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Objective: Cognitive decline is often considered an inevitable aspect of aging; 
however, recent research has identified a subset of older adults known as 
“superagers” who maintain cognitive abilities comparable to those of younger 
individuals. Investigating the neurobiological characteristics associated with 
superior cognitive function in superagers is essential for understanding 
“successful aging.” Evidence suggests that the gut microbiome plays a key role 
in brain function, forming a bidirectional communication network known as the 
microbiome-gut-brain axis. Alterations in the gut microbiome have been linked 
to cognitive aging markers such as oxidative stress and inflammation. This study 
aims to investigate the unique patterns of the gut microbiome in superagers 
and to develop machine learning-based predictive models to differentiate 
superagers from typical agers.

Methods: We recruited 161 cognitively unimpaired, community-dwelling 
volunteers aged 60  years or from dementia prevention centers in Seoul, South 
Korea. After applying inclusion and exclusion criteria, 115 participants were 
included in the study. Following the removal of microbiome data outliers, 102 
participants, comprising 57 superagers and 45 typical agers, were finally analyzed. 
Superagers were defined based on memory performance at or above average 
normative values of middle-aged adults. Gut microbiome data were collected 
from stool samples, and microbial DNA was extracted and sequenced. Relative 
abundances of bacterial genera were used as features for model development. 
We employed the LightGBM algorithm to build predictive models and utilized 
SHAP analysis for feature importance and interpretability.

Results: The predictive model achieved an AUC of 0.832 and accuracy of 0.764 in 
the training dataset, and an AUC of 0.861 and accuracy of 0.762 in the test dataset. 
Significant microbiome features for distinguishing superagers included Alistipes, 
PAC001137_g, PAC001138_g, Leuconostoc, and PAC001115_g. SHAP analysis 
revealed that higher abundances of certain genera, such as PAC001138_g and 
PAC001115_g, positively influenced the likelihood of being classified as superagers.

Conclusion: Our findings demonstrate the machine learning-based predictive 
models using gut-microbiome features can differentiate superagers from typical 
agers with a reasonable performance.
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1 Introduction

While cognitive decline is traditionally viewed as an inevitable 
feature that occurs with aging (Hedden and Gabrieli, 2004), recent 
research has identified a subset of older adults known as “superagers” 
(Rogalski et al., 2013; Sun et al., 2016). These individuals maintain 
cognitive abilities comparable to those of middle aged adults (Harrison 
et al., 2012; Gefen et al., 2015) or young adults (Harrison et al., 2018; 
Zhang et  al., 2020). Since cognitive health has consistently been 
regarded as an important factor for quality of life of older adults 
(Reichstadt et al., 2007), investigating the neurobiological characteristics 
associated with superior cognitive function in superagers is essential for 
understanding “successful aging” (Depp and Jeste, 2006).

A number of evidence suggests that gut microbiome plays a key 
role in brain function (Galland, 2014; Mohajeri et al., 2018). The brain, 
gut, and gut microbiome form a bidirectional communication 
network known as the microbiome-gut-brain axis (Martin et  al., 
2018). Previous research has indicated a link between alterations in 
the gut microbiome and the increased oxidative stress and 
inflammation, which are biological markers of cognitive aging 
(Komanduri et al., 2019). Changes in gut microbiome composition 
have been associated with neurocognitive disorders; for example, 
dementia is linked to microbiome alterations along with elevated 
biomarkers indicating increased gut permeability and inflammation. 
Specifically, the Lachnospiraceae NK4A136 group, a potential 
producer of butyrate, is found at reduced levels in individuals with 
dementia (Stadlbauer et al., 2020). This highlights the potential impact 
of gut microbiota on cognitive health.

The importance of gut microbiota in cognitive function is further 
supported by studies indicating that the gut microbiome can influence 
the brain through multiple pathways, including the production of 
neuroactive compounds, modulation of systemic inflammation, and 
maintenance of gut barrier integrity (Galland, 2014). These 
mechanisms suggest that a healthy and balanced gut microbiome may 
contribute to the preservation of cognitive function and resilience 
against age-related cognitive decline.

Despite these insights, the specific characteristics of the gut 
microbiome that contribute to superior cognitive function in 
superagers remain underexplored. Understanding these characteristics 
could provide new avenues for promoting cognitive health in 
aging populations.

This study, therefore, aims to investigate the unique patterns of the 
gut microbiome in superagers and to develop machine learning-based 
predictive models that can differentiate superagers from typical agers 
based on individual gut microbiome features with reasonably high 
performance. Additionally, we aim to validate the model through 
various perspectives, including SHAP (SHapley Additive exPlanations) 
analysis and correlation analysis between model predictions and 
cognitive scores.

