004 R-insula 0.633 (0.582–0.685) 0.001

L-frontal pole 0.683 (0.634–0.732) 0.001 R-frontal pole 0.631 (0.581–0.681) 0.001

L-para hippocampal 0.537 (0.483–0.591) 0.005 R-para hippocampal 0.536 (0.483–0.589) 0.039

L-pericalcarine cortex 0.560 (0.507–0.614) 0.028 R-pericalcarine cortex 0.535 (0.413–0.518) 0.012

L-superior temporal gyrus 0.568 (0.514–0.621) 0.038 R-middle temporal gyrus 0.600 (0.547–0.653) 0.001

L-caudal middle frontal gyrus 0.617 (0.565–0.669) 0.001 R-rostral anterior cingulate cortex 0.639 (0.587–0.691) 0.001

L-fusiform gyrus 0.606 (0.555–0.658) 0.002 R-supramarginal gyrus 0.626 (0.575–0.677) 0.005

L-pars opercularis 0.610 (0.558–0.662) 0.030 R-pars orbitalis 0.540 (0.487–0.593) 0.042

L-posterior cingulate cortex 0.726 (0.680–0.772) 0.001 R-entorhinal cortex 0.589 (0.536–0.642) 0.038

L-lingual gyrus 0.605 (0.551–0.658) 0.005 R-lateral orbitofrontal cortex 0.553 (0.498–0.607) 0.009

L-transverse temporal 0.569 (0.517–0.621) 0.017

L-precuneus gyrus 0.568 (0.514–0.622) 0.015

AD, Alzheimer’s Disease; AUC, area under the receiver operating characteristic (ROC) curve; NC, normal cognitive; FDR, false discovery rate.
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TABLE 3 Selected features for model construction.

Feature origin (N)a Modelb (normalization/dimension 
reduction/feature selector/classifier)

Feature names

FD features Mean/PCC/Relief/SVM L-posterior cingulate cortex

(N = 10) R-rostral anterior cingulate cortex

L-frontal pole

R-supramarginal gyrus

R-inferior temporal gyrus

L-parahippocampal

L-pars opercularis

R-middle temporal gyrus

L-pericalcarine cortex

R-pericalcarine cortex

Clinic + FD Mean/PCA/RFE/NB PCA_feature_2

(N = 9) PCA_feature_3

PCA_feature_5

PCA_feature_7

PCA_feature_9

PCA_feature_13

PCA_feature_29

PCA_feature_31

PCA_feature_32

MoCA+FD Mean/PCC/ANOVA/GP MoCA

(N = 5) L-frontal pole

L-posterior cingulate cortex

R-insula

R-inferior temporal gyrus

GDS + FD Mean/PCC/Relief/SVM L-posterior cingulate cortex

(N = 6) L-frontal pole

R-rostral anterior cingulate cortex

GDS

L-pars opercularis

R-pericalcarine cortex

FAQ + FD Mean/PCA/Relief/LR PCA_feature_1

(N = 4) PCA_feature_8

PCA_feature_9

PCA_feature_7

NPI + FD Mean/PCA/ANOVA/GP PCA_feature_1

(N = 6) PCA_feature_8

PCA_feature_19

PCA_feature_10

PCA_feature_29

PCA_feature_15

APOE + FD Mean/PCA/ANOVA/LR PCA_feature_2

(N = 5) PCA_feature_22

PCA_feature_9

(Continued)
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cortex, inferior temporal gyrus, lateral occipital cortex, frontal pole, 
insula, parahippocampal and pericalcarine cortex. These regions were 
primarily associated with memory, visual processing, olfaction, 
response to somatosensory stimuli, and emotional cognition, which 
were consistent with the common symptoms of AD. This indicated 
that these 8 pairs of FD indicators exhibit relatively significant changes 
in AD progression and should be  closely monitored in clinical 
research, especially when comparing changes in values between the 
left and right hemispheres. These findings are consistent with those of 
previous studies (D'Antonio et al., 2022; Hason and Krishnan, 2022). 
In addition, the SHAP values indicated that the left posterior cingulate 
cortex and right rostral anterior cingulate cortex could be the key 
regions of AD. Additionally, we found that the left hemisphere had 
more regions than the right hemisphere, which is consistent with 
previous studies (Sandu et  al., 2014; Jao et  al., 2021). This could 
be attributed to cortical surface shape with a rightward complexity 
asymmetry (King et al., 2010). Unlike previous studies (Qin et al., 
2022; Ya et al., 2022), removing redundant features of the entire brain 
could enhance the classification performance of the model (Liu et al., 
2015). The regions with statistical differences in FDs were obtained to 
develop the FD model. This approach helped to improve the predictive 
performance of the FD model and avoid overfitting.

