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lncRNAs in Alzheimer’s disease: 
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Introduction: The deregulation of lncRNAs expression has been associated 
with neuronal damage in Alzheimer’s disease (AD), but how or whether they 
can influence its onset is still unknown. We  investigated 2 RNA-seq datasets 
consisting, respectively, of the hippocampal and fusiform gyrus transcriptomic 
profile of AD patients, matched with non-demented controls.

Methods: We performed a differential expression analysis, a gene correlation 
network analysis (WGCNA) and a pathway enrichment analysis of two RNA-seq 
datasets.

Results: We found deregulated lncRNAs in common between hippocampus 
and fusiform gyrus and deregulated gene groups associated to functional 
pathways related to neurotransmission and memory consolidation. lncRNAs, 
co-expressed with known AD-related coding genes, were identified from the 
prioritized modules of both brain regions.

Discussion: We found common deregulated lncRNAs in the AD hippocampus 
and fusiform gyrus, that could be  considered common signatures of AD 
pathogenesis, providing an important source of information for understanding 
the molecular changes of AD.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder which, considering the growth 
of the global population coupled with the increasing life expectancy and the lack of effective 
therapies, is predicted to become one of the most high-impact health problems in the next few 
years. Two neuropathological hallmarks characterize the brain of AD patients: the 
accumulation of intraneuronal neurofibrillary tangles (NFTs) and the deposition of 
extracellular plaques, made up of beta-amyloid (Aβ) proteins, which are accompanied by 
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synaptic loss, inflammatory and oxidative processes (Schapira 
et al., 2017).

Non coding RNAs (ncRNAs), as long non coding RNAs 
(lncRNAs), circular RNAs (circRNAs) and microRNA (miRNAs) are 
key regulators of many cellular processes and are known to be widely 
expressed in the brain where they play crucial roles in proliferation, 
survival, metabolism and differentiation of neuronal cells (Salta and 
De Strooper, 2017). Among ncRNAs, lncRNAs have received 
increasing attention as novel epigenetic regulators of gene expression 
at transcriptional and post-transcriptional levels (Nadhan et al., 2022). 
With the advancements in sequencing technology, transcriptomic 
studies progressively identify novel lncRNAs even if a comprehensive 
functional annotation is still lacking. It is estimated that about 40% of 
lncRNAs are specifically expressed in brain tissue, where they are 
involved in different brain physiological functions (Zimmer-Bensch, 
2019; Srinivas et al., 2023). A deregulated expression of lncRNAs has 
been associated with neuronal injury in several neurodegenerative 
pathologies such as AD, Parkinson’s disease (PD), amyotrophic lateral 
sclerosis (ALS) and Huntington’s disease (HD), but how or whether 
they influence the onset of these diseases is still unclear (Srinivas et al., 
2023). So far, the best documented lncRNA deregulation in AD 
concerns lncRNAs which are antisense transcripts of mRNAs derived 
from known AD-related genes, as BACE1-AS, 51A, 17A and BC200, 
which have been found to be directly involved in Aβ deposition, Tau 
iper-phosphorylation and neuroinflammation (Faghihi et al., 2008; 
Ciarlo et al., 2012; Ahmadi et al., 2020; Bagyinszky et al., 2020). Also, 
transcriptome analyses on post-mortem human brains have indicated 
that gene expression is significantly altered in AD patients (Cain et al., 
2023), although the role of lncRNAs in the onset of the disease 
remains elusive. This evidence, as well as the possibility of their 
exploitation for new therapeutic strategies for AD, has progressively 
demanded a deeper investigation of the role of lncRNAs in AD 
(Balusu et al., 2023).

The present work aims at contributing to the current knowledge 
about the deregulation of lncRNAs in AD. For this purpose, 
we  investigated 2 RNA-seq datasets: one derived from the 
hippocampus (Annese et al., 2018) and the other derived from the 
fusiform gyrus (Friedman et al., 2018) of AD patients. By using state 
of the art bioinformatic resources, a considerable number of 
differentially expressed (DE) genes was identified in these brain 
regions of AD patients, including lncRNAs. Comparing the DE genes 
between the two datasets, we found a set of 225 lncRNAs and 857 
protein coding genes that were differentially expressed in both the 
brain regions. We performed a co-expression network analysis with 
WGCNA (weighted correlation network analysis) in order to infer the 
function of the DE lncRNAs, through a guilt-by-association view of 
transcriptomic expression, as the co-expression of protein coding and 
non-coding genes may suggest their involvement in the same pathway. 
We  found some modules associated with neurotransmission and 
memory related pathways, such as CREB signaling in neurons and 
synaptic long term depression. By comparing the lncRNAs within the 
hippocampal and fusiform gyrus WGCNA prioritized modules, 
we identified common DE lncRNAs that could be considered common 
signatures of AD progression.

Our results thus could contribute to better defining the 
deregulated expression of AD brain and to explore new deregulated 
lncRNAs as potential targets for further investigation on molecular 
changes in AD pathogenesis.

2 Materials and methods

All experimental procedures performed are described in Figure 1.

2.1 RNA-seq datasets

The RNA-seq datasets used in this study were: (1) the Annese 
et  al. dataset consisting of transcriptomic data from frozen post-
mortem hippocampal samples derived from 6 AD donors and 6 
healthy controls (Annese et al., 2018); (2) the Friedman et al. dataset 
(Bioproject PRJNA377568) (Friedman et al., 2018) downloaded via 
the dedicated ftp links from the Sequence Read Archive (SRA) 
database. The original 117 fusiform gyrus RNA-seq samples were 
filtered according to sex, age of death, ethnicity, patient Braak stage 
(V-VI) and RIN (RNA integrity number) value to match the 
stratification of the dataset by Annese et al. The final dataset analyzed 
comprised 28 samples, 14 AD subjects and 14 healthy controls. The 
sequencing output in the form of FASTQ files consisted in 166,295,065 
reads on average per sample for the hippocampus dataset and 
35,081,589 reads on average per sample for the fusiform gyrus dataset.

2.2 Data processing and RNA-seq data 
analysis

All computations were performed on machines running 
GNU+Linux (3.10.0–862.14.4.el7.x86_64), by using R (version 3.6.1) 
and Bash [4.2.46(2)-release x86_64-redhat-linux-gnu].

Data were analyzed according to the workflow reported in 
Supplementary Figure S1. All steps of the analysis dependent on 
genomic annotation employed the version 44 of GENCODE’s GTF 
and FASTA files, unless stated otherwise. The quality of the RNA-seq 
reads was preliminarily inspected with fastQC1 and MultiQC (Ewels 
et al., 2016). No trimming intervention was deemed necessary for the 
two datasets.

Both RNA-seq datasets were analyzed using different 
bioinformatic tools and updated annotations with respect to the 
original studies. Reads were summarized to genes via FeatureCounts 
(Liao et al., 2013) and GENCODE annotation and were aligned onto 
the human genome (GRCh38.p13) by means of STAR (Dobin et al., 
2012), using the following options: (1) --chimFilter banGenomicN; 
(2) --outFilterMultimapNmax 1; (3) --alignSJoverhangMin 8; (4) 
--alignSJDBoverhangMin 1; (5) --outFilterMismatchNmax 2; (6) 
--outFilterScoreMinOverLread 0; (7) --outFilterMatchNminOverLread 
0; (8) --outFilterMatchNmin 0; (9) --outFilterMismatchNoverLmax 
0.04. For the hippocampal RNA-seq dataset, the sequence alignment 
with the reference genome uniquely mapped 83.2% of the ~2 billion 
input reads, namely, ~138 million reads per sample on average. For 
the fusiform gyrus RNA-seq dataset, the sequence alignment process 
uniquely mapped 91.9% of the ~982 million input reads, namely, ~32 
million reads per sample on average.

