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The intricate neurofluid dynamics and balance is essential in preserving the

structural and functional integrity of the brain. Key among these forces are:

hemodynamics, such as heartbeat-driven arterial and venous blood flow, and

hydrodynamics, such as cerebrospinal fluid (CSF) circulation. The delicate

interplay between these dynamics is crucial for maintaining optimal homeostasis

within the brain. Currently, the widely accepted framework for understanding

brain functions is the Monro-Kellie’s doctrine, which posits a constant sum

of intracranial CSF, blood flow and brain tissue volumes. However, in recent

decades, there has been a growing interest in exploring the dynamic interplay

between these elements and the impact of external factors, such as daily

changes in body position. CSF circulation in particular plays a crucial role

in the context of neurodegeneration and dementia, since its dysfunction has

been associated with impaired clearance mechanisms and accumulation of

toxic substances. Despite the implementation of various invasive and non-

invasive imaging techniques to investigate the intracranial hemodynamic or

hydrodynamic properties, a comprehensive understanding of how all these

elements interact and are influenced by body position remains wanted.

Establishing a comprehensive overview of this topic is therefore crucial and

could pave the way for alternative care approaches. In this review, we aim

to summarize the existing understanding of intracranial hemodynamic and

hydrodynamic properties, fundamental for brain homeostasis, along with factors

known to influence their equilibrium. Special attention will be devoted to

elucidating the effects of body position shifts, given their significance and

remaining ambiguities. Furthermore, we will explore recent advancements in

imaging techniques utilized for real time and non-invasive measurements of

dynamic body fluid properties in-vivo.
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1 Introduction

The human cranium serves as an enclosed space where the
structural and functional properties of the brain are susceptible to
external influences such as postural and gravity changes, cardiac
rhythm and respiration, as well as intracranial pathologies such as
tissue edema, tumor, trauma and neurodegeneration. Two primary
dynamic fluid systems – arterial and venous blood, along with
cerebrospinal fluid (CSF) – play integral roles in maintaining
central nervous system (CNS) homeostasis and respond adeptly to
external influences.

Disruptions in hemodynamics and CSF hydrodynamics have
been observed in various neurological conditions. For example,
reduction in cerebral blood supply has been observed to correlate
with transient ischemic attack (TIA) (Sui et al., 2023; Prabhakaran
et al., 2011), white matter hyperintensity (WMH) (Huang et al.,
2021; Alosco et al., 2013), and stroke (Demeestere et al., 2020).
In addition, impaired CSF production or absorption could lead
to misfolded protein accumulation in the brain, raising toxicity
and consequently trigger neurodegeneration. Recent studies have
in fact emphasized that CSF circulation serves not only as providing
mechanical and nutrient support to the brain but also regulating
the extracellular environment and removing waste byproducts
of neuronal metabolism. Reduced waste clearance could lead
to disturbances in intracranial pressure (ICP), accumulation of
toxic substances and impaired glymphatic system as observed
in aging (Kress et al., 2014), sleep issues (Xie et al., 2013)
and conditions such as hydrocephalus and normal pressure
hydrocephalus (NPH) (Linninger et al., 2007; Bateman and Brown,
2012; Symss and Oi, 2013). It has been hypothesized that such
impairment in circulation could contribute to the accumulation
of amyloid-beta and tau proteins in the brain, exacerbating
neuronal damage and cognitive decline (Iliff et al., 2014;
Wang et al., 2017).

Age stands as the foremost significant factor in Alzheimer’s
disease (AD) and AD-related dementia (ADRD). As individuals
age, typical processes often include a reduction in sleep duration
and less time spent in the lying down position (supine), therefore
increasing the total time spent in the upright position. Nevertheless,
the impacts of ubiquitous factors on neurofluid dynamics from
daily changes of body position, experienced by everyone, remain
relatively unknown.

