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Introduction: With age, sensory, cognitive, and motor abilities decline, and the 
risk for neurodegenerative disorders increases. These impairments influence the 
quality of life and increase the need for care, thus putting a high burden on 
society, the economy, and the healthcare system. Therefore, it is important to 
identify factors that influence healthy aging, particularly ones that are potentially 
modifiable through lifestyle choices. However, large-scale studies investigating 
the influence of multi-modal factors on a global description of healthy aging 
measured by multiple clinical assessments are sparse.

Methods: We propose a machine learning model that simultaneously predicts 
multiple cognitive and motor outcome measurements on a personalized level 
recorded from one learned composite score. This personalized composite 
score is derived from a large set of multi-modal components from the TREND 
cohort, including genetic, biofluid, clinical, demographic, and lifestyle factors.

Results: We  found that a model based on a single composite score was able to 
predict cognitive and motor abilities almost as well as a classical flexible regression 
model specifically trained for each single clinical score. In contrast to the flexible 
regression model, our composite score model is able to identify factors that globally 
influence cognitive and motoric abilities as measured by multiple clinical scores. The 
model identified several risk and protective factors for healthy aging and recovered 
physical exercise as a major, modifiable, protective factor.

Discussion: We  conclude that our low parametric modeling approach 
successfully recovered known risk and protective factors of healthy aging on a 
personalized level while providing an interpretable composite score. We suggest 
validating this modeling approach in other cohorts.
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Introduction

Neuropsychiatric diseases are currently the leading cause of 
disability and dependency worldwide. Among them, the 
neurodegenerative diseases Parkinson’s disease (PD) and Alzheimer’s 
dementia (AD) are rising the fastest (Dorsey et  al., 2018). Aging 
represents one of the strongest risk factors for both diseases. 
Predictions indicate that the prevalence will double worldwide in the 
next 20 years (Ferri et al., 2005). Since there is considerable diversity 
in the rate at which we age, the identification, and effect size of risk 
and protective factors that indicate the dynamic processes from aging 
to neurodegeneration is of high interest. While some factors, such as 
sex and genetic status, are immutable, a large proportion can 
be  influenced by lifestyle. These factors include cardiometabolic, 
physical, and educational profiles (Mukadam et al., 2024; Cova et al., 
2017; Livingston et al., 2020). This offers the opportunity to focus on 
these factors for preventive healthcare strategies. However, many of 
these factors are interdependent. Moreover, the heterogeneity of 
human subjects and intervals of data collection in longitudinal studies 
make it difficult to extract suitable data for robust statistical 
predictions. Conventional statistical methods cannot accommodate 
these complex relationships. Therefore, we used an unbiased machine 
learning approach by developing a Bayesian model to simultaneously 
predict aging-related key functions such as motor and cognitive 
function from a single composite score that reflects a large set of 
multi-modal factors, including genetic, biofluid, clinical, demographic, 
and lifestyle factors.

Similar models have been used in high-dimensional medical 
settings using imaging or genetic data (Goh et al., 2017) and also to 
investigate dietary patterns by fat types (Brayner et al., 2021). However, 
such methods have not been used in multi-modal settings assessing 
aging- and neurodegeneration-related profiles. Importantly, 
we  primarily focused on factors that were already identified in 
epidemiological and genetic studies by standard statistical approaches 
in order to facilitate a proof-of-concept for the Bayesian model.

Methods

Study population

We used the data from the TREND study (Gaenslen et al., 2014) 
which is a prospective longitudinal study initiated in 2009 with 
biennial assessments of older participants aged between 50 and 
80 years without neurodegenerative diseases at study recruitment. 
Newspaper announcements and public events were used to recruit 
participants from Tübingen and the surrounding area. Between 2009 
and 2012, 1,201 participants underwent baseline assessments. For 
study inclusion, participants had to be  free of a diagnosis of a 
neurodegenerative disorder, history of stroke, inflammatory 
disorders affecting the central nervous system (such as multiple 
sclerosis, encephalitis, meningitis, vasculitis), and inability to walk 
without aids. The study has been performed at the Department of 
Neurology and the Department of Psychiatry of the University 
Hospital Tuebingen, Germany. A large assessment battery with 
quantitative, unobtrusive measurements for repeated objective 
application was designed. To avoid bias in data acquisition, all 
investigators were blinded to the results of all other examinations. 

For more details about the TREND study please visit https://www.
trend-studie.de/. Supplementary Figure S1 summarizes the 
exclusion criteria and selection of participants for the 
current analysis.