DESeq2 (version 1.26.0) (Love et al., 2014) was used to perform the 
normalization of sequencing counts and the differential expression 

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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analysis between AD patients and relative controls. First, the summarized 
gene counts were normalized with DESeq2’s own method. This approach 
is commonly considered well suited to compare gene expression across 
samples and hence, to differential expression analyses. A preliminary 
gene expression filter was employed and genes, whose sum of normalized 
counts was less than 10  in half the samples of the datasets, were 
discarded. MDS and PCA analyses were performed, respectively, with 
the R functions “cmdscale” and “prcomp” to study the clustering 
behavior of samples; in particular, the Aitchison distance was adopted 
for MDS by using the dedicated parameter of the “cmdscale” function. 
Samples clustered according to their tissue in the MDS performed with 
the Aitchison distance and the regularized log-transformed (DESeq2 
rlog function) counts. Control sample 5 (Supplementary Figure S2A) 
and control sample 4 (Supplementary Figure S2B) resulted as outliers in 
plots obtained with and without the rlog transformation, respectively. In 
the PCA biplot, HIP samples segregated according to their experimental 
condition only upon removal of control samples 4 and 5, which were 
ultimately considered outliers and removed from downstream analyses 
(Supplementary Figure S3). The PCA analysis performed for the 
fusiform gyrus samples showed that they did not cluster according to the 
condition (AD/CTL), however no outliers could be  identified with 
ordination analyses nor sample removal improved the clustering 
(Supplementary Figure S4). The differential expression analysis was 
performed, after preparing the data as required by the DESeq2 package 
via a custom R script. Genes were considered as differentially expressed 
if Benjamini-Hochberg adjusted p-value (padj) resulted inferior to 0.05.

2.3 Differentially expressed lncRNAs 
biotype definition

By parsing the GENCODE annotation with a custom R script, the 
following biotypes were used to classify the DE lncRNAs of the two 

datasets: (i) intergenic: the lncRNA that does not overlap any protein 
coding gene; (ii) antisense: the lncRNA that overlaps a protein coding 
locus on the opposite strand; (iii) sense overlapping: the lncRNA that 
has a transcript overlapping a coding gene’s exon on the same strand; 
(iv) sense intronic: the lncRNA that falls in introns of a coding gene 
and do not overlap any exon. More specifically, the genomic 
coordinates of the starting and ending points of annotated genes were 
compared to those of the DE lncRNAs. Boolean vectors (i.e., lists of 
TRUE and FALSE values) obtained from the comparisons were 
logically chained through AND/OR operators to verify the overlap 
events and their nature. An analogous mechanism was applied to 
elucidate the intronic or exonic nature of the overlap events.

2.4 Weighted gene co-expression network 
analysis

The WGCNA R package (Langfelder and Horvath, 2008) (version 
1.69) has been employed to run a weighted gene co-expression 
network analysis of the coding and non-coding genes obtained in the 
differential expression analysis of the two RNA-seq datasets. The 
pickSoftThreshold function was used with the ‘networkType’ 
parameter set to ‘signed’ to produce the data for the plots data 
necessary to choose the soft thresholding power β of the correlation 
function necessary to build an adjacency matrix based on gene 
expression (Supplementary Figure S5). Raising the absolute value of 
the correlation between genes to the soft thresholding β power allows 
to underline disparity between correlations in the adjacency matrix. β 
should be a good compromise between the scale free topology model 
fit and the consequent network mean connectivity. For the 
hippocampal dataset, we  chose soft thresholding power β = 15 
(Supplementary Figures S5A,B), while for the fusiform gyrus dataset 
we  chose β = 18 (Supplementary Figures S5C,D). The correlation 

FIGURE 1

Flow chart of our study. AD, Alzheimer’s disease; WGCNA, weighted gene correlation network analysis; DE, differentially expressed; IPA, ingenuity 
pathway analysis; ddPCR, digital droplet PCR.
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function chosen was run combinatorially between the expression data 
of all genes of interest to generate an adjacency matrix. A topological 
overlap matrix (TOM) was obtained from the adjacency matrix and 
finally, a 1-TOM dissimilarity matrix was calculated (Langfelder and 
Horvath, 2008). The gene distances of the dissimilarity matrix 
calculated in the previous step of the workflow were used to build the 
dendrograms with the WGCNA function plotDendroAndColors. The 
hierarchical clustering analysis was performed with the flashClust R 
package (version 1.1.2) and with the option ‘method = average’. The 
dynamic tree cutting procedure was applied with the following main 
parameters: ‘minClusterSize = 30’ and ‘deepSplit = 2’. Close WGCNA 
modules were merged with the ‘cutHeight’ set to 0.12. Gene networks 
representations were obtained with the igraph R package (version 
1.3.2). The data of the two weighted correlation networks were 
prepared with the “exportNetworkToCytoscape” function of the 
WGCNA R package, then, the network graphs were generated with 
the fruchterman-reingold layout and they were finally pruned with the 
threshold option so that only edges whose weight resulted bigger than 
or equal to 0.385 for the hippocampus dataset and to 0.27 for the 
fusiform gyrus were retained in the final representation (These 
thresholds were determined empirically). WGCNA modules were 
prioritized according to: (i) their number of differentially expressed 
lncRNAs; (ii) their number of differentially expressed driver lncRNAs. 
Driver genes were considered as such within a module when showing 
a Pearson’s correlation |r| > 0.8 to the module’s eigenvector and to the 
experimental condition of interest, namely, AD. For the fusiform 
gyrus, the |r| threshold for correlation of genes to the trait of interest 
was lowered to 0.6 as no genes passed the more stringent filter 
(|r| = 0.8 threshold).

2.5 Pathway enrichment analysis

The functional pathways associated with genes in WGCNA 
prioritized modules were investigated with Ingenuity Pathway 
Analysis IPA® (Ingenuity Systems, QIAGEN, Redwood City, CA). IPA 
parameters were kept to their standard values except for species 
settings (in the species tab, only the Homo sapiens checkbox was 
considered) and miRNA settings (the box for high confidence 
predicted miRNAs was checked). Possible connections with AD were 
sought in the ‘diseases and functions’ and ‘canonical pathways’ tabs of 
the analysis report produced by IPA whose content was exported 
through the dedicated functions. Gene modules were considered to 
be  associated with a canonical pathway if the Fisher’s exact test 
performed by IPA was significant (p-value <0.05).