In recent years, there has been a growing interest in
understanding the effects of body position on human body fluid
physiology. Evidence suggests that changes in posture induce
alterations in various physiological processes such as blood and
CSF circulation, deceleration of heart rate, reduction in blood
pressure, and adaptation of the autonomic nervous system (Sagirov
et al., 2023). As such, it is reasonable to hypothesize that this
seemingly simple factor –upright or supine body position– may
hold significant implications for optimizing and maintaining brain
health.

Previous investigations, whether at the preclinical or clinical
level, have mostly focused on exploring hemodynamic or
hydrodynamic changes in isolation, despite these two factors have
been shown to significantly influence each other (Figley and
Stroman, 2007; Beltran et al., 2023). Therefore, the goal of this work
is to present a comprehensive picture of the impact of body position

on both hemodynamic and hydrodynamic aspects. Additionally, we
will explore recent advancements in neuroimaging technologies,
allowing for real-time, in-vivo monitoring of blood and CSF flow
in humans and their application in age-related neurodegenerative
diseases.

2 Hemodynamics and
hydrodynamics of CNS

2.1 Hemodynamics

The human body’s hemodynamic properties consist of two
distinctive cardiovascular systems: the arterial system, delivering
oxygenated blood and nutrients to organs and tissues; and the
venous system, returning deoxygenated blood to the heart and
lungs for reoxygenation and recirculation. This blood circulation
is driven by the cardiac flow, significantly impacting cerebral
perfusion. A slower resting heart rate (HR) (<75 bpm) is often
indicative of a healthier cardiovascular system compared to faster
rates (Fox et al., 2007; Palatini et al., 1997). This may be attributed
to the fact that higher HR can lead to increased blood pressure,
greater cardiac output (Miyai et al., 2002; Palatini and Julius,
1997) and increased vascular wall shear pressure (Taylor et al.,
2002; Yap et al., 2012), potentially compromising cardiovascular
integrity especially at long timescales (Topper and Gimbrone,
1999). In addition, HR variability (HRV) in an individual could
be used as an indicator of cardiovascular and cerebrovascular
health (Shaffer et al., 2014), with lower HRV associated with
increased mortality risk (Tsuji et al., 1994; Kleiger et al., 1987)
and disease susceptibility (Thayer et al., 2012; Carney et al., 2005).
Thus, maintaining efficient and adaptive circulation mechanisms is
essential for optimal health.

The human brain typically receives 15–20% of the cardiac
output, around 50 mL/100 g/min (Vavilala et al., 2002), primarily
from the bilateral internal carotid arteries (ICAs) (72%) and
the bilateral vertebral arteries (VAs) (28%) (Zarrinkoob et al.,
2015). Cerebral blood flow (CBF) is meticulously regulated to
meet the brain’s metabolic and oxygen needs through cerebral
autoregulation (Silverman and Petersen, 2024), ensuring optimal
function. It is widely believed that total CBF is higher in females
than in males (Vernooij et al., 2008; Tarumi et al., 2014) and
decreases with age (Tarumi et al., 2014; Amin-Hanjani et al.,
2015). However, these findings remain contentious, as some studies
reported no sex-related effects (Amin-Hanjani et al., 2015; Buijs
et al., 1998). Additionally, alongside common vascular tortuosity
changes with age (Sun et al., 2022; Li et al., 2024), other
vascular pathologies, like arteriosclerosis and atherosclerosis, can
disrupt cerebral perfusion and autoregulation, even in individuals
without clinical symptoms (Han et al., 2019; Hecht et al., 2021;
Kaczmarz et al., 2021).

Cerebral blood flow coupling, vital for brain homeostasis,
involves a complex interplay between blood and neuronal
cell dynamics, regulated by neurovascular coupling (NVC), a
crucial brain phenomenon that can be assessed with blood-
oxygen-level-dependent (BOLD) MRI (Kim and Ogawa,
2012; Ogawa et al., 1990; Attwell and Iadecola, 2002).
The NVC is dynamically regulated by components like

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1454282
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1454282 November 7, 2024 Time: 11:56 # 3

Muccio et al. 10.3389/fnagi.2024.1454282

astrocytes and the vascular endothelium (Thakore et al., 2021;
Pellerin et al., 2007). Disruptions in vasomotor function or
NVC can impact vascular modulation and its downstream fluid
dynamics, potentially leading to neurodegeneration, as observed
even in healthy aging (Wilson and Matschinsky, 2020).