2 Materials and methods

2.1 Participants

Community-dwelling volunteers aged 60 years or older were 
recruited from the Gangseo or Yangcheon Center for Dementia, one 
of the public facilities for dementia prevention in Seoul. A total of 161 

older adults agreed to participate in this study. A neurologist evaluated 
eligibility using the following inclusion criteria: aged 60 years or older, 
able to read and write, scored > − 1.5 SD of the mean of age and 
education-matched norm on the Korean version of Mini-Mental State 
Examination, 2nd edition (K-MMSE-2) (Baek et al., 2016) and with 
normal cognitive function defined as scoring higher than-1 SD (16th 
percentile) of the demographically matched norm on the tests of 
memory, attention, language, visuospatial, and frontal executive 
functions in the Seoul Neuropsychological Screening Battery-II 
(SNSB-II) (Ryu and Yang, 2023). We excluded individuals with any of 
the following characteristics: (1) suspected or diagnosed with mild 
cognitive impairment or dementia; (2) suspected or diagnosed major 
neurological or psychiatric illnesses, including major depressive 
disorders; (3) structural abnormalities that can affect cognitive 
functions on brain magnetic resonance imaging (MRI); (4) visual or 
hearing impairments severe enough to interfere with questionnaire 
response; (5) a history of medications that could affect cognitive and 
emotional functions in the last 3 months; or (6) any other major 
medical problems such as cancer.

Of those 161 participants, 30 individuals did not meet the 
inclusion criteria while 16 refused the evaluation of the study 
including microbiome study. Therefore, a total of 115 older adults 
finally participated in this study (Figure 1).

The definition of superagers was based on their memory 
performance at or above average normative values of middle-aged 
adults (45 years old) on tests of delayed recall in both the Seoul Verbal 
Learning Test (SVLT) and the Rey Osterrieth Complex Figure Test 
(RCFT) and whose scores in other cognitive domains such as 
attention, language, visuospaital and frontal executive functions were 
at least average for age (Harrison et al., 2012; Sun et al., 2016; Bott 
et al., 2017; Dang et al., 2019). Based on these criteria, among 115 
participants, there were 61 superagers and 54 typical agers.

In this study, we collected data from participants that included 
cognitive scores from neuropsychological assessments, gut 
microbiome profiles, demographic information, BMI (Body Mass 
Index), and dietary intake data from questionnaires. The gut 
microbiome data was primarily used to develop classification models 
for identifying superagers, while the demographic characteristics, 
cognitive scores, BMI, and dietary intake information were used to 
examine the characteristics associated with the superagers and 
gut microbiome.

Written informed consent was obtained from all participants prior 
to study participation, and this study was approved by the Institutional 
Review Board of Ewha Womans University Mokdong Hospital (IRB 
approval number: 2020–11–004-017).

2.2 Neuropsychological assessments

All participants were administered a standardized 
neuropsychological battery called the SNSB-II (Ryu and Yang, 2023): 
Digit Span Test (DST) forward and backward for attention; the Korean 
version of the Boston Naming Test (K-BNT) for language; the RCFT 
for visuospatial function and visual memory; the SVLT for verbal 
memory; and phonemic Controlled Oral Word Association Test 
(COWAT), Korean-Color Word Stroop Test (K-CWST) for executive 
functions. Age-and education-specific z-scores for each cognitive 
domain were used for the current study.
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2.3 Gut microbiome data acquisition and 
preprocessing

2.3.1 Stool sample collection and DNA extraction
Microbiome data were collected from the fecal samples of the 

participants. Out of the 115 participants, one sample from a typical 
ager was not available for analysis. Consequently, fecal samples from 
114 participants were analyzed. To maximize microbial cell lysis for 
DNA extraction, the stool samples were homogenized by shaking in a 
sterile screw cap tube containing zirconia beads (2.3 mm, 0.1 mm 
diameter) and glass beads (0.5 mm diameter) using FastPrep-24 (MP 
Biomedicals, Santa Ana, CA, USA) for 50 s. After lysis, genomic DNAs 
from the homogenized stool samples were extracted using the Qiagen 
DNA Stool Mini Kit (Qiagen, Germantown, MD, USA) according to 
the manufacturer’s protocols.

2.3.2 16S rRNA gene sequencing and taxonomic 
profiling

The V3-4 hypervariable region of the 16S rRNA gene was 
amplified with primers 341F and 805R using the direct polymerase 
chain reaction method. Libraries were prepared using a NEBNext 
Ultra II FS DNA Library Prep Kit for Illumina (New England Biolabs, 
Ipswich, MA). The prepared DNA libraries were sequenced by CJ 
Bioscience Inc. using the Illumina MiSeq platform (Illumina, San 
Diego, CA) with 2 × 300 base pair (bp) kit.

The DNA samples remaining after library construction were 
stored in a deep freezer at −60°C. The paired-end raw 16S rRNA 
sequences data were uploaded to EzBioCloud and processed using a 
web-based EzBioCloud microbiome taxonomic profile tool.1 
High-quality sequence reads were assigned to “species group” at 97% 
sequence similarity using the PKSSU4.0 database.