2.6 RNA-seq analysis validation by ddPCR

To validate RNA-seq data, primer pairs for MAP4K3-DT, MEG9, 
MEG8, PCA3, HAR1A, NECTIN3-AS1, STARD4-AS lncRNAs were 
designed by using an ad-hoc developed pipeline (Supplementary Table S1). 
Total RNA from frozen post-mortem hippocampus samples used in the 
Annese et  al. work (Annese et  al., 2018) was used for the lncRNAs 
expression validations. Samples were processed in accordance to Annese 
et al. study (Annese et al., 2018), which was approved by the Institutional 
Review Board of the Institute of Biomembranes, Bioenergetics and 
Molecular Biotechnologies, National Research Council. 1.5 μg of RNA 

were used in the reverse transcription reaction, using the iScript™ 
Advanced cDNA Synthesis Kit (Bio-Rad Laboratories Ltd., Berkeley, 
California, USA), according to the manufacturer’s instructions. The 
droplet digital polymerase chain reaction (ddPCR) (Bio-Rad) was chosen 
for the quantification analysis. All ddPCR reactions were carried out in a 
final volume of 22 μL, using the QX200™ ddPCR™ EvaGreen Supermix, 
and were prepared according to the manufacturer’s instructions. The 
amount of the cDNA template was determined empirically for the 
different targets, as reported: 1 μL of diluted cDNA (1:4) for MAP4K3-DT, 
MEG9, MEG8, PCA3, HAR1A; 2 μL of undiluted cDNA for 
NECTIN3-AS1, STARD4-AS; 1 μL of diluted cDNA (1:100) for 
GAPDH. Primer concentration in reaction was 200 nM for all targets 
except for PCA3 (150 nM). Each RNA sample was analyzed in duplicate. 
For each experiment, a negative control (No Template Control, NTC) was 
used. After droplet generation with the QX200 Droplet Generator (Bio-
Rad), droplets were transferred into a 96-well plate that was sealed for 
PCR. The thermal cycling conditions were set as recommended by the 
manufacturer, except for the annealing/extension temperature and the 
number of the cycles that were adapted to each target 
(Supplementary Table S2). Absolute quantification was performed using 
the QuantaSoft version 7.4.1 software (Bio-Rad) and the negative/positive 
thresholds were set manually. ddPCR reactions were considered positive 
if characterized by a number of events >10,000, according to the QX200™ 
reader automatic evaluation. For each sample, results were expressed as 
the means of the lncRNA copies/μL of PCR replicates, normalized by the 
means of corresponding GAPDH copies/μL. Statistical significance was 
evaluated with a two tailed Mann–Whitney U test that was performed 
with the wilcox.test R function.

2.7 Statistical analyses

The RNA-seq sample cohorts analyzed were homogenous in terms 
of sex, ethnicity, age at death, quality of the input RNA and Braak stage 
for the patients, therefore the differential expression analysis was 
performed by applying a Wald test for each dataset via the dedicated 
DESeq2 functions considering only the condition in the formula. For 
ddPCR analysis, statistical significance was assessed by using and a 
two tailed Mann–Whitney U test and results were expressed as the 
means of lncRNA copies/μL, normalized with the means of GAPDH 
copies/μL for each sample.

3 Results

3.1 Identification of differentially expressed 
genes in the hippocampus and fusiform 
gyrus in AD

In this study we  re-analyzed the data produced in two 
RNA-seq experiments performed on post-mortem AD brain 
tissues. The first was produced by Annese et  al. in 2018 and 
consisted of the transcriptomic profiles of the hippocampal CA1 
region of six patients affected by late-onset AD and six cognitively 
unimpaired controls (Annese et al., 2018). The second dataset was 
produced by Friedman et al. in 2018 and originally consisted of 
117 total RNA-seq samples from the fusiform gyrus (84 AD, 33 
controls) (Friedman et  al., 2018). From this dataset, we  chose 
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samples according to the same sampling criteria of the 
hippocampal cohort, obtaining a final cohort comprising 14 
controls and 14 AD fusiform gyrus samples (Supplementary  
Table S3).

By using DESeq2, we identified 3,297 protein coding genes and 
1,180 lncRNAs as differentially expressed (DE) genes between 
hippocampal AD samples and controls (padj <0.05). In particular, 567 
lncRNAs were found down-regulated and 613 up-regulated; among 
protein coding genes, 1,416 genes were found down-regulated and 
1,881 up-regulated (Table 1 and Supplementary Table S4). For the 
fusiform gyrus RNA-seq dataset, DESeq2 identified 3,728 DE genes 
(padj <0.05), of which 2,871 were protein coding genes and 857 were 
lncRNAs. In particular, among protein coding genes, 1,324 were 
down-regulated and 1,547 were found to be up-regulated while, of the 
DE lncRNAs, 382 were found to be down-regulated and 475 were 
up-regulated (Table 1 and Supplementary Table S4).

Thanks to the progressive improvement of lncRNA annotation, 
for both RNA-seq datasets, we identified more DE lncRNAs than the 
previous analyses (1,180 significant DE lncRNAs versus 47 for the 
hippocampus and 857 versus 65 for the fusiform gyrus).

Comparing the DE genes between the two datasets, we found a 
total of 1,082 DE genes (225 lncRNAs and 857 protein coding 
genes) in common (Table 1), the majority of which had the same 
expression pattern, while 39 genes (7 lncRNAs and 32 protein 
coding genes) showed an opposite expression behavior in the two 
brain regions.

3.2 DE lncRNAs biotype characterization

As one of the aims of this work was the characterization of DE 
lncRNAs in AD, firstly we analyzed the genomic neighborhood of the 
DE lncRNAs identified in AD hippocampus and fusiform gyrus, using 
a custom R script to retrieve information by processing the genomic 
coordinates reported by GENCODE’s annotation. In Table  2, the 
number of the DE lncRNAs for each biotype class is reported. 
Although the attribution of biotype is susceptible to changes due to 
annotation and considering that some lncRNAs fell into multiple 
biotype categories according to their topology (as FLNC-AS1, which 
is both sense overlapping to KCP gene and antisense to FLNC gene), 
our analysis reported that the greatest number of DE lncRNAs belongs 
to the sense-overlapping biotype in both brain districts, followed to 
the antisense biotype for the hippocampus. For the fusiform gyrus, an 
almost equal number of antisense and intergenic lncRNAs 
was identified.

3.3 Experimental validation of the 
differential expressed lncRNAs in AD 
hippocampus

The expression of some hippocampal DE lncRNAs was validated 
by absolute quantitation with Digital Droplet PCR (ddPCR) on five 
controls (four original controls plus a new one) and six AD patients 
(five original AD subjects plus a new patient). The new samples were 
chosen to fit the selection criteria adopted for the original cohort used 
in the RNA-seq analysis (Supplementary Table S3). Seven 
downregulated lncRNAs, MAP4K3-DT, MEG9, MEG8, PCA3, 
HAR1A, NECTIN3-AS1 and STARD4-AS, were selected for validation, 
as they appeared among the most differentially expressed and their 
nomenclature was approved by the HUGO Gene Naming Committee 
(HGNC). As shown in Figure  2, for all lncRNAs analyzed, the 
downregulated expression was confirmed by ddPCR. In fact, for each 
lncRNA, the obtained values of copies/μL of reaction mix, normalized 
by dividing them with respect to the GAPDH copies/μL, were lower 
in AD samples compared to controls, although we did not observe a 
statistically significant difference between the two groups.