Of equal importance is the cerebral venous system, responsible
for removing deoxygenated blood and, as recently suggested,
clearing waste products resulting from neuronal activity. This
system consists of non-contractile vessels, including superficial
and deep veins and the major dural sinuses, facilitating drainage
through the internal jugular veins (IJVs) toward the heart and
lungs for oxygenation (Shapiro et al., 2023; Valdueza et al., 1996).
Unlike arteries, IJVs can partially collapse (change in diameter) in
response to external pressure changes (Schaller, 2004). Although
often overshadowed by arterial flow, understanding of the venous
drainage is crucial for its role in maintaining brain functionality.
These arterial and venous hemodynamic properties are illustrated
in Figure 1A.

2.2 Hydrodynamics

Cerebrospinal fluid dynamics are fundamental for maintaining
brain homeostasis by facilitating fluid circulation. The choroid
plexus (ChP), located in brain’s ventricular system, produces
500 mL per day with 3–4 times turn over in young adults (Dandy,
1919; MacAulay et al., 2022; Huff et al., 2023). Here, plasma is
filtered through the epithelial cells of the ChP (Johanson et al.,
2008; Brown et al., 2004). The CSF then circulates from the
lateral ventricles to the third and fourth ventricles via the cerebral
aqueduct (or aqueduct of Sylvius). From this point, the CSF
drains into the spinal subarachnoid space as well as reaching the
cisterna magna at the craniocervical junction and draining into
the cerebral subarachnoid space (Figure 1B). CSF is then filtered
into the cerebral venous blood through small protrusions called
arachnoid villi or granulations. These structures, mainly observed
in major venous sinuses such as the superior sagittal sinus, increase
the contact area between CSF and the venous blood (Khasawneh
et al., 2018; Pollay, 2010; Upton and Weller, 1985) therefore
increasing the transport of waste out of the surrounding brain tissue
(Figure 1C). Additional absorption sites include the bulbar nerve,
lymphatic nodes, and ventricular walls (Miyajima and Arai, 2015;
Chen et al., 2015). The rate of CSF absorption is closely related to
the CSF flow and ICP, which creates a pressure gradient necessary
for filtering out the toxic byproducts of brain activity.

The recent identified glymphatic system is believed to mainly
involve CSF circulation in periarterial and perivenous CSF spaces
connected by interstitial fluid (ISF), where toxic substances
produced by cells like neurons and glial cells primarily accumulate
(Ringstad and Eide, 2024; Figure 1D). CSF is thought to circulate
in a pulsatile manner, driven by brain and spinal cord movements
associated with cardiac pulsation (Lagana et al., 2022b; Baselli
et al., 2022), respiration (Lagana et al., 2022a; Dreha-Kulaczewski
et al., 2015), and cellular motile cilia (Kumar et al., 2021). Arterial
and venous flow, including pressure gradients and intracranial
pressure (ICP) are proposed as the main drivers of CSF circulation
(Alperin, 2020). These interactions between brain hemodynamics
and hydrodynamics are crucial for maintaining brain homeostasis
and optimal functioning especially in response to external stimuli.

3 Body position influences

Several imaging studies have explored how body position affects
brain fluid dynamics and intracranial pressure, primarily using
animal models because the standard clinical MRI scanners do not
allow for upright imaging. These studies have shown that changes
in body position alter CSF flow and overall intracranial pressure.
Klarica et al. (2014) demonstrated in cats that CSF pressures in
the lateral ventricles increases, and lumbar subarachnoid space
pressure decreases, with increasing head inclination (0–90 degrees).
Moreover, they reported opposite trends when the head and body
were tilted downward (225 and 270 degrees) (Klarica et al., 2014).
Similar findings have been supported by other studies (Klarica et al.,
2022; Lee et al., 2015; Kuzman et al., 2012; Carlson et al., 2003) with
recent interest in understanding body position’s influence on blood
and CSF compliance (Podgorsak et al., 2023).

