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Backgrounds: Freezing of gait (FoG) is a common and debilitating symptom of

Parkinson’s disease (PD) that can lead to falls and reduced quality of life. Wearable

sensors have been used to detect FoG, but current methods have limitations in

accuracy and practicality. In this paper, we aimed to develop a deep learning

model using pressure sensor data from wearable insoles to accurately detect

FoG in PD patients.

Methods: We recruited 14 PD patients and collected data frommultiple trials of a

standardized walking test using the Pedar insole system. We proposed temporal

convolutional neural network (TCNN) and applied rigorous data filtering and

selective participant inclusion criteria to ensure the integrity of the dataset. We

mapped the sensor data to a structured matrix and normalized it for input into

our TCNN. We used a train-test split to evaluate the performance of the model.

Results: We found that TCNN model achieved the highest accuracy, precision,

sensitivity, specificity, and F1 score for FoG detection compared to other models.

The TCNN model also showed good performance in detecting FoG episodes,

even in various types of sensor noise situations.

Conclusions: Wedemonstrated the potential of usingwearable pressure sensors

andmachine learningmodels for FoG detection in PD patients. The TCNNmodel

showed promising results and could be used in future studies to develop a

real-time FoG detection system to improve PD patients’ safety and quality of

life. Additionally, our noise impact analysis identifies critical sensor locations,

suggesting potential for reducing sensor numbers.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease causing

motor and non-motor manifestations in older populations.

Freezing of gait (FoG) is a common symptom in the PD,

simply defined as “an episodic inability to generate effective

stepping in the absence of any known cause other than

Parkinsonism or high-level gait disorders.” It is most experienced

during turning and step initiation but also when faced with

spatial constraint, stress, and distraction (Giladi and Nieuwboer,

2008).

The event of FoG could affect the locomotive function and

quality of life in patients with PD, even causing falls (Okuma,

2014; Perez-Lloret et al., 2014; Shah et al., 2018). The prevalence

of FoG is common, measuring as 37.9% in early stages, and

64.6% for advanced stages of the disease course (Zhang et al.,

2021). However, in other previous epidemiological report, the

prevalence of FoG varies from 5% to 85.9% of patients (Giladi

et al., 2009; Lilleeng et al., 2015). This discrepancy in observation

results could be due to the ambiguity of diagnosing FoG by

self-reported outcomes or observational gait analysis in a clinic.

Differences between self-reported and clinically detected FoG

were reported by Sawada et al., describing that 53.7% of patients

who had not shown clinically detected FoG experienced self-

reported FoG (Sawada et al., 2019). Therefore, FoG could be

underestimated in situations where objective diagnostic tools

are absent.

Not only drugs or deep brain stimulation but also non-

pharmacological treatments such as auditory or visual cueing

can be useful tools to alleviate FoG symptoms in PD. External

cueing-augmented training can reduce the severity of FoG,

improve gait parameters, and even improve upper extremity

movement after training (Ginis et al., 2018). However, continuous

cueing results in cueing dependency or fatigue (Spildooren

et al., 2012; Ginis et al., 2017). Therefore, the demand for

‘intelligent cueing’, which means providing cueing based

on gait deviation or motor blocks, has been highlighted in

recent times.

For the two reasons mentioned above, detecting or

predicting FoG using wearable sensors has been tried by

several researchers (Pardoel et al., 2019). Previous research

about detecting freeze episodes in parkinsonism has used

accelerometers or inertial measurement unit (IMU) sensors

at various anatomical positions (Kita et al., 2017; Pepa et al.,

2017; Saad et al., 2017; Prateek et al., 2018). Detecting FoG

using foot pressure monitoring systems has also been used in

previous reports alone (Shalin et al., 2020, 2021), or together with

accelerometers (Marcante et al., 2020), or IMU data (Pardoel

et al., 2020, 2021). Foot pressure monitoring systems using

insoles could be a potentially useful tool in detecting FoG

events in patients with PD, as they are more convenient than

accelerometers or IMU sensors, which must be attached to

various parts of the body. Therefore, using only a foot pressure

monitoring system, there is a need to detect FoGs determined

by proper algorithms. The purpose of this trial is detection of

FoG using wearable plantar pressure sensors in patients with

PD, and development of deep learning algorithms to detect

the FoG.