1 https://www.ezbiocloud.net/contents/16smtp

2.4 Diet and nutritional intake 
questionnaire

We collected information on dietary habits and nutritional intake 
that might affect composition of gut microbiome, using the Computer 
Aided Nutritional Analysis Program CAN-Pro 5.0 (The Korean 
Nutrition Society, Seoul, Korea). It is designed to calculate personal 
nutrient intake and food consumption based on the Dietary Reference 
Intakes for Koreans 2015 (Welfare and Society, 2015). It assesses 108 
nutrients, including 39 fatty acids and 21 amino acids, by evaluating 
the amounts of food consumption. The questionnaire includes 3,926 
foods and 1,784 dishes and employs the 24-h recall method to obtain 
responses from each subject.

2.5 Development of classification models

2.5.1 Feature selection
Considering the inter-individual variation in microbiome counts, 

we utilized the relative abundances (%) of each bacterial taxonomy as 
features in our models. To mitigate bias arising from skewed data, 
we excluded bacteria with a significant number of missing values at 
the phylum level, specifically those missing in more than half of the 
participants. This approach allowed us to focus on specific phyla—
Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria—along 
with their genera. For outlier identification, we employed the Tukey’s 
fences method at the phylum level. We  defined outliers as values 
outside the range of Q1-1.5 times the interquartile range (IQR) and 
Q3 + 1.5 times the IQR.

Following this procedure, microbiome data from 12 participants 
(8 typical agers and 4 superagers) were excluded from the original 
group of 114. Consequently, the final analysis included microbiome 
data from 102 participants, consisting of 57 superagers and 45 typical 
agers, as shown in Figure 1.

FIGURE 1

Flow chart of the study.

https://doi.org/10.3389/fnagi.2024.1444998
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.ezbiocloud.net/contents/16smtp


Kim et al. 10.3389/fnagi.2024.1444998

Frontiers in Aging Neuroscience 04 frontiersin.org

After removing outliers, four phyla remained: Firmicutes, 
Bacteroidetes, Proteobacteria, and Actinobacteria. These phyla were 
the most abundant, constituting over 90% of all identified phyla 
(Supplementary Figure 2A). Within these phyla, we included their 
genera as features for our model. We  selected 67 genera from 
Firmicutes, 3 genera from Bacteroidetes, 9 genera from 
Proteobacteria, and 4 genera from Actinobacteria. This resulted in a 
total of 83 features initially selected after outlier removal.

We employed Recursive Feature Elimination with Cross-
Validation (RFECV) to analyze this dataset of 83 features. RFECV 
evaluates scores generated by different combinations of features, 
iteratively removing those with low importance, and ultimately 
identifies the optimal feature set through cross-validation. 
Consequently, 8 features were selected for developing the models.

Among the Firmicutes phylum, the selected features included the 
genus Leuconostoc from the family Leuconostocaceae, as well as 
genera from Clostridia such as PAC001115_g, PAC000194_g, 
PAC001137_g, PAC001138_g, PAC001236_g, and Romboutsia. For 
the Bacteroidetes phylum, the selected features included the genus 
Alistipes. There were no selected features from the Actinobacteria or 
Proteobacteria phyla.

2.5.2 Model development
Machine learning algorithms, specifically utilizing the boosting-

based ensemble model LightGBM, were employed to develop 
classification models for categorizing superagers. To ensure objective 
assessment of model performance, 20% of the data was set aside as a 
test set.

Additionally, 4-fold cross-validation was conducted on the 
training data to validate the model’s performance and optimize 
parameters. A random search with 50 iterations per search was 
performed. Subsequently, the models with high training performance 
were identified. Among them, the final model was selected based on 
test performance, indicating its ability to generalize well. Further 
enhancing model performance, manual threshold adjustments were 
made with a step size of 0.01.

To estimate feature importance, we used the ‘gain’ method, which 
sums the reduction in loss for splits where the feature is used across 
all trees. This total gain indicates how much the feature improves 
model performance.

The models were developed using Python 3.10 (Python Software 
Foundation, Delaware, United  States) and the LightGBM 4.0.0 
package (Microsoft Corporation, Washington, United States) along 
with scikit-learn 1.2.2 (Pedregosa et al., 2011).

2.5.3 Assessment of model performance
The classification model’s performance was evaluated using several 

key metrics: accuracy, sensitivity, and the Area Under the Curve (AUC) 
of the Receiver Operating Characteristic (ROC) curve. Accuracy 
measures the ratio of correct predictions to total predictions, providing 
an overall indication of the model’s precision. Sensitivity, also known 
as the True Positive Rate (TPR), assesses how well the model identifies 
‘superagers’ by measuring the ratio of correctly identified superagers to 
all actual superagers. Additionally, the AUC of the ROC curve was 
examined. AUC represents the area under this curve, with values 
ranging from 0.5 for a random classifier to 1 for a perfect classifier.