Clinical investigations

Motor function: gait
For the assessment of motor function, we decided to focus on gait 

as representative of axial motor performance which is key for 
maintaining independence in older participants. Gait assessments 
were performed in an at least 1.5 meters wide corridor allowing 
obstacle-free 20-meter walking. All subjects performed four single-
task conditions: 1. walking with habitual speed, 2. walking with 
maximum speed, 3. checking boxes with maximum speed while 
standing, and 4. subtracting serial 7 s with maximum speed while 
standing. Additionally, two dual-task conditions were performed: 1. 
walking with maximum speed and checking boxes with maximum 
speed and 2. walking with maximum speed and subtracting serial 7 s 
with maximum speed (Hobert et al., 2011).

Based on the two dual-task conditions, we extracted the respective 
four dual-task speeds: 1. checking boxes when walking (number of 
boxes per second), 2. walking when checking boxes (meters per 
second), 3. subtracting when walking (number of serial 7 s subtractions 
per second), 4. walking when subtracting (meters per second). The 
single and dual-task speed parameters were then used to calculate 
dual-task costs and overall speed according to the following formulae:

 • Overall speed: dual-task speed + single-task speed
 • Dual-task cost: dual-task speed – single-task speed

Cognition
A detailed assessment of cognitive function was implemented 

using the standardized German version of the extended Consortium 
to Establish a Registry for Alzheimer’s Disease (CERAD)-Plus 
neuropsychological battery (Morris et al., 1989; Rossetti et al., 2010). 
This comprehensive battery includes the following cognitive subtests: 
semantic and phonematic verbal fluency tasks, the Boston Naming 
Test, Mini-Mental Status Examination, word list learning, word list 
recall, word list recognition, figure drawing, figure recall, and the Trail 
Making Test (TMT) A and B (Welsh-Bohmer and Mohs, 1997; 
Ehrensperger et  al., 2010). The TMT consists of two parts and 
evaluates executive function, cognitive flexibility, and working 
memory (Bowie and Harvey, 2006). In part A, participants connect 
randomly spread numbers from 1 to 25 in ascending order. In part B, 
participants are asked to connect randomly spread numbers () and 
letters (A to L) in alternating numeric and alphabetical order 
(1-A-2-B-3-C-…-13-L). In case of an error, the examiner draws the 
attention of the participant to the error, to allow completion of the task 
without errors at the expense of additional time. The maximum time 
allowed is 180 s for part A and 300 s for part B. After this time, the 
investigator discontinues the experiment. Two parameters were 
calculated from the TMT A and TMT B tests:

 • Overall speed: TMT A + TMT B
 • Cognitive flexibility: TMT B – TMT A
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Next, to the CERAD total score, subscores of the different CERAD 
domains were included in the analysis. Ordinal variables were 
measured on a Likert scale and indicated the number of items 
completed correctly.

Medical condition and lifestyle

Hypertension
Lifetime diagnosis of hypertension (medical history) and/or 

intake of anti-hypertensive medication was defined as the presence 
of hypertension.

Obesity
Body mass index (BMI) was calculated by: mass [kg]/

(height [m])2.

Body composition (fat/skeleton muscle mass)
Body composition was assessed by bioelectrical impedance 

analysis using a body impedance analyzer (BIA 101, Akern, 
Germany) for two out of four visits. Therefore, ohmic resistance was 
measured between the dominant hand wrist and dorsum and the 
dominant foot angle and dorsum in the supine position. Muscle 
mass in kg was then calculated according to Janssen et al. (1985) 
and subsequently normalized to subjects’ body height squared 
(skeletal muscle index: SMIBIA): with body height in centimeters, 
resistance in Ω, for gender: male = 1 and female = 0, and age 
in years.

Assessment of physical activity
Physical activity was assessed by a self-administered questionnaire. 

This questionnaire is part of the Bundes-Gesundheits Survey (national 
health survey) and allows to rate physical activity between 0 and 4 
(0 = no activity, 1 = 0.5–1 h per week, 2 = 1–2 h per week, 3 = 2–4 h per 
week, 4 = more than 4 h per week) (Mensink, 1999).

Smoking and drinking
Personal history of smoking and alcohol-drinking behavior was 

assessed by a self-administered questionnaire. Pack-years were 
calculated by quantifying the packs (20 cigarettes/pack) smoked per 
day multiplied by years as a smoker. The frequency of drinking alcohol 
was assessed on a scale from 0 to 4, which indicates the number of 
drinks per month.