2 Method

2.1 Participants

This study was prospective case-series to develop the algorithm

of detecting FoG in patients with PD using plantar pressure sensor.

A convenient sampling of 14 adult participants was recruited

from the outpatient clinics in the neurology department of tertiary

hospital. Inclusion criteria of trial was as follows; 1. Diagnosed

with PD, 2. Self-reporting events of FoG at least once a week, 3.

Able to perform community ambulation without a gait aid, 4. No

lower limb injury or deformity that could affect the locomotive

function of participants. Exclusion Criteria was as follows; 1.

Presence of deep brain stimulation, 2. History of other diseases

could affect the locomotive function of the participants, such as

cerebral infarction, 3. Inability to understand the trial process due

to cognitive dysfunction or language problem, 4. Declining to

participate.

All participants visited once to collect data during the study

period, and their medication dosage or schedule were not modified

during the data collection process. After obtaining informed

consent, basal demographic data of participants such as age, sex,

height, weight, body mass index (BMI), and duration from the

diagnosis of PDwere also collected. Themotor examination section

from the Unified Parkinson’s Disease Rating Scale (UPDRS III)

was also assessed. Written informed consent was obtained from

all participants, and the study protocol was approved by the

local ethics committee of Chungnam National University Hospital

(registry number: CNUH 2022-01-011).

2.2 Plantar pressure sensing

For plantar pressure analysis, the Pedar system (Novel GmbH,

Munich, Germany, Figure 1) was used. The Pedar system utilizes

an insole with 99 sensors to measure the pressure range from 30 to

1,200 kPa (Putti et al., 2007). It transmits data through Bluetooth

telemetry and sets the data transmission rate to 50 Hz. Before each

data collection, the insole was calibrated, and all the sensors were

checked to ensure functionality.

There are seven insole sizes: 240–245 mm, 255–260 mm, 265–

270 mm, 280–285 mm, 295–300 mm, 310–315 mm, and 320–325

mm. The subject’s foot size was measured, and an appropriately

sized insole was applied to ensure that the entire foot could be

measured by the sensors in the insole.

2.3 Walking path

Patients were instructed to follow the walking paths

(approximately 140 m). The walking path consisted of 8 tasks. The

details of the tasks were as follows (Figure 2):

1. After the start sign, participants were asked to walk 3 m,

turn around the cone, and return to the starting point. Then,

participants waited for 30 s.

2. Walk straight for 3 m.

3. Pass through a narrow road with a width of 1.2 m for 3 m.
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FIGURE 1

(A) The Pedar system (Novel GmbH, Munich, Germany). (B) Pedar insoles’ pressure output, numeric numbers indicate the pressure measured by each

sensor (kPa). (C, D) Example of the participant who wearing the Pedar system.

4. Turn right and wait for 30 seconds before entering the straight

section.

5. After waiting, participants were asked to walk straight 20 m to

the cone on the other side of the aisle, turn around the cone, and

stop. This procedure of walking the straight aisle was repeated

five times.

6. After the five repetitions, participants came back to the

cone, turned left, and passed through the narrow road

section again.

7. Participants were asked to turn around approximately 360

degrees at the cone before the starting point.

8. Return to the starting point.

The entire walking test was recorded using a smartphone

camera to detect the clinically observed FoG events and

synchronize the plantar pressure data with video clips. Each

participant completed from 3 to 5 trials in test session. The first trial

was a baseline evaluation, and if no FoG events were observed in the

first trial, additional tasks were added to elicit FoG events. These

additional tasks consisted of two parts: participants were asked to

count from 100 to 0 in reverse continuously, and to hold a plastic

tray with cups filled with water, walking without spilling the water.

To prevent falls during the test, one or two companions supervised

the entire test.

2.4 Detection of FoG

FoG events were visually identified using the video. Two

authors, CWM and BCL, who have more than 5 years of

experience in managing patients with PD thoroughly monitored

the video, identified FoG events, and labeled them from the

onset to termination of the FoG. During the labeling process,

synchronization of the video signals and recorded data from

the plantar pressure sensor was confirmed using multiple heel

strike event correlations. If the occurrence of FoG events did not

correspond, those events were not recorded as true events unless

an agreement between the two authors was reached.