These performance metrics were employed to evaluate the model 
through 4-fold cross-validation and to assess predictions on test 
dataset. We compared model performance based on feature selection 

and algorithms, identifying the superior models. Performance 
outcomes were presented using performance tables and ROC curves.

The performance table also includes additional metrics such as 
precision, specificity, and F1 scores. Precision measures the 
proportion of instances classified as superagers that are genuinely 
superagers. Specificity assesses the ratio of instances correctly 
classified as typical agers among all actual typical agers. The F1 score, 
the harmonic mean of precision and recall (sensitivity), provides a 
balanced measure of a model’s performance. These metrics together 
provide a comprehensive evaluation of the model’s effectiveness in 
distinguishing between superagers and typical agers.

2.5.4 Shapley additive explanations (SHAP)
The feature importance derived from the model provides insights 

into the magnitude of their impact but lacks the ability to explain the 
decision-making processes. To gain a deeper understanding of these 
mechanisms, we employed Explainable AI (XAI), a technology that 
facilitates the explanation and interpretation of the decision-making 
processes of machine learning and artificial intelligence models.

SHAP is an XAI technique that explains how each feature 
influences predictions by calculating Shapley values. These values, 
originating from cooperative game theory, quantify a feature’s 
contribution by assessing its impact across all possible feature 
combinations, contingent upon the inclusion or exclusion of the 
specific feature. SHAP simplifies the model’s complexity into a linear 
approximation, thereby elucidating the model’s behavior.

Utilizing SHAP enables us to scrutinize the impact of each feature 
on the model’s predictions, elucidating both the degree and direction 
of influence. For instance, it aids in understanding how features 
contribute to categorizing individuals as ‘superagers.’ Positive Shapley 
values indicate an increase in prediction values, while negative values 
indicate a decrease. SHAP  0.45.0 (Lundberg and Lee, 2017) was 
utilized in our analysis.

2.6 Statistical analyses

Before conducting each statistical analysis, a Shapiro–Wilk test 
was performed to assess the normality of the data distribution. Since 
the data did not follow a normal distribution, nonparametric tests 
were employed.

Statistical analyses were conducted to examine participant 
characteristics. Mann–Whitney U-tests were used to identify 
differences between typical agers and superagers in terms of 
demographic characteristics, cognitive performance, nutrient intake, 
and microbiome composition.

Following model construction, correlation analyses were 
performed to examine the relationships between class probabilities 
and cognitive scores. All analyses were conducted at a significance 
level of p < 0.05 using Python with SciPy 1.10.1 and statistics packages 
(Virtanen et al., 2020).

3 Results

3.1 Characteristics of participants

Demographic characteristics and cognitive performance z-scores 
are presented in Table 1. There were no significant differences in age, 
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education, and BMI between superagers and typical agers. Similarly, 
no significant differences were observed in nutritional intake between 
the two groups. For both alpha diversity and beta diversity, no 
differences were shown between superagers and typical agers 
(Supplementary Figure  1). As expected, superagers demonstrated 
superior performance in memory, visuospatial, language, and frontal 
executive functions compared to typical agers.

3.2 Classifying models predicting 
superagers based on microbiome 
characteristics

The performance of predictive model was evaluated using 
LightGBM algorithm, incorporating eight bacterial features selecting 
through Recursive Feature Elimination with Cross-Validation 
(RFECV). In the training data set, the model achieved an AUC of 
0.832 with an accuracy of 0.764, while in the test dataset, the model 
achieved an AUC of 0.861 with accuracy of 0.762 (Table 2; Figure 2).

The microbiome features that are significant for distinguishing 
superagers from typical agers are detailed in Table 3. Among these 
features, Alistipes exhibited the highest importance, with a gain value 
of 27.14. Other notable genera with high importance scores include 
PAC001137_g (20.56), PAC001138_g (19.40), Leuconostoc (19.19), and 
PAC001115_g (15.87), each showing a gain value exceeding 10.

3.3 SHAP results

The SHAP plot (Figure  3) illustrates the impact of different 
bacterial genera on the model’s output, with the SHAP values 
indicating the contribution of each feature to predicting superagers. 
The color gradient represents the feature values, with red indicating 
higher values and blue indicating lower values. Mean absolute Shapley 
value for each feature is presented in the Supplementary Figure 3. It 
reveals that Leuconostoc from Firmicutes demonstrated the highest 
value at 0.97, followed by Alistipes from Bacteroidetes at 0.81, and 
PAC001138_g from Firmicutes at 0.8.

TABLE 1 Demographics of superagers and typical agers.