3.4 Correlation network analysis of 
lncRNAs in AD hippocampus and fusiform 
gyrus

The Weighted Gene Correlation Network Analysis (WGCNA) 
tool (Langfelder and Horvath, 2008) was employed to analyze the 
co-expression network of coding genes and lncRNAs in AD samples. 
By choosing the appropriate soft thresholding power β, the TOM and 
the 1-TOM dissimilarity matrices were obtained. The hierarchical 
clustering of the dissimilarity matrix data generated the dendrograms 
shown in Supplementary Figures S6A,B for the hippocampus and the 
fusiform gyrus datasets, respectively. Each branch of the dendrograms 
harbors one of the genes (lncRNA and protein coding genes) 
considered. After the dynamic module merging procedure, 56 
modules were identified for the hippocampus dataset and 52 for the 
fusiform gyrus dataset. For both datasets, the correlation networks 
obtained, the hierarchical dendrograms as well as the modules before 
and after the dynamic merging process are represented in 
Supplementary Figures S6C,D. Next, modules were prioritized to 
perform a pathway enrichment analysis in order to identify the 
physiological function and/or the biological pathway common to 
multiple protein coding genes and to the co-expressed lncRNAs 
present in a module. Two criteria were adopted to prioritize the 

TABLE 1 Number of deregulated genes (lncRNAs and protein coding genes) identified in the hippocampus and fusiform gyrus of AD patients and in 
common between the two datasets.

Hippocampus Fusiform gyrus Common DE genes

Genes lncRNAs Protein 
coding RNAs

lncRNAs Protein 
coding RNAs

lncRNAs Protein 
coding RNAs

Analyzed in total 8,431 17,362 6,660 16,724 5,787 16,553

Deregulated 1,180 3,297 857 2,871 225 857

Downregulated 567 1,416 382 1,324 92 293

Upregulated 613 1881 475 1,547 133 564

Genes with padj <0.05 were considered deregulated.
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modules: (i) the number of DE lncRNAs present in the module; (ii) 
the number of DE “driver” lncRNAs present in the module. Driver 
genes are key genes that may influence the expression or function of 

other genes or may be causal factors for a trait of interest. The top 10 
modules comprising the largest number of significant DE lncRNAs are 
listed in Supplementary Table S5, and the top 10 modules comprising 
the largest number of DE “driver” lncRNAs are listed in 
Supplementary Table S6, for both datasets. Comparing the two lists 
for each dataset and considering the number of total and driver DE 
lncRNAs present in the modules, the top four ranking modules 
resulted “purple,” “lavenderblush3,” “grey60” and “brown” for the 
hippocampus dataset and “lavenderblush3,” “brown,” “turquoise” and 
“darkturquoise” for the fusiform gyrus dataset. Although some 
modules have the same name (e.g., “lavenderblush3”) for both 
hippocampal and fusiform gyrus datasets, these modules are 
independent clusters of genes, as names to the modules were 
automatically assigned by WGCNA.

TABLE 2 Number of differentially expressed lncRNAs identified in the 
hippocampus and in the fusiform gyrus of AD patients, grouped 
according to their biotype.

lncRNA 
biotype

Hippocampus Fusiform Gyrus

Antisense 1,191 1,090

Intergenic 588 357

Sense intronic 112 59

Sense overlapping 3,393 2,926

FIGURE 2

Analysis of lncRNAs expression from AD hippocampus RNA-seq data by ddPCR. Results are expressed as copies/μL of reaction mix values, normalized 
with respect to GAPDH copies/μL.
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3.5 Pathway enrichment analysis of 
lncRNAs present in prioritized WGCNA 
modules

The “purple,” “lavenderblush3,” “grey60” and “brown” selected 
modules of the hippocampal dataset and the “brown,” “turquoise,” 
“lavenderblush3” and “darkturquoise” for the fusiform gyrus dataset 
were subjected to a pathway enrichment analysis by using Ingenuity 
Pathway Analysis (IPA). Gene modules were considered to 
be associated with a canonical pathway if the pathway enrichment test 
indicated a significant enrichment within the module, with a 
p-value <0.05.

Regarding the hippocampal modules, the “purple” and “grey60” 
modules were found to be associated with the “CREB signaling in 
neurons” and the “synaptic long-term depression” pathways, as they 
included genes, like GRIA1, DRD5, PRKCG, CACNA1E, CACNG4, 
PLCZ1, ADGRG4 and GPR83, that are neurotransmission-related 
(Supplementary Table S7). The first pathway is involved in the process 
of consolidating a new memory and the dynamic complexity of 
information processing within neuronal networks, which is greatly 
increased by activity-dependent changes in gene-expression within 
individual neurons (Silva et  al., 1998). The “synaptic long term 
depression” pathway is described as a cellular model for information 
storage and synaptic plasticity (Ito, 2001). The brown module was 
found to be associated with the “synaptogenesis signaling,” “synaptic 
long-term potentiation,” “SNARE signaling” and “CREB signaling in 
neurons” pathways, as it included genes like CALM1, GRIA2, GRIN2B, 
EPHA4, STXBP1, PPP3R1, and WASF1. The “lavenderblush3” module 
was associated to GABA receptor and calcium signaling pathways 
although the p-value of the enrichment test was not significant; 
interestingly, this module was associated to the TP53 signaling 
pathway, since TP63 and TP73 were downregulated in our analysis 
(Supplementary Table S7).

Regarding the fusiform gyrus modules, the “brown” module, 
which included genes like CDH7, CDH18, PAK1, PPP1R14C and 
PRKCE, was found to be associated with “synaptogenesis signaling” 
and “synaptic long-term potentiation” pathways. The “lavenderblush3” 
module was related to the downregulation of the “CREB signaling in 
neurons” pathway as it included CAMK4, CAMK2D and FZD3 genes. 
Finally, the “darkturquoise” module was found associated with the 
“synaptic long term potentiation” pathway for the presence of 
CREBBP, EP300 and RAF1 genes, while the “turquoise” module was 
not found associated with AD or neurotransmission-related pathways 
(Supplementary Table S8).

Considering the co-expression analysis performed, it may 
be inferred that lncRNAs clustered in these modules could be related 
to AD as well.

As the prioritized modules from both brain regions correlated to 
common canonical pathways, we compared these modules to select 
the common DE coding and non-coding genes between AD 
hippocampus and fusiform gyrus. As shown in Table  3, all 
hippocampal modules share DE genes with the fusiform gyrus 
modules and, in particular, the “brown” and “purple” modules share 
a higher number of DE genes with the “brown” and “lavenderblush3” 
modules of the fusiform gyrus.

A functional enrichment analysis was performed by IPA on these 
common DE genes that highlighted the presence of six protein coding 
genes which are known to be related to AD: (i) GABRA3, encoding for 

a subunit of the GABA receptor, was found downregulated in the AD 
middle temporal gyrus (Govindpani et  al., 2020); (ii) CALB1, 
encoding for a calcium binding protein, was found downregulated in 
AD hippocampal granular layer (Palop et al., 2003); (iii) SLC30A3, 
also called ZNT3, encodes for a synaptic vesicular Zn2+ transporter, 
whose loss was associated with synaptic and memory deficits of AD 
(Adlard et al., 2010); (iv) PLK2 encodes for a kinase found upregulated 
in human AD cortex (Mbefo et al., 2010); (v) NDST3, encodes for a 
strong regulator of the autophagy-lysosomal pathway whose 
dysregulation, associated with proteostatic imbalance, is a hallmark of 
neurodegenerative diseases (Tang et al., 2021); (vi) DRD5, encodes for 
the dopamine receptor 5 and an antagonist molecule of this receptor, 
called Olanzapine, is in phase 4 of clinical trial for the treatment of AD 
(Mühlbauer et al., 2023).