2.5 Data filtering

Before analysis, the data underwent a rigorous filtering process

to ensure the integrity of the dataset. During the data capture phase,

instances were identified where the Bluetooth telemetry suffered

from transient errors, resulting in periods of inaccurate recording.

To maintain the quality of our dataset, we systematically removed

not only the erroneous data points but also the subsequent data that

could be influenced by these errors.
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FIGURE 2

Illustration of the walking test path. The walking path was meticulously designed to incorporate scenarios where each distinct type of FoG could be

observed. FoG can manifest in several ways, categorized into five types: (1) start hesitation, (2) turn hesitation, (3) apparent hesitation in tight quarters,

(4) destination hesitation, and (5) open space hesitation (Fahn, 1995).

Our proposed architecture, TCNN, and the baseline

model, LSTM, both rely on historical data to predict future

events. Particularly, the LSTM model considers up to 12.2

seconds of past data to inform its predictions. Therefore, to

eliminate any potential contamination of the LSTM’s input, we

extended our data cleansing process to remove 12.2 seconds

of data following each identified error. This precautionary

step was crucial to prevent any erroneous influence on

the model’s performance and to ensure that the input data

remained robust and reliable for both TCNN and LSTM

architectures.

2.6 Train-test split for model evaluation

After the data filtering stage, we executed a train-test split.

Participants individually allocated one trial as their testing set and

the remaining trials as their training set, conducting training and

testing based on this setup.

In this split, we ensured that for each participant, both the

training and testing sets had at least one occurrence of a FoG

event. If the training set lacked FoG events, the model would

predict all data as non-FoG. Conversely, if the testing set had no

FoG events, the significance of sensitivity measurement would be

compromised. This careful allocation of trials aimed to provide

a balanced representation of FoG episodes in both sets. Our

criteria mandated the presence of at least two trials with FoG

episodes after data filtering, which was a determinant factor in

participant selection.

2.7 Mapping sensor data to a structured
matrix

To prepare the input for our neural network, we transformed

the sensor data into a structured matrix form that corresponds

to the anatomical layout of a foot. As described in Section

2.2, the pedar system consists of 99 sensors on each foot,

totaling 198 pressure sensors when both feet are considered.

We organized the vector composed of the output from these

198 pressure sensors into a 15×14 matrix. Considering that

15 multiplied by 14 equals 210, zeros were strategically

inserted to fill the gaps in areas without sensors. This

arrangement creates a visual and spatial representation

resembling a footprint. The resulting matrix is illustrated in

Supplementary Figure S5.
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2.8 Normalization of sensor data

To normalize the sensor data across all trials, a normalization

procedure was applied to the collected sensor values. This process

was designed to scale the data such that, at the moment of

maximum pressure recorded by the sensors on each foot, the sum

of all sensor values would equal to 1,000.

2.9 Baseline models

For comparative purposes, we considered two baseline models:

a Convolutional Neural Network (CNN) (Shalin et al., 2020) and

a Long Short-Term Memory (LSTM) (Shalin et al., 2021) model.

Detailed descriptions of these baseline models, including their

architectures and implementation details, are provided in Section

3 of the Supplementary material.

2.10 Temporal convolutional neural
network (TCNN)

In this study, we propose a TCNN, designed to handle multi-

temporal data. TCNN differs from the baseline CNN by taking

input from multiple time frames of insole matrices. The input to

TCNN is structured as a tensor of shape t × 15 × 14, where each

temporal slice has the form of 15 × 14 matrix explained in Section

2.7, representing sensor data at a specific time instance.

To deal with this input structure, we adapted the ResNet-

18 architecture to process the temporal dimension t as its input

channel. This modification allows the TCNN to analyze not just

spatial but also temporal patterns across different moments in

the gait cycle, enhancing its ability to detect subtle variations and

dynamics indicative of FoG episodes.

The TCNN in our study was designed to capture both fine

and coarse temporal changes relevant to gait analysis, particularly

for detecting FoG episodes. To achieve this, we employed a dual-

scale approach in feeding the input to the TCNN. The model

concurrently examine two distinct temporal scales: one scale targets

finer details by examining 18 frames with a 4-frame interval, while

the other focuses on broader, long-term changes by considering

6 frames at a 13-frame interval. The vectors from both the fine

and coarse scales are then concatenated to form a unified input,

which is fed into the model. This concatenation allows the TCNN

to analyze both detailed short-term dynamics and more extended

temporal patterns.