Genetic risk factors for Parkinson’s disease and 
Alzheimer’s disease

Pathogenic variants in LRRK2 and GBA are the most common 
PD-associated genes. DNA was isolated from EDTA blood by salting 
out and stored at 4°C. All participants were analyzed by NeuroChip. 
Pathogenic variants in LRRK2 and GBA were confirmed by Sanger 
sequencing. None of the participants carried a LRRK2 mutation. Fifty-
seven participants carried a GBA variant. We further grouped those 
according to known PD-specific mutation severity: wild type (0), low 
risk (Dorsey et  al., 2018), and mild/severe (Ferri et  al., 2005). 
Moreover, the most relevant single-nucleotide polymorphisms in 
genes for PD (SNCA rs356220 or proxy rs356219) and AD (ApoE, 
MAPT) were investigated to explore the effect on motor and cognitive 
function. We  grouped the number of risk alleles according to an 
additive model: SNCA rs356220 (or proxy rs356219) minor allele C 

(0, 1, 2), ApoE4 allele (0, 1, 2), and MAPT haplotype (H1/H1, H1/
H2, H2/H2).

Measurement of neurofilament light chain 
in blood

Neurofilament light (NFL) chain protein is an unspecific biofluid 
marker that reflects the extent of neuronal/axonal damage. Blood 
samples were collected on the day of the study visit, cooled, centrifuged 
(4°C, 10 min, 2000 g), aliquoted, and stored at −80°C within 4 h after 
collection. They were analyzed without any previous thaw–freeze 
cycle. Serum levels of NFL as a marker for neuronal-axonal damage 
were measured in duplicates using the SIMOA NF-light KIT 
(Quanterix, Product number: 103186) on the SIMOA HD-1 Analyzer 
(Quanterix, Lexington, MA) as established previously (Kuhle et al., 
2016). Technicians were blinded to all other tests of the participants.

Definition of age-related key functions and 
model overview

The aim was to simultaneously predict aging-related key functions 
of motor and cognitive performance from a large set of multiple multi-
modal factors including genetic, biofluid, clinical, demographic, and 
lifestyle factors (Supplementary Table S1).

As outcome measures for motor function, we defined the different 
gait conditions:

 • Overall speed: dual-task speed + single-task speed
 o Walk while subtract serial 7 s dual + single walk
 o Subtract serial 7 s while walk dual + single subtract serial 7 s
 o Walk while cross boxes dual + single walk
 o Cross boxes while walk dual + single cross boxes

 • Dual-task cost: dual-task speed – single-task speed
 o Walk while subtract serial 7 s dual—single walk
 o Subtract serial 7 s while walk dual—single subtract serial 7 s
 o Walk while cross boxes dual—single walk
 o Cross boxes while walk dual—single cross boxes

As outcome measures for cognitive function, we used the CERAD 
and defined the different CERAD subdomains:

 • Overall cognitive function: Total score
 • Memory function: Word list learning and word list recall
 • Executive function: TMT A + B and TMT B—A

All scores were transformed such that higher values reflect worse 
performance by flipping the scale.

Our goal was to develop a Bayesian RRR model that 
simultaneously predicts all motor and cognitive outcome measures 
from a single composite score extracted as a linear combination of 
lifestyle and genetic factors and compare this model to conventional 
statistical approaches (Supplementary Table S1). This restricts the 
flexibility of the model but increases its ability to identify a key feature 
extractor by using several prediction targets. Figure 1 illustrates the 
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rationale for Bayesian RRR compared to classical multivariate 
linear regressions.

We used python 3 (3.8.2) in combination with the probabilistic 
modeling library PyMC3 (3.9.3) (Salvatier and Fonnesbeck, 2016) to 
implement the Bayesian RRR model. The ordinary least squares (OLS) 
models were implemented with statsmodels (0.11.1) (Seabold, 2010). 
Model evaluation was performed using scikit-learn (0.23.1) 
(Pedregosa et al., 2011). We used datajoint (0.12.6) (Yatsenko et al., 
2015) to build our data processing pipeline.

Handling missing data
Missing data of predictor variables were handled in the same way 

for both models. After subject and visit exclusion as detailed in 
Supplementary Figure S1, we  assessed the missingness of the 
predictors across all remaining visits. The percentage of missingness 
for time-varying predictor variables can be  found in 
Supplementary Table S1. To increase the amount of available data 
points, we performed imputation. We did so only for subjects with at 
least one value available for each predictor. Based on the assumption 
that predictors only change when a new value is given, we first applied 
forward filling and then backward filling.