A previous study Chiu et al. (2022) combined 3 demographic 
features, 1 clinical feature, 18 brain-image features, and 3 plasma 
biomarkers to develop a machine learning model for predicting AD, 
NC, and MCI. Although the AUC was higher than 0.85, many 
enrolled features reduced the interpretability of the model. In a 
parallel study, several scholars carried out similar work (Wang Y. et 
al., 2019; Khatri and Kwon, 2022) by combining all features into a 
single model, which resulted in unclear clinical applicability. Usually, 
not all participants can complete all the tests, which is time-
consuming and impractical. We tend to consider that the simpler the 
machine learning model, the more feasible and interpretable it is. 
Compared to previous studies, to increase interpretable clinical 
applicability, we  combined demographic characteristics, global 
cognitive function scales, and biological markers with FDs 
separately. This study found that the diagnostic performance 
improved with the MoCA + FD and FAQ + FD models, which also 
exhibited excellent predictive performance in the external validation 
cohort. Several factors contribute to this improvement. First, both 
MoCA and FAQ showed statistically significant differences between 
the NC and AD groups, which helped to improve the diagnostic 
performance. Second, these indicators correlate with the occurrence 
and AD progression. Previous studies have shown that MoCA and 

TABLE 3 (Continued)

Feature origin (N)a Modelb (normalization/dimension 
reduction/feature selector/classifier)

Feature names

PCA_feature_19

PCA_feature_11

p-tau + FD Mean/PCC/RFE/GP p-tau

(N = 10) L-frontal pole

L-pericalcarine cortex

L-pars opercularis

L-posterior cingulate cortex

R-supramarginal gyrus

R-entorhinal cortex

R-frontal pole

R-insula

R-rostral anterior cingulate cortex

Aβ42/Aβ40 + FD Mean/PCC/RFE/SVM Aβ42/Aβ40

(N = 7) L-frontal pole

L-pars opercularis

L-posterior cingulate cortex

R-inferior temporal gyrus

R-insula

R-rostral anterior cingulate cortex

PHS + FD Mean/PCA/ANOVA/GP PCA_feature_1

(N = 4) PCA_feature_3

PCA_feature_7

PCA_feature_10

Aβ40, amyloidβ-40; Aβ42, amyloidβ-42; ANOVA, analysis of variance; APOE, apolipoprotein E; FD, fractal dimension; GP, Gaussian process; LASSO, least absolute shrinkage and selection 
operator; LDA, linear discriminant analysis; LR, logistic regression; NB, Naive Bayes; p-tau, phospho-tau; PCA, Principal component analysis; PCC, Pearson correlation coefficient; PHS, 
polygenic hazard score; RFE, recursive feature elimination; SVM, support vector machine. aThe total number of features in a distinct group. bThe processing of valid data features for modeling 
was called a model. cClinicFD features included FDs, age, sex, education, weight, heart rate, breath rate, temperature, and blood pressure.
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TABLE 4 Detailed performance of the predictive models in all cohorts.