2.11 Data augmentation techniques

To bolster the robustness of our TCNN and baseline models,

a series of probabilistic data augmentation techniques were

employed. These techniques not only introduce variability to

simulate different gait conditions but also help the models adapt

to diverse scenarios:

• Temporal scaling: In the TCNN, the timing of input frames

was varied within a range of ±40%, and for the LSTM, within

±50%. This scaling was done to mimic natural gait speed

fluctuations, effectively varying the speed of the sequence

between 60% (50%) to 140% (150%) of its original rate.

• Horizontal flip:A horizontal flip was applied to the input data

to represent a mirrored version of the gait pattern. With a

probability of 30%, we flipped all frames in an input sequence

uniformly for both TCNN and CNN, ensuring that either the

entire sequence was flipped or none of it was, avoiding partial

flips.

• Global scaling: To account for sensor sensitivity, we

uniformly adjusted the magnitude of all sample values within

each input. This scaling was applied globally, ranging from 0.1

to 1.9 times the original value for each input sequence.

• Gaussian blur: To simulate sensor imprecision and minor

transient changes in pressure distribution, we applied a

Gaussian blur with a 50% probability. We used a kernel size of

3 and a standard deviation uniformly selected between 0.1 and

2, applying this blur consistently across all frames in an input

sequence uniformly for both TCNN and CNN. This technique

adds a realistic touch of uncertainty to the input data, akin to

natural sensor behavior.

2.12 Validation of developed models

We evaluated the performances of LSTM, CNN, and the

proposed TCNN models using various performance metrics.

Considering not only accuracy but also the imbalance between

FoG and non-FoG data, we measured precision, sensitivity,

specificity and F1 score (Hicks et al., 2022). Each metric was

calculated by summing the true positives, true negatives, false

positives, and false negatives across all participants and over three

repeated experiments with different random seeds. The reported

values represent the performance metrics derived from these

aggregated sums.

2.13 Impact of sensor noise analysis

Due to the challenges and costs associated with maintaining

numerous sensors, it is crucial to reduce their number to simplify

the device and decrease expenses. To determine which sensors are

essential, we systematically introduced noise to various sensors and

assessed the impact on performance. The specific selection of the

three sensor locations–big toe, forefoot, and heel–was influenced by

their frequent usage in existing smart insole systems (Sazonov et al.,

2011). This approach allows us to identify which sensors are critical

for maintaining performance integrity and should be prioritized in

streamlined device designs.

• Raw: No noisy sensors

• Big toe: 4 noisy sensors near the big toe

• Forefoot: 4 noisy sensors at the forefoot

• Heel: 4 noisy sensors at the heel
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For each of the above three types, we considered a constant

output value of noisy sensors, which is 50 per sensor, resulting

in a total noise of 200 per foot as each foot has 4 noisy

sensors. The exact positions of the noise are illustrated in

Supplementary Figures S6–S8.

3 Results

From the original cohort of 14, only four participants’ data

satisfied the criteria of Section 2.6. The basal demographics and

clinical characteristics of selected four participants were described

in Section 1 of Supplementary material. Detailed data amounts of

FoG and non-FoG in each and total trials was depicted in the

Supplementary Figures S1–S4.

We trained LSTM, CNN, and TCNNmodels, and evaluated the

performance of each model on the test set. We note that the models

were trained solely on raw data without artificially added noise, and

the three types of noise described in Section 2.12 are applied to the

test set (Supplementary Figures S5, S6).

The experimental results can be found in Table 1.

Inmost situations andmetrics, our TCNNmodel demonstrated

superior performance compared to both LSTM and CNN models.

In raw situations without noise, our TCNN achieved an accuracy

of 0.99, precision of 0.68, sensitivity of 0.88, specificity of 0.99, and

an F1 score of 0.76 in detecting FoGs, consistently outperforming

LSTM and CNN. In comparison, the LSTM model achieved an F1

score of 0.07, and the CNN model achieved an F1 score of 0.48 in

detection of FoG. The detailed results of LSTM, CNN, and TCNN

for each participant can be found in the Supplementary Tables S2–

S5.