In addition to circulation effects, rodent studies have shown
that different body positions affect brain waste clearance. Lee
et al. (2015) found that convective flux from CSF to interstitial
space and radiotracer clearance were greater in supine (or lateral)
positions compared to upright (or prone) in anesthetized rodents.
Human studies have been mainly restricted to mathematical
simulations (Lakin et al., 2003) to calculate CSF flow changes in
healthy individuals (Muccio et al., 2021; Alperin et al., 2005a)
due to the hardware limitations and availability of upright MRI
scanners. Some recent imaging studies, however, have investigated
the body position effects in patients with hydrocephalus and/or
Chiari malformations (Farahmand et al., 2015; Poca et al., 2006).
This section will discuss the impacts of postural changes on
hemodynamics and hydrodynamics in humans, particularly using
MRI scanners which allow imaging in both upright and supine
positions (Figure 2).

3.1 Hemodynamic changes

Changes in heart rate (HR) following a shift in body position
indicate cardiovascular responsiveness and adaptability. Moving
from supine to upright positions typically leads to increased HR,
HRV (Muccio et al., 2021; Tikkakoski et al., 2013; Watanabe
et al., 2007; Smith et al., 1994), blood pressure and other chemical
changes (Tulen et al., 1999). This compensatory response ensures
sufficient blood supply to vital organs, particularly the brain, which
is the farthest vital organ from the body’s center of gravity. Known
as the orthostatic or postural reflex, this process helps prevent
orthostatic hypotension, more common in older individuals due
to their reduced vascular reactivity (Smith et al., 1994; Ricci et al.,
2015; James and Potter, 1999). Recent studies propose that HR
changes from supine to upright positions could predict prognosis
in chronic heart failure patients. Higher HR increases due to
postural changes correlate with lower risk of heart failure, reflecting
augmented vasomotor modulatory capability (Maeder et al.,
2016). These findings underscore the importance of a dynamic
cardiovascular system able to support fluid dynamics shifts as
response to postural changes. Furthermore, HR variations with
body position significantly affect CBF and intracranial perfusion.

Studies have explored the link between head tilt and CBF
in humans. While increasing head angulation up to 90 degrees
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FIGURE 1

Depiction of the healthy hemodynamic (A) and hydrodynamic system (B) concerning cerebral blood and CSF flow, respectively. (C) Represents in
more details the CSF flow in the brain and the hypothesized clearance pathway into the venous blood flow through the arachnoid projections. This,
named the glymphatic system, is even more detailed in part (D), where CSF-interstitial fluid (ISF) exchange is highlighted.

(upright) typically reduces cerebral perfusion immediately after
the position shift; some studies showed no significant differences
at lower angles (<30 degrees) (Kose and Hatipoglu, 2012). In
the supine position, cerebral arteries can more effectively dilate
and constrict in response to blood flow changes compared to
the upright position (Favre et al., 2020). These differences in
blood circulation between the supine and upright postures are
influenced by gravity’s effects on fluid dynamics, as explained by
Bernoulli’s principle of conservation of energy in fluids. In the
supine position, the cardiac system is uniformly affected by gravity,
whereas in the upright position a hydrostatic gradient forms,
leading to higher pressure in the feet and lower pressure in the
brain (Hinghofer-Szalkay, 2011). To counteract these gradients,
blood vessels must adjust by dilating or constricting in specific
areas to ensure consistent blood perfusion to vital organs like
the brain (Hinghofer-Szalkay, 2011). On the venous side, in
the supine position, most cerebral blood flow exits via bilateral
IJVs but, in the upright position, gravity causes an increase in
surrounding pressure and consequent collapse of these veins,
rerouting cerebral venous blood through smaller cervical veins
known as the venous plexus, necessary to maintain optimal
intracranial pressure regulation (Kosugi et al., 2020; Holmlund
et al., 2018; Valdueza et al., 2000). Additionally, the CNS may
directly influence hemodynamic adaptation to postural changes via
the sympathetic nervous system, detecting initial blood pressure
shifts through baroreceptors and subsequently increasing HR

and blood flow (Fisher and Paton, 2012; Joyner et al., 2010;
ter Laan et al., 2013).