Models

Reduced rank regression model and Bayesian 
reduced rank regression

Our reduced rank regression model is based on the observation 
that the outcome measures/clinical tests are correlated and thus can 
be represented through a smaller set of latent variables. Therefore, 
we used an RRR model that allows us to predict multiple response 
variables from the same set of predictor variables while reducing 
the amount of model parameters (Figure 1). RRR can be seen as a 
multivariate regression model with a coefficient matrix of reduced 
rank (Velu, 2013). RRR is a computationally efficient method that 
increases statistical power in settings where the number of 
dimensions is large compared to the number of examples. In such 
m ≫ j settings, RRR is nowadays a state-of-the-art method in fields 
with high-dimensional data, such as genetics and imaging (Zhu 

et al., 2019; Kobak et al., 2021). Given j observations of m predictors 
and n outcome measures, standard multivariate regression requires 
fitting m n coefficients Y = XC + E, with Y being the response matrix 
of size j × n, X being the j × m predictor matrix, C the m x n 
coefficient matrix and E being the error term matrix of size j × n. 
The RRR is obtained by adding a rank constraint rank(C) = k, 
k ≤ min (n,m). The rank constraint decreases the dimensionality of 
the model and improves the statistical power. Using the rank 
constraint, C can be rewritten as C = ABT, with A of size m × k and 
B having size n × k. Hence, the model can be  expressed as 
Y = (XA) BT + E.

This decomposition allows for interpretations of A and B. A is a 
mapping from the predictor matrix X to a latent representation of 
dimension k. B is a mapping from the latent scores to the responses 
Y. The latent scores XA display the low-dimensional predictor 
variability that is predictive of the response variability.

We used Bayesian inference for our RRR model to obtain 
parameter uncertainty and handle missing data. This means that given 
observations X and Y, we  sampled model parameters Ψ from the 
posterior distribution p(Ψ|X,Y) ∝ p(Y|Ψ,X)·p(Ψ). The variable Ψ 
generically denotes all parameters of the model. The Bayesian 
framework requires a prior distribution p(Ψ) that embodies our prior 
knowledge about these parameters and the behavior that we want the 
model to exhibit. We  are specifying these choices in the 
following paragraphs.

Least squares regression models can easily be transformed into 
Bayesian models by rewriting the model as Y ∼ N(XABT,σ2), where 
N(μ,Σ) denotes the normal distribution with mean μ and covariance 
Σ. Given a high-dimensional data setting, it is likely that some of the 
predictors are non-informative for some of the outcome measures. A 
Laplace prior to A can realize this desired sparsity as it promotes 
element-wise sparsity: Certain elements in A are set to 0, resulting in 
a latent composite score depending on certain predictors but not 
on others.

Suppose we have a predictor matrix X which holds information 
about m  predictors (time-varying and static) for j visits of subjects. 
Through A those are mapped to the latent space of size k, such that 
we obtain k composite scores for each visit, θ. For visit i, we thus get 
for composite score f: θif = ∑l = 1

m Xil Alf. A priori, each element of A is 

FIGURE 1

Schematic comparison of multivariate regression and reduced rank regression. The number of coefficients to learn (number of arrows) is illustrated for 
(a) multivariate regression and (b) reduced rank regression. The latent variable θ , the composite risk is a linear combination of the predictors and is 
projected via linear multiplications to the targets.
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sampled from a Laplace distribution Laplace(x,μ,b)= 

x1 exp
2b b

 − µ
− 
 

 with b = 1 to enforce element-wise sparsity. The 

matrix B maps back from the latent space to the response space. A 
lognormal distribution ln(eμ + σZ) with σ = 0.25 is used prior to 
enforcing the positivity of the coefficients. By centering the real 
responses prior to learning, an offset can be omitted. For visit i we get 
a prediction for the response o via Yio = θ’ioBo for which we assume a 
Gaussian observation noise with σ = 0.908, which is informed by the 
MSE on the training data of the multiple OLS models. We trained a 
model with k = 1, for which we present the results in the main text, 
but we also trained a model with k = 2 to check how this increase in 
complexity improves the performance. We further trained a model 
with k = 1 and a deterministic B = 1 to check whether our Bayesian 
model with similar complexity to the OLS models performs as well 
as those. The results can be found in Supplementary Table S3.

Ordinal predictors
We further improved our Bayesian RRR model through the way 

it handles ordinal predictors. Ordinal variables are commonly used in 
clinical settings. However, in most modeling approaches, they are 
encoded as either nominal or interval variables. The former disregards 
the ordering information, and the latter assumes regular spacing, 
which may not be given. To correctly use ordinal predictors, one can 
use monotonic effects (Burkner and Charpentier, 2020) 
(Supplementary Figure S2). This transformation ensures a monotonic 
increase or decrease, while adjacent categories can  
be  arbitrarily spaced. For an ordinal predictor x taking values 
xn∈{0,…,D} a monotonic transformation is defined as 