The analysis presented in Table 2 reveals distinct impacts of

various noise situation on the performance of the TCNNdepending

on each participant’s CoP distribution and sensor placement. For

instance, participants ID1, ID3, and ID4, who predominantly

exhibit CoP concentrated at forefoot when FoG occured, were

exhibited decreased specificity due to big toe and forefoot noise,

which would likely misclassify non-FoG as FoG. Conversely, heel

noise significantly reduced sensitivity for ID1, ID3, and ID4. This

effect is likely due to the heel noise shifting the CoP backward,

causing FoG events to be misclassified as non-FoG. This results

in an increase in false negatives and, consequently, a decrease in

sensitivity, aligning with our predictions.

The case of ID2 presented a more complex scenario. With the

CoP distributed both at the big toe, forefoot and heel during FoG,

it was anticipated that big toe and forefoot noise would reduce both

sensitivity and specificity by misclassifying FoG events as non-FoG.

However, heel noise maintained high specificity, deviating from

predictions.

4 Discussion

4.1 Summary of findings

Our examination highlights the TCNN model’s capability to

discern FoG events compared to other models (CNN, LSTM)

in various test scenarios. The noise introduced in the three

TABLE 1 Comparison of performance metrics across di�erent models

and noisy sensor positions for the FoG detection task.

Model Raw Big toe Forefoot Heel

Accuracy

LSTM 0.69 0.63 0.63 0.69

CNN 0.98 0.89 0.77 0.93

TCNN 0.99 0.90 0.58 0.97

Precision

LSTM 0.04 0.03 0.03 0.03

CNN 0.36 0.08 0.03 0.01

TCNN 0.68 0.08 0.03 0.10

Sensitivity

LSTM 0.74 0.76 0.76 0.66

CNN 0.70 0.54 0.47 0.02

TCNN 0.88 0.49 0.93 0.14

Specificity

LSTM 0.69 0.63 0.63 0.69

CNN 0.98 0.89 0.78 0.94

TCNN 0.99 0.91 0.57 0.98

F1 Score

LSTM 0.07 0.06 0.06 0.06

CNN 0.48 0.13 0.06 0.01

TCNN 0.76 0.14 0.07 0.12

TP

LSTM 2,195 2,262 2,260 1,963

CNN 2,099 1,606 1,401 72

TCNN 2,623 1,454 2,771 423

FP

LSTM 56,746 67,834 67,426 55,655

CNN 3,693 19,477 40,046 10,875

TCNN 1,253 16,868 78,126 3,741

TN

LSTM 125,066 113,978 114,386 126,157

CNN 178,119 162,335 141,766 170,937

TCNN 180,559 164,944 103,686 178,071

FN

LSTM 790 723 725 1,022

CNN 886 1,379 1,584 2,913

TCNN 362 1,531 214 2,562

FoG, Freezing of Gait; LSTM, Long Short-Term Memory; CNN, Convolutional Neural

Network; TCNN, Temporal Convolutional Neural Network; TP, True Positives; FP, False

Positives; TN, True Negatives; FN, False Negatives.

FoG and non-FoG episodes are considered positive and negative, respectively. Bold values

indicate the best performance for each metric and sensor position.

sensor locations (big toe, forefoot, and heel area) caused the

performance of the algorithms to decrease compared to the raw

scenarios.We also observed fluctuations in performance among the

participants, which could be attributed to the varying amounts of

FoG data.

4.2 Comparison with previous studies

In our experiments TCNN model achieved a sensitivity of

0.88 and a specificity of 0.99 using foot pressure sensor data,

outperforming the other models, with the CNN achieving 0.70

and 0.98, and the LSTM achieving 0.74 and 0.69. Compared to

other studies, our results are competitive. In comparison, Shalin
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TABLE 2 CoP scatter plot and performance of TCNN for individual test datasets.

ID: 1 ID: 2 ID: 3 ID: 4

Setup Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Raw 0.81 0.99 0.68 0.99 1.00 1.00 0.96 1.00

Big toe 0.93 0.83 0.39 0.86 0.90 1.00 0.44 1.00

Forefoot 0.24 1.00 1.00 0.00 0.84 0.82 1.00 0.00

Heel 0.04 1.00 0.57 0.90 0.00 1.00 0.00 1.00

FoG, Freezing of Gait; CoP, Center of Pressure; TCNN, Temporal Convolutional Neural Network.