Understanding dynamic cerebral blood flow variations with
body position is crucial for grasping brain autoregulation
complexities and may offer insights into cardiovascular health and
early signs of vascular diseases.

3.2 Hydrodynamic changes

The effects of body position on cranial CSF flow are often
underestimated despite their crucial role in maintaining brain
homeostasis. A preliminary search for “CSF flow and body
position” in PubMed yielded only 32 entries, mainly focusing
on mathematical modeling or shunt valve mechanics. Among
these, Muccio et al. (2021) demonstrated that CSF flow at
the cervical level is over 50% greater in the supine position
compared to upright, indicating increased fluid exchange between
the spinal canal and the cranium in the supine position (Muccio
et al., 2021; Figure 3). Previous MRI studies also support this
decrease in CSF volume exchange in the upright versus sitting
position (Alperin et al., 2005a; Alperin et al., 2021; Alperin
et al., 2005b). Factors influencing these postural changes in CSF
flow include spinal decompression and cranial/spinal compliance.
Notably, significant spinal cord decompression occurs in the
supine position, affecting CSF flow dynamics following basic fluid
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FIGURE 2

Image of subject scanned in an upright MRI scanner showing how it
is possible to shift the position between upright (left) and supine
(right) within the MRI scanner itself. Adapted with permission from
Muccio et al. (2021), Fluids Barriers CNS.

FIGURE 3

Representative graph of the average cervical CSF velocities within a
single cardiac cycle, in the upright (blue dots) and supine (red dots)
positions in healthy controls. Positive values represent CSF flowing
in the caudal direction and negative velocities represent flow in the
cranial direction. Notice the velocity difference between the two
positions, highlighted by the phase contrast images on the right.
Adapted with permission from Muccio et al. (2021),
Fluids Barriers CNS.

dynamics principles (Kuwazawa et al., 2006; Cadotte et al., 2015).
In the horizontal position, the cranial compartment contributes
37% and the spinal compartment 63% to the total craniospinal
compliance. Conversely, in the upright position, these values
nearly reverse, with the cranial compartment contributing 66%
and the spinal compartment 34% (Magnaes, 1989). Physiologically,
greater CSF velocity but lower stroke volume (or volume displaced
bidirectionally) is observed in the narrowing of the spinal canal
(Beltran et al., 2023), potentially influenced by factors like age and
sex (Beltran et al., 2023; Yanase et al., 2006).

Despite extensive literature on CSF dynamics, research
specifically focusing on the effects of body posture on CSF
production or secretion is lacking, largely due to challenge in
non-invasive measurement of these CSF properties, complicated
by the limited spatial resolutions of upright imaging technologies.
On the other hand, studies on astronauts exposed to microgravity
have demonstrated changes in CSF hydrodynamics, supported by

a substantial increase in CSF production post-flight (Kramer et al.,
2020; Kramer et al., 2015), along with changes in CSF volume due to
microgravity exposure (Roberts and Petersen, 2019; Roberts et al.,
2017). Considering this microgravity or weightless environment
as extreme of supine position hypotension, it is speculated that
CSF production might increase in supine compared to the upright
posture, though not to the same extent as in microgravity.

Body posture also influences the efficiency of glymphatic
pathways, crucial for distributing nutrients and removing brain
waste. This system is affected by sleep, anesthesia, respiration,
and arterial pulsation, driving glymphatic flux by enlarging the
interstitial fluid (ISF) space, lowering resistance to the perivascular
inflow, and enhancing CSF-ISF exchange (Xie et al., 2013; Iliff et al.,
2013; Schneider et al., 1998). Recent rodent studies using contrast-
enhanced MRI and optical imaging suggest faster clearance of
contrast agents in lateral resting positions, indicating more efficient
glymphatic transport (Lee et al., 2015). However, further research,
especially in humans, is needed to validate these findings, especially
considering confounding factors linked to anesthetics use in
animals and awaiting clinical validation.