{ } [ ] ( )
nx

n n i
i 1

mo : 0, ,D 0,D ,x mo x , D
=

… → → ζ = ζ∑  where ζ is the 

element of a simplex, meaning it satisfies 
l

i
i 1

1
=
ζ =∑  and ζ_i∈[0,1]. It 

can be  interpreted as the normalized distances between adjacent 
categories. As D can be absorbed into the regression coefficients A and 
lead to redundancies, we instead encoded ordinal variables in our 

model with: ( )
nx

n i
i 1

cmo x , .
=

ζ = ζ∑

This still ensures a monotonic transformation with arbitrary 
spacing; however, the effect and sign will be  inferred through the 
regression coefficient. In our Bayesian RRR model, we  chose a 
Dirichlet prior for the ζi as it is the natural choice for a prior on 
simplex parameters. By choosing a constant α = 1, we effectively used 
a uniform (equal probability) prior to the probability simplex, i.e., all 
vectors ζ that sum to one are equally likely. The a priori expectation of 

ζ is given by ( ) i
i i D

ii 1

w E
=

α
= ζ =

α∑ . With α = 1, we have i
1w
D

= . This 

prior centers the category distances, ζ around a linear trend but allows 
for high variations around this. This transformation was applied to the 
ordinal predictors in X prior to the RRR.

We decided to model the genetic data as ordinal predictors as 
well. The monotonic transformation allows us to consider dominant 
(0 vs. 1), additive (0 vs. 1 vs. 2), as well as recessive (0 vs. 2) 
effects simultaneously.

Model comparison
To compare the predictive performance of the Bayesian RRR 

model against a more flexible and traditional approach, we trained 13 
OLS models that each predict a single outcome measure from the set 
of predictors. To handle the longitudinal data, we decided to include 
all available visits of each subject, thereby having subjects unequally 
represented in the dataset. The models thus treat each visit as an 
independent data point, disregarding the correlation arising from 
repeated measures of the same subject. As the outcome measures 
have variable availability (Supplementary Table S2), for each model, 
the valid visits to include for training were selected separately in 
order to maximize the number of overall data points. For each 
outcome measure, we kept all data points where the outcome measure 
itself was available. We thus trained the OLS models on differently 
sized datasets. In contrast, the Bayesian RRR model was trained on 
all targets simultaneously. Due to the nature of the Bayesian 
framework, we can include data points where parts of the outcome 
measures are missing. Thereby the entire Bayesian RRR is trained on 
the union of the datasets for the OLS models but for each outcome 
measure, only the same visits as for the corresponding OLS model are 
used for training. For the OLS models, we decided to use dummy 
encoding for nominal and ordinal predictors and include an intercept 
term. For a predictor with n  categories, we  thus included 1n −  
coefficient in the model. Real-valued predictors were standardized. 
All models were fit using mean-squared error loss. We performed 
5-fold cross-validation using 20% as test and 80% as training data, 
ensuring that visits of the same subject are grouped into either one. 
For each fold, the outcome measures and real-valued predictors were 
standardized on the training set. As no hyperparameters (values that 
we set to control the learning process) were learned, cross-validation 
yielded a measure of uncertainty for the prediction performance 
from the 5-folds. All performance evaluations and comparisons were 
conducted through this cross-validation. We retrained all 13 OLS 
models on their respective complete datasets (training and test) to 
obtain the final coefficients for the predictors.

Sampling from the posterior
We sampled from the posterior p(Ψ|X,Y) through NUTS sampling 

(Hoffman and Gelman, 2014) with two chains, each with a burn-in of 
2000 samples and 500 retained samples. We thus obtained 1,000 samples 
from the posterior distributions of each parameter. Subsequently, 
we obtained the posterior predictive distribution by feeding the samples 
through the generative model: p(Y|X) = ∫ p(Y|Ψ)p(Ψ|X)dΨ.

These predictions were used for performance evaluation. To assess 
the generalization of our model, we  performed a 5-fold cross-
validation where for each split the data were randomly split into a test 
(20%) and train (80%) set, ensuring that each subject is only in either 
one. We retrained the model using the whole dataset to obtain the 
final posterior distributions for the coefficients.

Performance evaluation
We used the coefficient of determination R2 to compare our model 

performances. Suppose we have n data points with yi being the true 
value for visit i, y î being our predicted value, and y− being the mean 

of the true values. R2 is defined as 
( )

2
n

i ii 1
2

n 2
ii 1

y y
R 1 .

y y

=

=

 
− 

 = −
− −

∑

∑


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It is 1 for perfect prediction and 0 when the mean is predicted. 
Note that, R2 can be negative if the prediction is worse than the mean, 
i.e., the constant predictor. We calculated R2 as the standardized mean-

squared error (MSE): 
( )

MSER2 1
var y

= −  where y are the true values. To 

make the measure more robust, we decided to normalize the MSE by 
the variance of the whole dataset, i.e., train and test set. This better 
captures the true variation regardless of the applied train/test split. 
We compared the performance over the 5-folds of the OLS models 
and the Bayesian RRR model for each clinical test with a t-test.