Superagers
(N  =  57)

Typical agers
(N  =  45)

p-value

N  =  102 Mean (SD) Mean (SD)

Demographic characteristics

Age (years) 73.26 (5.58) 72.47 (6.47) 0.580

Education (years) 11.16 (4.17) 11.00 (4.02) 0.748

Female, n (%) 45 (78.95) 34 (75.56) 0.689

BMI (kg/m2) 24.47 (3.45) 24.88 (3.25) 0.349

K-MMSE 2 28.75 (1.39) 28.42 (1.49) 0.234

Nutrient intakes

Energy (kcal) 2130.96 (1008.60) 2186.57 (1115.63) 0.952

Carbohydrates (g) 325.54 (154.21) 335.63 (166.23) 0.866

Protein (g) 79.84 (41.24) 82.42 (47.33) 0.984

Fat (g) 56.71 (32.69) 56.11 (36.70) 0.618

Fiber (g) 35.66 (18.47) 35.85 (19.73) 0.845

Calcium (mg) 801.79 (379.89) 836.57 (443.64) 0.731

Magnesium (mg) 138.40 (82.01) 135.50 (84.11) 0.609

Sodium (mg) 4549.01 (2819.25) 4598.65 (3028.57) 0.835

Potassium (mg) 4032.18 (2172.25) 4157.64 (2410.67) 0.909

Cognitive performance (Z-scores)

Digit Span Forward Backward −0.04 (0.92) −0.09 (0.91) 0.469

K-BNT 0.49 (0.76) 0.12 (0.74) 0.015*

RCFT copy 0.42 (0.57) 0.03 (0.72) 0.003*

SVLT delayed recall 1.12 (0.69) 0.21 (1.02) < 0.001*

RCFT delayed recall 0.98 (0.88) −0.13 (1.02) < 0.001*

COWAT phonemic 1.20 (1.41) 0.57 (1.13) 0.012*

StroopTest color reading 0.79 (0.73) 0.41 (0.88) 0.028*

Data are shown as mean (SD, standard deviation) or number (%). BMI, Body Mass Index; K-MMSE, Korean version of the Mini-Mental State Examination; CDR, Clinical Dementia Rating; 
BNT, Boston Naming Test; RCFT, Rey Complex Figure Test; SVLT, Seoul Verbal Learning Test; COWAT, Controlled Oral Word Association Test.
*p < 0.05, the p value was obtained by Mann–Whitney U test.
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The SHAP plot (Figure 3) presents the impact of various bacterial 
genera on predicting superaging. For Leuconostoc, the SHAP values 
are mostly clustered around zero, indicating a generally neutral effect 
on the prediction of superaging, although there is a slight skew toward 
positive values, suggesting a potential minor positive influence when 
present in higher quantities. Alistipes shows a mix of positive and 
negative SHAP values, indicating variable influences depending on the 
individual microbiome composition but higher values tend to have a 
slightly positive influence on the prediction of being a superager.

For the genera PAC001138_g, PAC001115_g, and PAC001236_g, 
higher abundances tend to correlate with a positive impact on the 
likelihood of being classified as a superager. Conversely, PAC001137_g, 
PAC001194_g, and Romboutsia exhibit SHAP values that are generally 

skewed toward the negative, indicating that higher abundances of 
these genera may negatively influence the prediction of superaging.

3.4 Correlations between probabilities of 
superagers and cognitive scores

The correlation analysis results, presented in Table  4, reveal 
significant relationships between cognitive scores and the likelihood 
of being classified as ‘superagers’. In the training dataset, the class 
probability of being classified as superagers was significantly correlated 
with the scores of SVLT delayed recall (r = 0.39, p < 0.001) and RCFT 
delayed recall (r = 0.54, p < 0.001). In contrast, in the test dataset, the 
class probability was correlated only with the COWAT phonemic total 
scores (r = 0.48, p = 0.027).

4 Discussion

Our investigation demonstrated distinct characteristics of the gut 
microbiome that differentiate superagers from typical agers. Utilizing 
these gut microbiome features, we  constructed predictive models 
capable of classifying superagers. In the training set, the model 
demonstrated a high ability to distinguish between superagers and 
typical agers, achieving an AUC of 0.832, indicating strong 
discriminatory power. Additionally, the model attained an accuracy 
of 0.764, meaning that 76.4% of the predictions made were correct. 
Notably, the model’s performance on the test dataset was robust, 
achieving an AUC of 0.861, which suggests that the model generalizes 
well to unseen data, while maintaining its discriminatory power. The 
accuracy on the test dataset was 0.762, closely matching the accuracy 
on the training dataset, highlighting the model’s reliability and stability 
across different datasets.

FIGURE 2

Receiver operating characteristic (ROC) curves of models. In the 
training data set, the model achieved an AUC of 0.832 with an 
accuracy of 0.764, while in the test dataset, the model achieved an 
AUC of 0.861 with accuracy of 0.762.

TABLE 3 Feature importance in the classification model for superagers.