Understanding how external factors, such as body position,
affect CSF circulation is pivotal for comprehending conditions
where this intricate system is compromised and potentially even
predict the trajectory of neurodegeneration in disease as well as
in healthy aging.

3.3 CBF-CSF coupling changes

To maintain stable ICP, hemodynamics and hydrodynamical
changes must synchronize in timing and magnitude. Recent
orthostatic MRI studies report interactions between blood and CSF
flows (Figley and Stroman, 2007; Beltran et al., 2023), but none have
directly investigated the body position shifts’ effect on blood-CSF
flow coupling.

Current understanding suggests that standing (or upright
position) causes venous blood pooling in the lower limbs and
the collapse of the IJVs, reducing cranial blood outflow and
briefly increasing ICP, which is counterbalanced by increased CSF
circulation caudally, or out of the intracranial space. Conversely,
moving from a standing to supine opens the IJVs, increasing venous
outflow and temporarily lowering the ICP. This is countered
by increased cranial CSF flow cranially, into the intracranial
space, and larger CSF volume exchanged between the cranial
and spinal space (Muccio et al., 2021). Studies also showed that
arterial blood flow is greater in the supine position compared
to upright, balanced by greater venous outflow (Alperin et al.,
2015) and that the bidirectional CSF flow between the spinal
canal and intracranial space follows arterial and venous blood
flow differentials. This highlights the intricate interactions between
hemodynamic and hydrodynamic properties, where changes
in one affect the other, maintaining optimal ICP through a
delicate compensatory mechanism. Understanding these dynamics
is crucial for appreciating brain autoregulatory mechanisms
especially in response to external forces and stimuli.

Cerebrospinal fluid production, on the other hand, is a
continuous, dynamic process finely tuned with CSF absorption
rates to maintain the appropriate volumes of CSF necessary for
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cushioning, support, and waste removal in the CNS. Ongoing
research enhances our understanding of neurophysiology and aids
in developing diagnostic and therapeutic strategies for conditions
affecting vascular health, CSF dynamics and ICP regulation. There
is a significant gap in understanding how postural changes affect
CSF absorption and waste clearance, with current insights largely
speculative and based on indirect assessment of CSF volumes
or flow changes. Further clinical studies are needed to directly
observe the effects of body position on CSF and neuronal waste
clearance. Figure 4 further illustrates the comprehensive changes in
hemodynamic and hydrodynamic flows due to body position shifts.

4 Other factors

Earlier investigations of the modulation of hemodynamic and
hydrodynamic characteristics of the brain mainly concentrated on
influencing variables such as exercise, respiration rates and sleep.

4.1 Vascular

Cerebrospinal fluid hydrodynamics are significantly influenced
by various physiological forces, particularly of vascular nature. The
influence of high frequency (∼1 Hz) and low-frequency oscillations
(LFOs) have been well established and support the theory that the
cardiac pulsations have strong effects on CSF flow, following the
Monro-Kellie doctrine (Lagana et al., 2022b; Strik et al., 2002).
In particular, LFOs (0.01 to 0.1 Hz) have in fact been demonstrated
to be primary drivers of CSF flow especially during sleep in
both animals (Bojarskaite et al., 2023) and humans (Fultz et al.,
2019; Yang et al., 2022). Studies indicate that LFOs facilitate the
clearance of waste from the brain, underscoring their importance
in maintaining neurological health (Bojarskaite et al., 2023).

These physiological forces exhibit coupling and cross-
frequency interactions that collectively shape CSF flow. For
instance, such vascular influences have been observed to be closely
coupled with the influence that respiration, whether free or forced,
has on the CSF properties (Vijayakrishnan Nair et al., 2022; Yildiz
et al., 2017). This interaction is crucial as it demonstrates how
mechanical forces acting on the brain can integrate to enhance or
restrict CSF circulation.