To characterize the lncRNAs co-expressed with these six AD 
related genes in hippocampus and fusiform gyrus, we considered the 
1-TOM dissimilarity matrices obtained during the clustering analysis 
and we obtained a list of DE lncRNAs correlated to these protein 
coding genes because they were part of the same WGCNA module 
(Tables 4, 5). By comparing the results of these analyses, we identified 
6 DE lncRNAs that are correlated to the same AD related genes in 
both hippocampus and fusiform gyrus (Table  6). Three of these 
lncRNAs are antisense (RFPL1S, DCTN1-AS, ATP2B1-AS), one is a 
sense overlapping RNA (LINC00390) and 2 lncRNAs belong to the 
intergenic class (ENSG00000274718 and ENSG00000278727).

4 Discussion

The etiology of AD is still largely unknown and, except for the rare 
familiar cases (< 5% of all cases), the disease occurs sporadically with 
a late onset (Tanzi, 2012). Thus, there is an urgent need to strengthen 
efforts to understand the pathophysiological mechanisms that lead to 
AD development.

In this context, the present work aims at contributing to the 
current knowledge about the pathologic transcriptomic landscape of 
the human AD brain, as the definition of the changes of gene 
expression in the AD brain might provide insight to further research 
in the disease molecular processes. To date, several transcriptome 
profiling studies have investigated gene expression changes in the AD 
brain (Annese et al., 2018; Friedman et al., 2018; Srinivasan et al., 
2020; Crist et al., 2021; Cain et al., 2023) but a complete set of genes 
and pathways deregulated in AD is far from established.

By using advanced bioinformatic approaches, we reanalyzed two 
RNA-seq datasets, one derived from the hippocampus and the other 
from the fusiform gyrus of AD individuals, matched with healthy 
controls. We provide here a comprehensive reanalysis of data already 
published. This is a common and valuable practice in bioinformatics 
as it optimizes data exploitation considering both new biological 
knowledge (i.e., new annotated pathways), the updated gene 
annotation, particularly relevant for lncRNAs addressed in the present 
study, with most recent advances in bioinformatics approaches. In 
addition, the combined data analysis from multiple studies (i.e., 
hippocampus and fusiform gyrus in the present study) can enhance 
statistical power leading to more reliable identification of 
deregulated pathways.

Regarding the choice of the selected brain regions, the 
hippocampus, which is relevant for memory processes, is among the 
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TABLE 3 Significant differentially expressed genes (lncRNAs and protein coding genes) in common between the hippocampus (Hip) and fusiform gyrus 
(Fg) prioritized modules.

Hip brown module vs. Fg 
brown module

Hip purple module vs. Fg 
brown module

Hip grey60 module vs. 
Fg brown module

Hip lavenderblush3 module 
vs. Fg brown module

CCR6

TSPYL2

CADPS2

SH2D5

UROS

PCSK2

DGAT2

DRP2

GABRA3

MAGEE1

ADD2

NELL2

PRICKLE1

SGIP1

DCTN1-AS1*

ENSG00000272121*

RFPL1S*

FLRT2-AS1*

ENSG00000283538*

ENSG00000260163*

ENSG00000274718*

TARBP1

PTK2B

SLITRK3

PCDH8

CCDC171

COG1

DRD5

ADAT2

LINC01962*

ENSG00000261026*

ENSG00000287805*

LINC00839*

CFAP92

RNF165

MAP4K3-DT*

CHGB

LINC00504*

Hip brown module vs Fg 
lavenderblush3 module

Hip purple module vs Fg 
lavenderblush3 module

Hip grey60 module vs Fg 
lavenderblush3 module

Hip lavenderblus3 module 
vs Fg lavenderblush3 
module

ARHGEF28

TAFA1

MRTFB

NDST3

ATP6V1H

PLK2

ARHGEF9

ERICH3

ST8SIA3

NWD2

CAMK4

ENC1

NELL1

PCDH7

LRATD1

EXOC6

ATRNL1

GRIK2

CRACDL

ATP2B1-AS1*

LINC00390*

ENSG00000278727*

MTMR1

CALB1

ST6GALNAC5

GRHL1

TMEM241

NEUROD1

EGR3

EXT1

GJD3

ZDHHC23

SLC22A25

INHBA-AS1*

ENSG00000230393*

LETR1*

ENSG00000286389*

GPR83

ENSG00000285652*

ENSG00000287900*

ENSG00000288020*

TTLL1

SLC30A3

DNAJC5G

ENSG00000286888*

Hip purple module vs Fg 
darkurquoise module

Hip grey60 module vs Fg 
darkurquoise module

Hip lavenderblus3 module 
vs Fg darkurquoise module

Hip brown module vs Fg 
darkurquoise module

ENSG00000226149* – – –

Hip purple module vs Fg 
turquoise module

Hip grey60 module vs Fg 
turquoise module

Hip lavenderblus3 module vs Fg 
turquoise module

Hip brown module vs Fg 
turquoise module

PROC – ENO4 –

*lncRNA.
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first brain regions that manifest the pathological phenotype of 
AD. The fusiform gyrus is important for the elaboration of visual 
stimuli and in particular for facial recognition. While it is known 
that the hippocampus is a brain area vulnerable in AD (West et al., 
2000), little is known about the relationship between the 
neurodegenerative damage sustained by fusiform gyrus and the 
pathologic manifestations of the disease. The fusiform gyrus is 
interested by the neurodegeneration in the subsequent stage of the 
disease, according to the Braak staging system (Macedo et al., 2023) 
and a correlation may be found between the inability of patients to 

recognize familiar faces as the disease progresses and the damage 
sustained by this region (Ma et al., 2020). In AD, various regions of 
the brain exhibit the hallmark pathological features associated with 
the condition that are NFTs and senile plaques. Each of these 
regions, characterized by their distinct histological and functional 
properties, appears to be  uniquely susceptible to the disease’s 
progression (Crist et al., 2021). Consequently, the transcriptomic 
alterations observed in these diverse brain areas may differ, reflecting 
their individual responses to AD pathology. In this context, the 
identification of shared molecular changes across brain regions 

TABLE 4 lncRNAs that are co-expressed with AD-related protein coding genes, according to the 1-TOM dissimilarity matrix in hippocampus (Hip) 
prioritized modules.

Gene Hip module Correlated lncRNAs

GABRA3 Brown ENSG00000259985, RFPL1S, ENSG00000230051, ENSG00000271755, ATP2B1-AS1, LINC02144, NUP50-DT, 

ENSG00000271882, CNIH3-AS2, ENSG00000261292, DHX9-AS1, PLPPR5-AS1, DLX6-AS1, RNF32-DT, LINC02023, 

ENSG00000287527, TRIM7-AS2, ENSG00000266335, ENSG00000272163, RAPGEF4-AS1, PARTICL, LINC00239, 

ENSG00000284707, HAR1A, ENSG00000274718, ENSG00000254921, INKA2-AS1, ENSG00000286391, LINC00390, KIF18B-DT, 

ENSG00000283743, ENSG00000253596, UNC5C-AS1, LINC02440, SLC26A4-AS1, DCTN1-AS1, ENSG00000286736, 

ENSG00000260196, ENSG00000261135, ENSG00000286918, ENSG00000260482, ARMCX5-GPRASP2, ENSG00000260464, NA, 

REPIN1-AS1, LINC02283, ENSG00000270883, ENSG00000261654, ENSG00000286129, LINC01208

CALB1 Purple ENSG00000260328, KCNK4-TEX40, LETR1, ENSG00000251680, ENSG00000256596, ENSG00000286282, ENSG00000261026, 

STARD4-AS1, ENSG00000253121, PFN2-AS1, LINC01494, ENSG00000249150, LINC00457, ENSG00000286230, LINC01621, 

LINC00839, TMCC1-DT, ERICH6-AS1, FGGY-DT, ENSG00000272247, LINC00571, ENSG00000287867, LINC01119, 

ENSG00000257194, ENSG00000245768, ENSG00000235450, CFAP20DC-DT, TDRKH-AS1, FLJ20021, MIR130AHG, BHLHE22-

AS1, ENSG00000227606, LINC01547, LINC00184, ENSG00000286111, LINC03040, MEF2C-AS2, ENSG00000285679, 

ENSG00000228151, ENSG00000269107, LINC00943, NA, ENSG00000271727, NA, ENSG00000259199, ENSG00000236958, 

ENSG00000253355, NECTIN3-AS1, ENSG00000287468, ENSG00000228222

SLC30A3 Lavenderblush3 ENSG00000251187, MGC4859, ENSG00000280145, ENSG00000287832, LINC01267, ENSG00000228162, LINC01571, 