Phylum Class Order Family Genus Importance

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 27.14

Firmicutes Clostridia Clostridiales Lachnospiraceae PAC001137_g 20.56

Firmicutes Clostridia Clostridiales Lachnospiraceae PAC001138_g 19.40

Firmicutes Bacilli Lactobacillales Leuconostocaceae Leuconostoc 19.19

Firmicutes Clostridia Clostridiales Christensenellaceae PAC001115_g 15.87

Firmicutes Clostridia Clostridiales Lachnospiraceae PAC000194_g 12.77

Firmicutes Clostridia Clostridiales Mogibacterium_f PAC001236_g 11.63

Firmicutes Clostridia Clostridiales Peptostreptococcaceae Romboutsia 7.97

Higher scores of importance indicate a greater significance of the genus in contributing to the model’s ability to distinguish between superagers and typical agers.

TABLE 2 Performance of the classification model for superagers.

Model AUC Accuracy Precision F1 Sensitivity Specificity

4-fold cross validation of the training dataset (n = 81)

LGBM 0.832 0.764 0.806 0.782 0.773 0.750

Test dataset (n = 21)

LGBM 0.861 0.762 0.818 0.783 0.750 0.778

LGBM, Light Gradient Boosting Model; Average performance from 4-fold cross validation on the training dataset and performance on the test dataset with the final model.
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Several studies have explored classifying cognitive impairments in 
older adults using gut microbiome data. For example, a random forest 
model using bacterial data alone achieved an AUC of 0.76 for 
distinguishing patients with MCI from healthy controls using a trans-
kingdom microbiome approach, while incorporating microbial 
metabolic pathways, bacteria, and viruses resulted in an AUC of 0.78 
(Chaudhari et  al., 2023). In another study, 12 altered genera were 
identified as differing between MCI and healthy control groups, with 
associations found with attention and executive function. A logistic 
regression model in this study achieved an AUC of 0.84 (Fan et al., 2023). 
Compared to these studies predicting cognitive dysfunction using 
microbiome data from healthy controls, our model exhibits advancement 
in predicting superagers among cognitively unimpaired older adults.

It is noteworthy that Alistipes from the Rikenellaceae family within 
the Bacteroidetes phylum shows the highest importance. Alistipes 
exhibited a combination of positive and negative SHAP values, indicating 
variable influences based on individual microbiome composition.

Previous studies have suggested a negative correlation between 
Alistipes and cognitive function (Ren et al., 2020; Muhammad et al., 
2023), including associations with memory performance (Tsan et al., 
2022; Jiao et al., 2023). Additionally, its abundance has been negatively 
correlated with the thickness of the left lateral orbitofrontal cortex, 
even among participants with normal cognition, subjective cognitive 
decline, and cognitive impairment (He et al., 2023).

However, our study showed that both high and low abundances of 
Alistipes had significant impact being classified as ‘superagers,’ with high 
abundance positively influencing prediction values. This suggests that 
the role of Alistipes in contributing to ‘supergaers’ may be more complex 
than previously anticipated. Compatible with this finding, Alistipes may 
have both protective effects against some diseases and pathogenic role 
in others (Parker et  al., 2020). Some studies have correlated their 
presence with the promotion of healthy phenotypes, such as protective 
roles in conditions like colitis (Dziarski et al., 2016), autism spectrum 
disorder (Strati et al., 2017), and various liver (Shao et al., 2018; Sung 
et al., 2019) and cardiovascular disorders (Jie et al., 2017; Zuo et al., 
2019). Despite these beneficial associations, Alistipes has also been 
shown to have pathogenic roles in diseases such as depression (Jiang 
et al., 2015), and colorectal cancer (Feng et al., 2015). Further studies are 
warranted to elucidate the role of Alistipes in cognitive function in 
successful aging.

We found that higher abundances of the genera PAC001138_g, 
PAC001115_g, and PAC001236_g, tend to correlate with a positive 
impact on the likelihood of being classified as superagers.

Among these, PAC001138_g, which belongs to the family 
Lachnospiraceae, was identified as a highly important feature. Our 
findings indicate that higher abundance of PAC001138_g predicts 

FIGURE 3

Impact of bacterial genera on predictive model for superager Classification. This Beeswarm plot aggregates SHAP values for each data point, detailing 
the influence of different bacterial genera on the prediction of superaging. The color of each dot indicates the abundance of the bacterial genus: red 
for higher and blue for lower values. Leuconostoc primarily exhibits SHAP values near zero with a slight shift toward positive values, indicating a 
generally neutral but potentially minor positive effect on predicting superaging when present in higher quantities. Alistipes displays a range of positive 
and negative SHAP values, suggesting its impact varies with the individual’s microbiome composition; however, higher abundances slightly enhance 
the likelihood of predicting superaging. Genera PAC001138_g, PAC001115_g, and PAC001236_g are associated with positive SHAP values at higher 
abundances, suggesting a positive influence on superaging predictions. Conversely, PAC001137_g, PAC001194_g, and Romboutsia are generally 
characterized by negative SHAP values, indicating that their greater presence may detract from predicting superaging.