Training cohort Internal validation cohort External validation cohort

FD

AUC* 0.842 (0.799–0.885) 0.808 (0.734–0.883) 0.803 (0.698–0.910)

Sensitivity 0.740 0.709 0.515

Specificity 0.802 0.753 0.970

AUC-PR 0.784 0.728 0.834

Acc 0.778 0.736 0.742

Clinic + FD

AUC* 0.864 (0.825–0.903) 0.858 (0.796–0.920) 0.963 (0.926–1.000)

Sensitivity 0.764 0.800 0.848

Specificity 0.802 0.820 0.969

AUC-PR 0.807 0.802 0.964

Acc 0.787 0.778 0.909

MoCA + FD

AUC* 0.951 (0.929–0.973) 0.931 (0.885–0.976) 0.955 (0.908–1.0)

Sensitivity 0.882 0.818 0.939

Specificity 0.903 0.910 0.970

AUC-PR 0.936 0.917 0.979

Acc 0.895 0.875 0.955

GDS + FD

AUC* 0.848 (0.805–0.891) 0.847 (0.781–0.913) 0.854 (0.761–0.947)

Sensitivity 0.709 0.709 0.727

Specificity 0.822 0.832 0.909

AUC-PR 0.757 0.799 0.888

Acc 0.778 0.785 0.818

FAQ + FD

AUC* 0.905 (0.869–0.941) 0.889 (0.829–0.948) 0.994 (0.983–1.000)

Sensitivity 0.764 0.636 0.909

Specificity 0.927 0.933 0.970

AUC-PR 0.882 0.875 0.994

Acc 0.865 0.819 0.939

NPI + FD

AUC* 0.836 (0.791–0.882) 0.833 (0.762–0.905) 0.940 (0.886–0.995)

Sensitivity 0.740 0.746 1.000

Specificity 0.802 0.798 0.818

AUC-PR 0.795 0.794 0.936

Acc 0.778 0.778 0.909

APOE + FD

AUC* 0.835 (0.780–0.880) 0.832 (0.759–0.904) 0.873 (0.789–0.958)

Sensitivity 0.759 0.764 0.727

Specificity 0.772 0.742 0.939

AUC-PR 0.791 0.809 0.890

Acc 0.764 0.750 0.833

p-tau + FD

AUC* 0.851 (0.795–0.906) 0.847 (0.770–0.925)

(Continued)
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FAQ are sensitive indicators for diagnosing AD (Goldstein et al., 
2014; Wang B.-R. et al., 2019). Yi et al. (2023) found that FAQ was 
associated with a higher risk of AD onset, with the AUC of MLMs 
reaching 0.91 when using XGBoost as the classifier. Cai et al. (2023) 
combined MoCA, clinical, and MRI features to construct MLMs, 
with the AUC of this model reaching 0.853 in predicting early AD.

Additionally, we chose APOE*ε4, PHS, p-tau181, and Aβ42/40 as 
machine learning features. Substantial evidence from clinical and basic 
research suggests that a major pathway through which APOE*ε4 and 
PHS increase the risk of AD has been identified (Raulin et al., 2022; 
Spencer et al., 2022; Vacher et al., 2022). Gao et al. (2022) found that the 
AUC of their machine learning model (which included p-tau, Aβ42/40, 

FIGURE 3

Receiver operating characteristic (ROC) curves (a) and decision curve analysis (DCA) curves (b) of prediction models. Aβ40, amyloidβ-40; Aβ42, 
amyloidβ-42; APOE, apolipoprotein E; FAQ, Functional Activities Questionnaire; FD, fractal dimension; GDS, Geriatric Depression Scale; MoCA, 
Montreal Cognitive Assessment; NPI, Neuropsychiatric Inventory; PHS, polygenic hazard score.

TABLE 4 (Continued)

Training cohort Internal validation cohort External validation cohort

Sensitivity 0.662 0.500

Specificity 0.901 0.885

AUC-PR 0.737 0.717

Acc 0.833 0.778

Aβ42/Aβ40 + FD

AUC* 0.849 (0.805–0.894) 0.841 (0.772–0.911)

Sensitivity 0.610 0.660

Specificity 0.905 0.889

AUC-PR 0.800 0.797

Acc 0.792 0.802

PHS + FD

AUC* 0.849 (0.806–0.892) 0.838 (0.766–0.910)