ENSG00000259628, ENSG00000288015, ENSG00000247311, CYP4A22-AS1, LINC02688, ENSG00000259222, UCHL1-DT, 

ENSG00000145075, ENSG00000236106, LINC01765, ACBD3-AS1, LINC01014, CNTN4-AS1, ENSG00000270265, LINC00907, 

USP3-AS1, CCNO-DT, IGFBP7-AS1, ENSG00000285930, KIF23-AS1, ENSG00000249621, LINC02742, LINC00504, 

ENSG00000258752, ENSG00000286777, LINC02525, ENSG00000283383, ENSG00000286472, EWSAT1, ENSG00000249631, 

LINC03053, ENSG00000277010, FHAD1-AS1, LINC02838, ENSG00000287427, ENOX1-AS2, ENSG00000288040, LINC02133, 

TSBP1-AS1, ENSG00000276842, ENSG00000227712, ENSG00000253796, SPATA42

PLK2 Brown ENSG00000259985, RFPL1S, LINC02023, ATP2B1-AS1, CNIH3-AS2, LINC00390, ENSG00000287527, ENSG00000271882, 

ENSG00000274718, ENSG00000266335, ENSG00000254921, INKA2-AS1, ENSG00000230051, NUP50-DT, ENSG00000261292, 

PLPPR5-AS1, RNF32-DT, HAR1A, ENSG00000286391, RAPGEF4-AS1, DLX6-AS1, PARTICL, ENSG00000271755, 

ENSG00000229976, LINC02440, LINC00239, TRIM7-AS2, DCTN1-AS1, LINC02144, DHX9-AS1, LINC01829, 

ENSG00000283743, ENSG00000253596, ENSG00000287816, MEG8, ENSG00000260482, ENSG00000270883, NA, KIF18B-DT, 

ENSG00000254040, ENSG00000286736, REPIN1-AS1, ENSG00000272163, ENSG00000286675, NA, CD101-AS1, 

ENSG00000278727, MACROD2-IT1, LINC02389, MKNK1-AS1

NDST3 Brown RFPL1S, LINC02023, DCTN1-AS1, ATP2B1-AS1, ENSG00000259985, ENSG00000287068, CNIH3-AS2, MEG8, 

ENSG00000286675, LINC02389, LINC02440, INKA2-AS1, ENSG00000229976, NA, ENSG00000260920, ENSG00000272121, 

MKNK1-AS1, ENSG00000272944, ENSG00000278727, ENSG00000287527, ENSG00000270883, ENSG00000272420, 

ADAMTS19-AS1, SNHG14, ENSG00000255910, ENSG00000261292, ENSG00000255448, ENSG00000227681, 

ENSG00000266335, SNAP25-AS1, NUP50-DT, ENSG00000287976, ENSG00000249738, RNF32-DT, CD101-AS1, MYCNOS, 

ENSG00000287887, LINC01208, ENSG00000288062, LINC02740, ENSG00000261553, ENSG00000286716, LINC01123, 

LINC00621, ENSG00000260163, ZNF567-DT, MYG1-AS1, LINC01829, NA, ENSG00000268288

DRD5 Purple ACTR3-AS1, LETR1, ENSG00000229588, ST20-AS1, LINC01501, ENSG00000272106, LINC00839, ENSG00000283445, KCNK4-

TEX40, ENSG00000287844, ENSG00000235450, ENSG00000259560, ENSG00000286066, LINC01213, ENSG00000286282, 

ENSG00000236823, BHLHE22-AS1, ENSG00000256596, ENSG00000260328, CORO1A-AS1, ENSG00000246308, 

ENSG00000226149, ENSG00000271727, FLJ20021, LINC01119, ENSG00000231918, ENSG00000286867, LINC00943, 

ENSG00000287468, ENSG00000236744, LINC01358, ENSG00000269107, TRIM36-IT1, ENSG00000228151, INHBA-AS1, 

ENSG00000286389, NA, ENSG00000261411, ENSG00000286719, ENSG00000271901, ENSG00000287477, ENSG00000253507, 

ENSG00000287204, LINC02802, ENSG00000287255, STARD4-AS1, LINC01879, ENSG00000227598, ENSG00000285898, AFF2-

IT1
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affected in different stages of the disease holds significant 
importance. Such common alterations could indicate the presence 
of underlying molecular mechanisms that contribute to the 
development and progression of AD. Unraveling these shared 
molecular signatures could provide valuable insights into the 
fundamental pathological processes driving AD pathogenesis.

The hippocampus RNA-seq dataset derived from patients that 
were accurately stratified (Annese et al., 2018) and the same criteria 
were applied to select samples from the original fusiform gyrus 
RNA-seq dataset (Friedman et  al., 2018). Thus, although the two 

cohorts were not large, the low variability among AD patients and 
relative controls could contribute to the robustness of our analyses and 
results. We are aware that analyzing larger datasets would directly 
improve the statistical power of the approach adopted to give more 
strength to the results. Although several AD RNA-seq datasets are 
available, they did not offer the level of stratification we desired or they 
come with access restrictions as it is the case for the longstanding 
ROSMAP project (Bennett et al., 2018).

The continuous work in the gene annotation field, by projects as 
ENCODE and FANTOM (Snyder et al., 2020; Abugessaisa et al., 2021), 

TABLE 5 lncRNAs that are co-expressed with AD-related protein coding genes, according to the 1-TOM dissimilarity matrix, in prioritized fusiform 
gyrus (Fg) modules.