TABLE 4 Correlation results between class probability and cognitive 
performance.

Name Training Test

Correlation
(p-value)

Correlation
(p-value)

Cognitive performance

Digit span forward backward 0.088 (0.433) 0.204 (0.376)

K-BNT 0.191 (0.088) −0.275 (0.227)

RCFT copy 0.210 (0.060) −0.183 (0.428)

SVLT delayed recall 0.393 (< 0.001*) 0.111 (0.633)

RCFT delayed recall 0.541 (< 0.001*) 0.164 (0.478)

COWAT phonemic 0.156 (0.165) 0.481 (0.027*)

StroopTest Color reading 0.156 (0.165) −0.049 (0.834)

BNT, Boston Naming Test; RCFT, Rey Complex Figure Test; SVLT, Seoul Verbal Learning 
Test; COWAT, Controlled Oral Word Association Test. All cognitive scores are shown as 
z-scores.
*p < 0.05, the p value was obtained by Spearman correlation.
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superager status. This aligns with previous research, which found that 
Lachnospiraceae levels were relatively reduced, particularly among 
oldest-old adults (Biagi et al., 2016). Given that superagers may exhibit 
resilience against age-associated cognitive decline, it is plausible that 
higher abundance of Lachnospiraceae in superagers reflects a 
gut-microbiome composition similar to that of younger individuals 
compared to typical agers. Further supporting this idea, previous 
research demonstrated a positive correlation between Lachnospiraceae 
abundance and performance on three-stage command test in patients 
with amnestic MCI (Liu et al., 2021). However, PAC001137_g and 
PAC000194_g, also from the Lachnospiraceae family, showed opposite 
results, indicating that these genera may negatively influence the 
prediction of superaging. Given the limited research related to 
PAC001137_g and PAC000194_g in human cognitive function, further 
investigation into its potential functions and impacts is necessary.

PAC001115_g, which belongs to the family Christensenellaceae, 
is another important feature for predicting superager status, with 
higher abundances correlating with a greater likelihood of being 
classified as a superager. This finding is consistent with existing 
literature that highlights the significant role of Christensenellaceae in 
human health. For instance, a study found that Christensenellaceae 
was significantly enriched in individuals with a normal BMI (18.5–
24.9) compared to obese individuals (BMI ≥ 30) (Goodrich et al., 
2014). Furthermore, a meta-analysis of inflammatory bowel disease, 
involving over 3,000 individuals, identified that Christensenellaceae 
as one of five taxa considered a signature of a healthy gut (Mancabelli 
et al., 2017). Christensenellaceae may promote gut homeostasis and 
healthy aging by reducing adiposity, inflammation, and the later risk 
for development of metabolic and cognitive dysfunction (Badal et al., 
2020), its higher abundance may contribute to the cognitive health 
observed in superagers.

Our study found that a higher abundance of PAC001236_g, 
which belongs to the Mogibacterium family, positively impacts the 
prediction of superagers. This is in contrast to previous research 
where a higher abundance of Mogibacterium has been associated 
with negative outcomes in neurological conditions. Specifically, Park 
and Wu (2022) reported an increased abundance of Mogibacterium 
in patients with Alzheimer’s disease, and Socała et al. (2021) found 
similar results in individuals with schizophrenia, compared to healthy 
controls. Despite these findings, there is limited research exploring 
the relationship between PAC001236, Mogibacterium, and cognitive 
function in older adults. Given the contrasting roles of PAC001236_g 
in neurological diseases, further investigation into its potential 
functions and impacts is warranted.

For Leuconostoc, the SHAP values largely cluster around zero, 
suggesting a generally neutral influence on the prediction of 
superaging. However, there is a slight tendency toward positive 
values, indicating a potentially small positive effect when present in 
higher quantities. Leuconostoc is one of the most common probiotic 
strains that are widely used in many probiotic products. Given the 
numerous reported health benefits of probiotics, such as improvement 
of cognitive function (Ton et al., 2020) and antioxidant (Jang et al., 
2018), it is plausible that a high abundance of Leuconostoc could 
be  associated with an increased likelihood of being superagers. 
Similarly to our finding, Leuconostoc was less abundant in the female 
MCI group (Hatayama et al., 2023).

It should be also noted that memory functions, particularly those 
assessed by delayed recall tests of SVLT and RCFT, are strongly associated 
with the likelihood of being classified as superagers. Since we defined 

superagers clinically based on the scores of delayed recall in SVLT and 
RCFT, this finding suggests that our predictive model based on the gut 
microbiome is highly effective in distinguishing superagers from typical 
agers. However, in the test dataset, the correlation between the class 
probability and cognitive scores was only significant in the verbal fluency 
test assessed by COWAT phonemic test. This disparity between training 
and test datasets might indicate that while memory retention is a 
consistent predictor, verbal fluency may also be  a relevant factor in 
different contexts or subsets of the population. Further investigation is 
needed to understand these relationships and their implications for 
identifying and supporting superagers.