Sensitivity 0.740 0.782

Specificity 0.816 0.865

AUC-PR 0.789 0.809

Acc 0.787 0.833

Aβ40, amyloidβ-40; Aβ42, amyloidβ-42; APOE, apolipoprotein E; AUC, area under the receiver operating characteristic (ROC) curve; AUC-PR, AUC precision-recall; Acc, accuracy; FAQ, 
Functional Activities Questionnaire; FD, fractal dimension; GDS, Global Deterioration Scale; MoCA, Montreal Cognitive Assessment; NPI, Neuropsychiatric Inventory; p-tau, phospho-tau; 
PHS, polygenic hazard score. *Data are the mean (95% CI).
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APOE, and MRI) ranged from 0.843 to 0.909, aligning with our 
findings. However, some previous studies showed different results. The 
AUCs in a previous study were all below 0.8 (Zhang et al., 2022), while 
another study reported an AUC of 0.96 (Park et al., 2023). We speculated 
that the diagnostic efficacy of machine-learning models based on 
biomarkers and genetic markers might not be stable (Leuzy et al., 2021). 
Although PHS, Aβ42/40, and p-taul81 were useful measures for 
monitoring neuropathy markers of cognitive decline, especially for AD 
(Moscoso et al., 2021), there is currently no uniform cut-off or unified 
detection method (Karikari et al., 2022). In addition, we  found the 
AUCs of these MLMs did not significantly improve when compared to 
the FD model. Since the lack of unified detection methods limits the use 
of PHS, p-tau 181, and Aβ42/40, the results may be different, and we did 
not conduct external validation.

Notably, we observed that the AUC of the clinical + FD model was 
lower than other models in the training and internal validation cohorts, 
but the result of the external validation set was similar to other models. 
We  speculated that inter-dataset clinical differences might exert an 
important impact. In the external validation cohort, AD participants 
from our institution presented severe cognitive impairment with lower 
MoCA scores than the ADNI cohort. These results also demonstrated 
the clinical features could not achieve the best performances. A previous 
study Apostolova et al. (2014) enrolled AD and NC subjects from the 
ADNI-1 cohort, and the AUC of the hippocampal volume + clinic 
model was the lowest among all combined models. Similar results were 
found in a recent study Chen et al. (2023).

As for the limitations, the sample size was relatively small for the 
external validation cohort, and patients in this cohort were mostly 
with severe cognitive impairment, which could influence part of the 
AUC in the external validation cohort. We will further increase the 
sample size in our center to address these problems. We will expand 

the sample size in future research to improve the analysis of the 
subtypes of patients with AD. Given the limitations in the 
completeness of clinical data from the ADNI database, we did not use 
more novel Alzheimer’s disease biomarkers and genetic markers. 
Finally, participants in the ADNI database were typically well-
educated elderly individuals subject to a narrow scope of selection.

5 Conclusion

In conclusion, the brain regions with significant alteration of 
cortical complexity are expected to serve as potential neuroanatomical 
markers of AD. The MLMs based on FDs demonstrated sound 
diagnostic stability and efficiency for AD. FD combined with global 
cognitive function scales based on ML may prove an effective diagnosis 
method of AD with higher accuracy, as it reduces the unnecessary 
deployment of therapeutics and streamlines the workflow of clinicians.
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SUPPLEMENTARY FIGURE S1

The feature distribution and ROC curves of multiple MLMs. FD, Fractal 
dimension; MOCA, Montreal Cognitive Assessment; FAQ, Functional 
Activities Questionnaire; NPI, Neuropsychiatric Inventory; GDS, Geriatric 
Depression Scale; Aβ40, Amyloidβ-40; Aβ42, Amyloidβ-42; APOE, 
apolipoprotein E; PHS, polygenic hazard score.

SUPPLEMENTARY FIGURE S2

The performance of multiple MLMs in external validation cohort. FD, Fractal 
dimension; MOCA, Montreal Cognitive Assessment; FAQ, Functional 
Activities Questionnaire; NPI, Neuropsychiatric Inventory; GDS, Geriatric 
Depression Scale; APOE, apolipoprotein E; PHS, polygenic hazard score.

SUPPLEMENTARY FIGURE S3

The SHAP dependence plot of FD model (A) and MOCA+FD model (B). FD, 
Fractal dimension; MOCA, Montreal Cognitive Assessment; SHAP, Shapley 
Additive explanation
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