Gene Fg module Correlated lncRNAs

GABRA3 Brown FLRT2-AS1, RFPL1S, COPG2IT1, ENSG00000251095, ENSG00000258768, ENSG00000260163, ENSG00000274718, 

ENSG00000258945, ENSG00000255202, ENSG00000267396, ENSG00000283183, MSC-AS1, ENSG00000258931, TSC22D1-AS1, 

ENSG00000257522, ENSG00000197332, ENSG00000259678, LINC01182, ENSG00000283538, ENSG00000286282, 

ENSG00000286971, ENSG00000272944, DCTN1-AS1, ARMCX5-GPRASP2, ENSG00000287241, ANKRD34C-AS1, SPNS2-AS1, 

ENSG00000281160, LINC02857, MAP4K3-DT, LIN28B-AS1, LINC01007, ENSG00000288062, ENSG00000255910, DGCR5, 

RAPGEF4-AS1, ENSG00000287315, ZIM2-AS1, ENSG00000258035, NA, ENSG00000286125, ENSG00000240086, LINC02035, 

ENSG00000251680, ENSG00000248559, ENSG00000287769, LINC01963, NA, LUARIS, ENSG00000266573

CALB1 Lavenderblush3 ENSG00000273275, LY86-AS1, SLC26A4-AS1, ENSG00000261037, ENSG00000278727, ENSG00000236064, MAL2-AS1, LINC01332, 

ENSG00000229618, ENSG00000260412, ENSG00000285634, LETR1, ENSG00000256538, ENSG00000287038, ENSG00000249684, 

ENSG00000223944, LINC01331, LINC01476, INHBA-AS1, MIR4500HG, ENSG00000255595, ATP2B1-AS1, LINC00507, 

ENSG00000233928, NA, CFAP20DC-AS1, ENSG00000287018, LINC02009, LINC01885, LINC02346, ENSG00000285582, 

ENSG00000255087, ENSG00000253452, ENSG00000254664, CYP1B1-AS1, ENSG00000285572, ENSG00000284428, 

ENSG00000286771, ACAP2-IT1, ENSG00000253762, ENSG00000286888, LINC01250, ENSG00000278911, ENSG00000248837, 

ENSG00000240291, ENSG00000262267, ENSG00000286198, ENSG00000249453, ENSG00000255372, MAP3K4-AS1

SLC30A3 Lavenderblush3 LY86-AS1, ENSG00000236064, SLC26A4-AS1, ENSG00000273275, LINC02885, ENSG00000260412, LETR1, ENSG00000253762, 

CFAP20DC-AS1, LINC01476, MIR4500HG, ENSG00000251600, ENSG00000287690, LINC01250, LINC02346, ENSG00000253452, 

ENSG00000284703, ENSG00000255595, ATP2B1-AS1, ENSG00000285634, INHBA-AS1, LINC00343, ENSG00000255087, 

LINC03026, ENSG00000223944, LINC00390, LINC01332, LINC01616, PYDC2-AS1, ENSG00000253553, ENSG00000248837, 

ENSG00000286961, LINC00642, LINC01331, ENSG00000283403, ENSG00000278727, THSD4-AS1, CYP4F26P, ENSG00000233928, 

MIR137HG, ENSG00000229618, ENSG00000285966, ENSG00000283294, ENSG00000224404, ENSG00000286934, 

ENSG00000287271, MEG3, NA, ENSG00000261037, SNAP25-AS1

PLK2 Lavenderblush3 LETR1, LY86-AS1, CFAP20DC-AS1, SLC26A4-AS1, LINC00390, LINC02346, ATP2B1-AS1, ENSG00000260412, MIR137HG, 

ENSG00000253553, MIR4500HG, ENSG00000236064, ENSG00000233928, LINC01616, ENSG00000285634, ENSG00000278727, 

LINC01885, ENSG00000273275, ENSG00000287900, ENSG00000287439, ENSG00000285582, ENSG00000286720, 

ENSG00000224404, ENSG00000287690, LINC03026, LINC00642, LINC01618, LINC00488, ENSG00000286447, LINC01476, INHBA-

AS1, ENSG00000285572, SNAP25-AS1, ENSG00000253452, ENSG00000251600, NA, THSD4-AS1, MAL2-AS1, MAP3K4-AS1, 

MEG3, ENSG00000284703, PYDC2-AS1, LINC02885, ENSG00000255595, ENSG00000285966, LINC01250, ENSG00000248837, 

ENSG00000286386, ENSG00000255087, ENSG00000287671

NDST3 Lavenderblush3 ENSG00000273275, ENSG00000255595, ENSG00000285582, LY86-AS1, LINC00507, ENSG00000287900, MIR4500HG, 

ENSG00000285634, ENSG00000229618, LETR1, LINC01885, ENSG00000253452, LINC02346, MAL2-AS1, LINC01331, LINC01476, 

ENSG00000278727, ENSG00000260412, ENSG00000233928, ENSG00000223944, ENSG00000261037, SLC26A4-AS1, 

ENSG00000287018, ENSG00000255087, LINC01250, NA, INHBA-AS1, ENSG00000253553, ENSG00000248837, ENSG00000287038, 

ENSG00000240291, LINC01332, ENSG00000285572, ENSG00000286386, ACAP2-IT1, ENSG00000286286, ENSG00000262267, 

ATP2B1-AS1, ENSG00000286720, CTXN2-AS1, LINC00488, ENSG00000287439, ENSG00000230393, MIR137HG, THSD4-AS1, 

CFAP20DC-AS1, ENSG00000256538, ENSG00000249453, ENSG00000258526, LINC00642

DRD5 Brown COPG2IT1, RFPL1S, FLRT2-AS1, ENSG00000251095, ENSG00000258768, ENSG00000286125, MSC-AS1, ENSG00000257522, 

MAP4K3-DT, ENSG00000255202, ENSG00000258945, LINC01140, DCTN1-AS1, PART1, ENSG00000281160, ENSG00000260163, 

ENSG00000272944, CDH13-AS2, LINC02857, ENSG00000231863, TUBA1B-AS1, ENSG00000267396, ENSG00000283183, 

ENSG00000286353, ENSG00000286282, LINC01963, ENSG00000260920, ENSG00000288062, NA, LINC01182, DPP10-AS1, 

TSC22D1-AS1, ENSG00000286971, ENSG00000197332, ENSG00000233290, ENSG00000260838, OIP5-AS1, ENSG00000236377, 

ENSG00000266573, ENSG00000274718, LIN28B-AS1, ENSG00000257434, THCAT155, ENSG00000286342, ENSG00000260966, 

ENSG00000261167, RAPGEF4-AS1, LUARIS, ENSG00000260108, ENSG00000259985
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allowed us to identify more genes in total and more DE genes with 
respect to the original analyses of the two datasets. Although the two 
brain regions are underlying different in cytologic terms, the comparative 
analysis of the two DE gene groups identified 1,082 DE genes in common 
between the two brain regions, largely with the same deregulation 
behavior, since only 39 genes showed an opposite deregulation. Thus, 
these loci may represent a common sign of deregulation, and establish a 
novel knowledge resource to shed light on the way different areas of the 
brain are engaged by the AD neurodegenerative process.

In this study we focused our attention on DE lncRNAs, because, 
as epigenetic regulators of brain functions, their deregulation could 
be directly involved in AD pathogenesis. The function of the majority 
of lncRNAs in the brain and their role in the disease is not yet known. 
So far, the best documented lncRNAs in AD are those involved in AD 
hallmarks, as antisense transcripts of known AD-related genes, and 
many more lncRNAs are likely to be  operating in trans in 
neurodegenerative diseases (Riva et al., 2016). We characterized the 
biotype of the DE lncRNAs identified in the two regions and we found 
that most of them belong to the antisense category. Thus, the identified 
DE antisense lncRNAs might alter many and different cellular 
processes, as it is known that antisense lncRNAs interact with the 
sense RNA (affecting splicing, polyadenylation, stability, nuclear 
transport, etc.) but also they act as chromatin modifiers, by 
establishing complexes with DNA and proteins, such as RNA–DNA 
duplexes and RNA-protein complexes, that may influence gene 
transcription (Gagliardi et  al., 2018). For example, the Dynactin 
Subunit 1 (DCTN1) is known to play a critical role in microtubule 
stability, a biological process increasingly recognized as a potential 
therapeutic target for tau pathology (Rayaprolu et al., 2021). DCTN1-
AS is the antisense of DCTN1 gene and we  found this lncRNA 
downregulated in both brain regions and co-expressed with the same 
AD-related genes. DCTN1 was cited as a hub gene within a 
proteomics-based interaction network module in a study aimed at 
unraveling the proteopathic biochemical phase of AD (Rayaprolu 
et al., 2021). We may speculate that DCTN1-AS could interact with the 
DCTN1 gene or its transcript, potentially modulating its function, 
within a pathway involving GABRA3. Similarly, STARD4, a gene 
regulating the lipid metabolism, possesses an antisense gene. It was 
found deregulated in AD in a differential expression analysis, 
comparing APP/PS1 and healthy murine models with the aim of 
investigating the process of spine turnover (Heiss et  al., 2017). 
We  found STARD4-AS as a downregulated lncRNA in AD 
hippocampus and it could be a valid candidate for investigating its role 
in the regulation of STARD4 expression.