We evaluated the significance of predictors of the multiple 
linear regression models with t-tests and a type-I error threshold 
for a p-value of 0.05 that is corrected by the number of tests 
performed using Bonferroni correction. For our Bayesian RRR 
model, where we obtained posterior samples for our coefficients, 
we  calculated the highest posterior density (Turkkan, 1993) 
(95%) and defined significance as this interval not  
crossing 0.t.

Results

Model performance

The Bayesian RRR composite score model achieved comparable 
performance to classical linear regressions (OLS) per clinical outcome 
measure (Figure 2). It showed similar levels of explained variance for 
all cognitive outcome measures (Supplementary Table S3). Separate 
linear regressions significantly outperformed the composite score 
model in the four gait-related outcome measures (walk while cross 
dual – single, subtract while walk dual – single, walk while subtract 
dual + single, walk while cross dual + single), Figure 2. Our composite 
score model performed on par with linear regressions in predicting 
the gait-related outcome measure “Subtract while Walk Dual + 
Single” which is the gait measure that has the highest cognitive load 
as it measures the speed of mathematical calculations while walking. 
Overall, the composite score model performed well on cognitive 
outcome measures, on par with the OLS models, and worse on gait-
related measures. This indicates that a composite score RRR model 

FIGURE 2

Performance comparison of Bayesian RRR and multiple OLS. The mean 5-fold CV R2 on the test sets is shown for each of the outcome measures. 
Error bars denote the 95% confidence interval across 5-folds. For the Bayesian RRR, we show the mean across 5-folds of the mean R2 over 1,000 
samples and the corresponding 95% confidence interval across 5-folds.
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with a single explaining factor performs almost equally well as several 
individual OLS models.

To assess whether the worse performance in the four gait-related 
measures is due to the reduced complexity of our model or due to 
other model specifications, we trained a separate Bayesian RRR for 
each outcome measure. These performed as well as the OLS models 
on all tasks (see A6).

All models recover known protective and 
risk factors

Multiple linear regressions
The multiple linear regressions showed an overall agreement for 

the effect direction, i.e., whether a factor is a risk or a protective factor 
(Figure 3). Factors identified as protective are female sex, longer time 
in education, and a higher level of physical fitness (hours of exercise 
per week, higher skeleton muscle mass). Only for some movement 
speed-related outcome measures (walk while subtract/cross dual—
single) female sex negatively impact the outcome measure (i.e., 
decreased performance). Risk factors that were in agreement between 
the majority of the OLS models are older age, a higher number of 
cigarette pack-years, and a higher BMI.

Bayesian reduced rank regression composite 
score model

The composite score Bayesian RRR model merged this overall 
agreement of the OLS models into one composite score (Figures 4, 5). 
In addition to the identified factors from the OLS models, the Bayesian 
model identified hypertension, ApoE4 genotype, and higher NFL 
values as significant risk factors. The number of relatives with PD or 
dementia was not significant in any OLS model but was identified as 
a significant protective factor in our composite risk model. The 

Bayesian RRR further identified genetic variants in GBA and MAPT 
(H2 haplotype) as protective factors.

Monotonic transformation reveals a proportional 
effect on exercise

The encoding of ordinal factors in our model allowed for fine-
grained information on their effect on the composite score not 
addressed by a nominal encoding as used in the OLS models. By 
learning the distance between the categories of ordinal predictors 
through monotonic transformation, we obtained flexible spacing of 
the different levels with additional meaning (Figure 6). We saw a steep 
reduction of risk for people who drink at least two drinks per month 
but increasing the number of drinks did not further reduce the risk 
substantially. In contrast, for physical exercise, we observed no such 
saturation and can conclude that more exercise is more protective. 
We also note a steep increase in risk for carriers of 2 ApoE4 alleles 
compared to carriers of one allele. Contradictorily, heterozygous 
carriers of mild and severe GBA variants seem to be more protected 
than those with GBA wildtype.