FoG and non-FoG episodes are considered positive and negative, respectively.

et al. (2020) reported 0.92 and 0.96 with a CNN, and Shalin

et al. (2021) reported 0.82 and 0.89 with a two-layer LSTM

model. Additionally, Pardoel et al. (2022) showed that using

foot pressure data from only the side more severely affected

by PD, still yielded reasonable performance with a sensitivity

of 0.74 and a specificity of 0.85. Studies using IMU data

showed varied performance, such as San-Segundo et al. (2019)

achieving 0.95 and 0.75 with a CNN, and Borzì et al. (2021)

reporting 0.94 and 0.92 for those on dopaminergic therapy, and

0.94 and 0.85 for those not on therapy using decision trees

and support vector machine models. Combining IMU and foot

pressure sensor data is also being researched, with Marcante et al.

(2020) achieving 0.96 and 0.94 using a rule-based algorithm.

Tǎutan et al. (2020) reporting 0.93 and 0.87 with a CNN,

and Pardoel et al. (2021) achieving 0.93 and 0.86 with boosted

decision trees.

4.3 Practical implications

In this study, we addressed the need for objective and reliable

methods for detecting FoGs. Current FoG detection methods

rely on subjective assessments, such as questionnaires and video

observations, which could be inconsistent and prone to bias. To

overcome these limitations, we proposed a novel approach that

combines foot pressure sensors with a TCNN model. Our TCNN

model enhances the precision and reliability of FoG detection

by analyzing both spatial and temporal patterns in sensor data,

providing significant advantages over traditional methods.

By employing sensor-based detection, our TCNN model could

facilitate more accurate evaluations of drug or other clinical

therapy efficacy, surpassing the accuracy of subjective measures.

This objectivity is crucial for better understanding the impacts

of therapeutic interventions on FoG episodes. Furthermore,

automated FoG detection reduces the necessity for labor-intensive

video reviews.

In addition, the TCNNmodel supports adaptive cueing systems

that activate only when a FoG episode is detected, thus reducing

patient fatigue associated with continuous cues. This adaptive

approach could enhance patient comfort and treatment efficacy.

Integrating the TCNN model with wearable devices allows for

personalized and timely interventions, improving the management

of FoG. Such real-time adaptability is essential for responding

effectively to the dynamic nature of FoG episodes.

4.4 Limitations and future directions

Significantly, performance disparities among participants were

evident, with those experiencing more frequent FoG events

exhibiting better F1 scores. This observation is aligned with prior

researches (Shalin et al., 2020, 2021), suggesting that the volume

of positive data can crucially impact model accuracy. As shown in

Nguyen (2019) and DeVries et al. (2021), F1 scores can significantly

decrease in imbalanced datasets due to low precision, which

typically occurs when the proportion of positive samples in the test

set is low. Future studies would benefit from utilizing datasets with

more extensive FoG data to further refine the algorithms.

We directly introduced various noise situations into the study

and observed significant performance impacts at the big toe,

forefoot, and heel sensor locations. Our approach differs from

previous methods (Pardoel et al., 2020, 2022) that addressed sensor

noise for by thresholding feature values but did not involve direct

noise introduction, thereby making a novel contribution to sensor-

based FoG detection research. Our findings will be useful when
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trying to reduce the number of sensors within each foot, as we

identified the big toe, forefoot, and heel sensors as critical.

A limitation of this study was the restricted number of

participants. Despite involving 14 participants in multiple trials,

only four remained after applying the participant selection criteria

mentioned in Section 2.6. This was due to the limited occurrence of

FoG across multiple trials for some participants. To overcome these

challenges, future studies could aim to include larger datasets with a

higher incidence of FoG events, which would provide more robust

data for training and evaluating our models. Our experiments

demonstrated the critical importance of sensors located at the big

toe, forefoot, and heel. These findings suggest the potential for

reducing the number of sensors by focusing on key areas like the big

toe, forefoot, and heel. This reduction could lower costs, simplify

device setups, and enhance user comfort, making the technology

more practical for everyday clinical use. Future research should

explore optimizing sensor placement to maintain accuracy while

minimizing device complexity, thereby validating our findings and

assessing the scalability of the sensor system in a wider range of

clinical settings.
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