To gain insights into the function of the DE lncRNAs, we used the 
WGCNA bioinformatic tool that is capable of building gene 

correlation networks and identifying modules of co-expressed genes, 
with the final goal of studying the system-level functionality of genes. 
LncRNAs that result to be correlated to better-known protein coding 
genes by similar expression patterns (co-expressed) may be involved 
in the same cellular functions and molecular pathways. For this 
reason, gene co-expression networks may help formulating significant 
predictions about the function of lncRNAs.

Several co-expression and differential co-expression network 
analyses have already been applied on RNA-seq data from 
hippocampus and fusiform gyrus, leading to the identification of 
co-expressed networks and genes associated with AD (Sato et al., 2019; 
Crist et al., 2021; Xia et al., 2022; Ribeiro-dos-Santos et al., 2023). As 
our aim was the identification of lncRNAs that could take part of the 
pathologic molecular mechanisms of AD, we  prioritized modules 
comprising the majority of lncRNAs which could be  identified as 
driver genes and could be postulated to influence the expression of 
other genes or that could be directly involved in the causal mechanisms 
of AD. The validity of this approach was confirmed by the pathway 
enrichment analysis of the prioritized modules for each brain region 
that highlighted that these modules were related to neurotransmission, 
memory consolidation and/or neurological diseases (Supplementary  
Tables S7, S8). Interestingly, we  found several DE genes that were 
present in both hippocampus and fusiform gyrus prioritized modules 
(Table 3). These targets may result co-regulated or members of the 
same functional pathway and investigating their function may lead to 
understanding pathogenetic pathways common to the two brain 
regions. Several lncRNAs were identified as co-expressed with these 
DE coding genes related to AD in the prioritized modules for the two 
brain regions (Tables 4, 5). A limitation of existing co-expression 
analyses is that they focus on driver genes without offering any insight 
on their co-expression neighborhood in the modules they have been 
assigned to. On the contrary, our analysis identified lncRNAs that 
resulted closely co-expressed with DE coding genes related to AD and, 
although their co-expression may be  casual, the possibility of 
discovering new interactors of yet unknown pathological mechanisms 
of AD is worthy of future investigation. As a result of this co-expression 
analysis, we  found six DE lncRNAs (RFPL1S, ENSG00000274718, 
DCTN1-AS1, ATP2B1-AS1, LINC00390 and ENSG00000278727) that 
are co-expressed with the same AD related coding gene in both 
hippocampus and fusiform gyrus (Table 6). The function of these 
lncRNAs is unknown. Two of these co-expressed lncRNAs, as 
ENSG00000260163 and LINC01962 were reported in studies 
investigating the correlation between the expression of lncRNAs and 
drug abuse (Bannon et al., 2015; Rompala et al., 2023), while their 
involvement in AD has not been investigated. LINC0839 is known to 
enhance the expression of glioma stem cell lines (Kobayashi et al., 
2024). Hence, all these lncRNAs represent a source for further 
molecular studies aimed at elucidating their function that could shed 
light on the unknown pathogenic mechanisms of AD.

Finally, having the hippocampal samples from AD patients of the 
Annese et  al. paper (Annese et  al., 2018) available, by ddPCR, 
we  analyzed the expression of seven deregulated lncRNAs 
(MAP4K3-DT, MEG9, MEG8, PCA3, HAR1A, NECTIN3-AS1 and 
STARD4-AS), chosen as their expression is supported by the GENCODE 
annotation and four of them (NECTIN3-AS1, MAP4K3-DT, PCA3, and 
HAR1A) resulted deregulated also in the AD fusiform gyrus. The 
deregulated expression of these lncRNAs was confirmed as we observed 
the same trend of decrease of the RNA-seq analysis (Figure  2), 
demonstrating the consistency of the RNA-seq bioinformatic analysis 

TABLE 6 Common differentially expressed lncRNAs in hippocampus and 
fusiform gyrus that are co-expressed with differentially expressed AD-
related protein coding genes.

Ensembl ID DE lncRNA 
symbol

Co-expressed DE 
protein coding genes

ENSG00000225465 RFPL1S GABRA3

ENSG00000274718 – GABRA3

ENSG00000237737 DCTN1-AS1 GABRA3

ENSG00000271614 ATP2B1-AS1 PLK2; NDST3

ENSG00000226519 LINC00390 PLK2

ENSG00000278727 – PLK2; NDST3
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and the robustness of the computational approach used to design the 
primer pairs. Interestingly, the expression of MAP4K3-DT has already 
been found to be altered in AD brains, through a multi-omic data 
analysis by Klein et al. (2020). MEG8 is a member of a lncRNA cluster, 
including MEG3 and MEG9, involved in the response to glycine 
stimulation in a N-methyl-d-aspartate glutamate receptors (NMDAR)-
dependent manner in a murine model (Tan et al., 2017) and this is 
relevant because the NMDA signaling is impaired in AD (Dore et al., 
2017). MEG9 has been recently reported to be downregulated in AD 
hippocampus (Wang et al., 2022) and involved in the pathogenesis of 
autoimmune and neurodegenerative diseases (Plewka and Raczynska, 
2022). Regarding PCA3, it was extensively studied in cancer (Lemos 
et al., 2019) and was found to be differentially expressed in the exosomes 
of cerebrospinal fluid of AD patients (Gui et al., 2015). Finally, in a study 
focusing on the network of miRNA sponges for various neuropsychiatric 
disorders, including autism, HAR1A was identified as a candidate for 
this role in the autism spectrum disorder (Balasubramanian and Vinod, 
2022) and was also found to be  downregulated in AD (Li and De 
Muynck, 2021).

5 Conclusion

Our results demonstrate the existence of specific and common 
deregulation of the expression profile of the hippocampal region and the 
fusiform gyrus of AD patients. We  are aware that our data require 
functional investigation of the involvement of deregulated lncRNAs in 
AD. In fact, correlation analyses are excellent tools for predicting the 
putative involvement of genes into functional pathways, but they cannot 
demonstrate it, nor can they provide evidence for causal relationships 
between a gene and the neurodegenerative process they are correlated 
with. However, the common deregulated lncRNAs in AD hippocampus 
and fusiform gyrus of AD patients still offer a valuable shortlist of 
candidates to be investigated for their involvement in the AD pathogenesis 
and for the design of novel therapeutic approaches based on lncRNAs.
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