Discussion

We analyzed the combined influence of a large set of multi-modal 
factors, including environmental, lifestyle, biofluid, and genetic data, 
on aging-related key functions, cognitive, and gait performance, 
measured by multiple clinical tests. To this end, we compared two 
approaches: independent prediction of each outcome measure with a 
linear regression model (OLS) and joint prediction of all outcome 
measures from one composite score learned by a Bayesian RRR model. 
We could show that the predictive performance of the Bayesian RRR 
model with one single composite score was comparable to classical 
multiple OLS models. The most relevant factors that showed a 

FIGURE 3

Regression coefficients of multiple linear models. The influence of the predictive factors (x-axis) on the outcome measures (y-axis) is shown. The color 
indicates the size and direction of the effect (protective  =  blue, risk  =  red), with the size showing the importance (abs(coefficient)/standard error) and a 
black outline indicating significance (Bonferroni-corrected p-threshold 0.05).
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protective effect on complex gait and cognitive abilities in older 
participants included female sex, a higher degree of physical activity, 
more skeletal muscle mass, and more years of education. Contrary, 
higher age, body mass index and more smoking pack-years, the 
presence of hypertension, having two ApoE4 alleles, and higher serum 
levels of NFL were predictors for impaired gait and reduced 
cognitive performance.

We primarily included well-known risk and protective factors to 
check the validity of the composite modeling. However, some factors 
showed an influence in an unexpected direction. For example, the 
number of relatives with dementia or PD should serve as a proxy of 

the genetic risk and thus be a risk factor. Our model as well as the OLS 
models instead revealed a protective effect. This could be due to the 
high motivation of individuals with a family member affected by a 
neurodegenerative disease, as they have an increased personal interest 
in performing well and taking care of one’s health. However, we did 
not directly measure motivation. Such motivational influences were 
not measured directly within the TREND study, but the literature 
supports this assumption (Soule et al., 2016). Carriers of mild and 
severe variants in the GBA gene had a reduced risk according to our 
model, which could be a reflection of these carriers being significantly 
younger than the other groups (mild and severe GBA variant carriers 
(N = 30) vs. wildtype (N = 4,294): t-statistic = −3.12, p-value = 1.8e-3; 
mild and severe GBA variant carriers (N = 30) vs. low-risk GBA variant 
carriers (N = 166): t-statistic = −2.54, p-value = 1.2e-2).

Our modeling of the ordinal predictors allowed for interpretations 
of the effect sizes of each category. For example, ApoE4 is a well-
known genetic risk factor for cognitive decline, with carriers of one 
allele having an odds ratio of approximately 3 for developing AD and 
carriers of two alleles having an odds ratio of approximately 15 (Farrer 
et al., 1997). This steep increase in risk for carriers of two alleles was 
replicated in our model despite the small sample size (11 persons with 
two ApoE4 alleles and 193 with one ApoE4 allele). We investigated 
how much complexity is needed to achieve similar performance to the 
OLS models in all outcome measures by training a model with two 
composite scores and by training separate Bayesian models for each 
outcome measure. Increasing the latent space and allowing for two 
composite scores slightly improved the performance for a subset of the 
clinical tests, albeit not significantly. This mainly affected gait outcome 
measures and revealed distinct effects of factors for different clinical 
tests (Supplementary Table S3). For example, female sex was identified 
as a risk factor for walking speed in general but a protective factor 
across all cognitive tests (Figure 3). This effect was found in the OLS 
models and the two composite scores models 
(Supplementary Figures S3, S4) alike and could reflect the height 

FIGURE 4

Composite score model The composite score model recovers the overall agreement of the coefficients across the multiple OLS models. The color 
indicates the direction and size of the effect of a predictor (x-axis) on a target (y-axis). The size of the square indicates its importance as the absolute 
ratio of mean and standard deviation (the larger the further away from 0).

FIGURE 5

Regression coefficients for the composite score model. The 
estimated effect sizes of the predictors on the composite score are 
displayed. The highest posterior density is plotted. The coloring 
indicates significance (95% highest posterior density contains 0, not 
significant  =  gray) and direction of the effect (blue  =  protective, 
red  =  risk).
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difference and thus step size differences between males and females. 
This was not measured within the TREND study and can thus not 
be corrected for. The single composite score model thus prioritized the 
cognitive measures over the gait-related measures, leading to a 
composite score that performs well on cognitive measures and worse 
than the OLS models on the gait measures. The good performance of 
the single composite score model to predict the gait measure “Subtract 
while Walk Dual + Single” might be explained by the high cognitive 
load of this task. It might thus be better represented by a cognitive 
composite score.

Our approach of a joint prediction of all outcome measures from 
one composite score learned by a Bayesian RRR model performed 
comparably well to the more classical flexible individually fitted 
regression models. This suggests that already one composite score can 
capture a substantial part of the complex effects on cognitive and 
motor function in an aging cohort. This finding is in line with recent 
studies. Data-driven techniques applied in archival clinical datasets 
may outperform classical models and could enhance diagnostic 
procedures in regions with limited resources (Maito et al., 2023; Javeed 
et  al., 2023). Our model unbiasedly identified known risk and 
protective factors of aging.