Recent clinical trials using non-pharmacological intervention for 
cognitive function in older adults have explored whether 
administration of a prebiotic food supplement or nutritional support 
improved cognitive function. For instance, a 12-week, placebo-
controlled, double blinded randomized trial of 36 twin pairs (72 
individuals) aged 60 and older demonstrated that prebiotic 
administration resulted in a higher abundance of Bifidobacterium and 
significant improvements in cognitive function compared to the 
placebo group (Ni Lochlainn et al., 2024). Similarly, another study 
reported that a 10-week multispecies probiotic intervention led to 
improvements in MMSE scores, digit tasks, and depressive symptoms 
in healthy older adults (Ruiz-Gonzalez et al., 2024). Building on these 
findings, our study suggests that modulating the gut microbiome 
through prebiotic or probiotic interventions could be a promising 
approach to preserving superior cognitive function.

This research has several limitations. First, our study adopts a 
cross-sectional design, limiting our ability to determine whether 
alterations in the microbiome observed in superagers are causal factors 
or consequences of their cognitive status. A longitudinal study would 
be necessary to establish causality. Second, this study only considers 
the relative abundance of gut microbiome as features for the model. 
While relative abundance provides valuable information about the 
microbial composition and can easily adopted as features of model, 
with other microbial data, model could incorporate diverse aspects of 
gut microbiome. For instance, incorporating absolute bacterial counts 
can offer a more comprehensive view of microbial load. Additionally, 
to prevent the curse of dimensionality, new features can be constructed 
using techniques such as Principal Component Analysis (PCA), which 
reduce the complexity of the data while preserving sufficient 
information for prediction. Furthermore, including additional data 
types, such as dietary intakes and demographic information. Third, in 
addressing missing values, we selected a subset of bacteria with fewer 
missing values. While this approach aimed to mitigate the impact of 
missing data, it may have inadvertently excluded potentially 
meaningful features that could distinguish between superagers and 
typical agers. Alternatives such as replacing missing values using 
statistical methods like mean, median, max, and min or employing 
machine learning regression models to predict and fill in missing 
values could be  considered to handle this issue more effectively. 
Additionally, our study is constrained by the use of only LightGBM 
models. Although these models have demonstrated good performance 
across various studies (Yanagawa et  al., 2024; Sun et  al., 2020), 
exploring a wider range of machine learning algorithms or ensemble 
methods could uncover additional insights and potentially lead to 
better performance. Moreover, if more data were available, deep 
learning algorithms could be  adapted for improved performance. 
Finally, while SHAP values from estimations are desirable according to 
the original paper (Lundberg and Lee, 2017), there are still some 
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drawbacks. For instance, KernelSHAP ignores feature dependence, 
which may lead to errors. On the other hand, TreeSHAP does not suffer 
from this issue; however, it can yield non-intuitive feature importance 
values (Linardatos et al., 2020). Additionally, while SHAP enhances 
interpretability, it may come at the cost of reduced accuracy (Vimbi 
et al., 2024). Considering these challenges, we utilized SHAP solely for 
understanding the directional impact of features, without regarding 
SHAP values as indicative of feature importance in this study. Finally, 
although recent studies have shown a link between the apolipoprotein 
E (APOE) genotype and gut microbiome composition (Hammond 
et al., 2023) —specifically, that individuals carrying the APOE ε4 allele 
tend to have higher levels of pro-inflammatory microbes—, we did not 
include APOE ε4 carrier status in our model. Future studies could 
consider incorporating APOE ε4 carrier status to further explore its 
potential impact on gut microbiome composition and cognitive health.

Despite these limitations, this study is the first to identify unique 
patterns of the gut microbiome in superagers and to develop machine 
learning-based predictive models that can differentiate superagers 
from typical agers with reasonably high performance. These findings 
pave the way for future research to explore the relationships between 
gut microbiome composition and cognitive health.

Our newly developed model has significant potential for practical 
application, particularly in clinical settings. It could be integrated into 
diagnostic that assesses an individual’s likelihood of being a superager 
based on their gut microbiome profile, along with other key features 
such as cognitive scores and lifestyle factors. Such a tool could help 
identify individuals who are more resilient to cognitive decline, 
enabling personalized interventions that target gut health to support 
healthy cognitive aging. Moreover, identifying specific microbial 
features associated with cognitive resilience could guide the 
development of targeted probiotic or dietary interventions aimed at 
promoting cognitive longevity.

To validate these findings, longitudinal studies are essential to 
confirm the relationship between the gut microbiome and cognitive 
resilience. Additionally, incorporating a broader range of microbial 
data and exploring various machine learning algorithms could enhance 
the predictive accuracy and robustness of these models. This approach 
could offer deeper insights into the role of the gut microbiome in aging 
and cognitive function, ultimately guiding the development of more 
effective interventions for promoting cognitive health in older adults.
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