The fact that our less flexible model performed comparably well 
to individual OLS models indicates that the explored factors either 
share similar mechanistic pathways and/or are interrelated to each 
other. This further highlights a global underlying risk for aging 
processes where motor and cognitive abilities are affected alike.

Our Bayesian RRR has several strengths compared to traditional 
approaches, such as its handling of missing data, its reduced 
complexity and thus its interpretability, and its handling of ordinal 
predictors. In Bayesian models, missing values in the outcome 
measures can be imputed through the model’s parameter estimates. 
As we can include incomplete data in the model, we increased the total 
amount of data the model uses but did not alter the data distribution 
artificially by learning from imputed outcome measures (covariates 
were imputed). Through our assumption of a composite risk, 
we decreased the complexity of the model and thus made it more 
scalable and better suited for medical data, which are scarce and high-
dimensional. This assumption of a low rank further increased the 
model’s interpretability, as the single composite score can 
be interpreted as an estimate of the true underlying risk. The modeling 

of the ordinal predictors better captured the true scale level of the data, 
indicating that physical exercise has an additive effect.

We acknowledge the following limitations: (1) Our Bayesian RRR 
model does not test for causality but merely identifies associations 
between the included predictors and outcome measures. (2) Our 
Bayesian RRR model currently assumes a linear relation between the 
predictors and outcomes, although this is not necessarily true. For 
example, it would be  reasonable to assume that drinking a small 
amount of alcohol could have a protective effect, but excessive 
drinking could be a risk factor for cognitive performance. Such reverse 
effects cannot be  captured through our linear models. Using a 
quadratic link function could better account for such scenarios, other 
non-linearities could be further explored through neural networks. 
Drinking two drinks might be a confounding fitness factor, as many 
seniors avoid drinking if they are multimorbid or take multiple 
medications. (3) Another limitation is the handling of longitudinal 
data, where we treat visits from the same individual as independent. 
This disregards the correlation within a subject. A potential 
improvement of our model could be the adaptation of a mixed model 
where visits are grouped by individuals and identified through a 
subject-specific identifier, i.e., random effects. This would further 
allow us to make statements about a subject’s temporal slope. A 
different approach to modeling the longitudinal data would be  a 
stacked model where a linear mixed model first learns the trajectory 
over time for each subject, and this estimated change over time is then 
used as the outcome measure in our Bayesian RRR. (4) While our 
Bayesian RRR model reduces complexity, it may not capture all 
nuances and interactions between predictors as effectively as more 
flexible models. Additionally, there is a trade-off between 
interpretability and performance, which might lead to overlooking 
some significant interactions and non-linear relationships between 
variables. (5) While the model is designed to be generalizable, its 
performance and findings are based on this single cohort. Therefore, 
a validation in further worldwide cohorts is necessary (Santamaria-
Garcia et al., 2023; Ibanez et al., 2024). (6) While the overall number 
of genetic risk carriers (GBA, SNCA, and MAPT) was in the expectant 
range of the known prevalence, this sample size is too small to robustly 
recover their effect on age-related functions.

Currently, our model achieved similar performance to multiple 
OLS models, however, several adaptations could be  explored to 

FIGURE 6

Flexible spacing of ordinal predictors. For each ordinal predictor, we show the distance between the categories modeled through a monotonic 
transformation in the composite score model. We plot the learned distances multiplied by the predictor’s effect size (A). The mean of the samples 
alongside the highest posterior density interval (95%) is shown.
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improve our model’s performance. As our model requires fewer 
parameters, we could increase the number of predictors and targets 
without the need to increase the sample size. Especially exploring the 
effect of various aging-related genetic markers and their interaction 
could be a promising future project. A similar model has been used 
before for modeling genotype–phenotype associations (Goh et al., 
2017); however, they did not use monotonic transformations but 
instead assumed additive effects for the SNPs.

We conclude that our low parametric modeling approach 
successfully recovered known risk and protective factors of healthy 
aging on a personalized level while providing an interpretable 
composite score. An extension of this model using more predictors 
and clinical tests could further identify unknown factors and distinct 
aging-related processes. To this end, more sensitive tests are needed 
to better capture the variation with a healthy cohort. Digital sensors 
such as wrist-worn acceleration devices could provide such sensitive 
data. The modeling approach is generalizable and could also be applied 
to other cohorts to investigate the complex interplay of risk and 
protective factors along with effect sizes from different dimensions 
such as lifestyle, medical, genetic, and biochemical data.
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