4.2 Respiration

Respiratory activities, such as inhalation and exhalation,
significantly affect CSF flow dynamics within the spinal canal
(Dreha-Kulaczewski et al., 2018; Delaidelli and Moiraghi, 2017).
Dreha-Kulaczewski et al. (2017) demonstrated that forced
breathing increases venous efflux from the cranium and enhances
cranial CSF flow during inhalation, while decreasing venous
blood flow and increasing CSF efflux into the spinal canal
during exhalation. Subsequent studies with healthy volunteers
confirmed these findings, noting decreased flow rates in the
IJVs, superior sagittal sinus (SSS) and ICAs during forced deep
breathing, along with increased CSF flow rates and decreased
peak caudal CSF flow (Lagana et al., 2022b; Lagana et al., 2022a;

Kollmeier et al., 2022). Variations in cervical CSF flow were
observed within a single respiratory cycle, with cranial flow
during expiration (Yildiz et al., 2017; Dreha-Kulaczewski et al.,
2018), likely attributable to thoracic pressure changes induced by
diaphragm movement, especially during rapid expiration events
like coughing or sneezing.

4.3 Physical exercise

Exercise and overall fitness have been shown to significantly
influence hemodynamic and hydrodynamic mechanisms (Smith
and Ainslie, 2017; Ogoh and Ainslie, 2009). Exercising decreases
blood oxygenation levels, especially during high-intensity sessions
(Mekari et al., 2015), which is offset by an increased cerebral
perfusion (Querido and Sheel, 2007; Ogoh et al., 2005; Heckmann
et al., 2003; Brys et al., 2003; Ide et al., 1999; Jorgensen et al.,
1992). Moreover, recent studies suggest that active individuals
have greater intracranial CSF flow and absorption compared to
less active controls (Edsbagge et al., 2004). In addition, active
individuals also have greater intracranial CSF egress into venous
blood compared to sedentary individuals. But when exercise hours
and efforts are increased in sedentary people, an improvement
of the CSF pathways system is observed (Miyazaki et al., 2024).
Exercise also has effects on the coupling of blood and CSF. An
increase in arterial and venous blood flow in the neck vessels,
likely a result of elevated HR and blood pressure, correlates
with decreased CSF stroke volume in the aqueduct of Sylvius
(Tarumi et al., 2021).

4.4 Sleep

During sleep, the brain experiences considerable hydrodynamic
alterations, impacting cognitive function and overall health.
Quality sleep is crucial for memory consolidation (Peigneux et al.,
2004; Sutherland and McNaughton, 2000), task performance and
mood regulation. Neuroimaging studies reveal biodynamic brain
changes during different sleep stages, including changes in regional
CBF (Peigneux et al., 2004; Klingelhofer et al., 1995), regional
metabolism (Nofzinger et al., 2002), functional connectivity (Banks
et al., 2020; El-Baba et al., 2019; Samann et al., 2011), and
reduced cellular metabolisms following sleep deprivation (Thomas
et al., 2000). Sleep affects brain fluid dynamics, particularly CSF
movement, with the glymphatic system being active during sleep
to eliminate neurotoxic byproducts accumulated during periods
of wakefulness (Smets et al., 2023; Chong et al., 2022). Even a
single night of sleep deprivation has been observed to reduce CSF
clearance (Eide et al., 2022; Shokri-Kojori et al., 2018).

Advanced neuroimaging techniques are currently used to
study intracranial CSF and blood flow characteristics (Desseilles
et al., 2008), aiding in understanding sleep-related changes and
their distinction from body-position-induced alterations. Further
research in both healthy individuals and those patients with sleep-
related disorders (e.g., insomnia, sleep apnea, restless leg syndrome)
is needed to distinguish the changes related to sleep and the ones
induced by body position.

Research in this area often employs advanced imaging
techniques, such as MRI, to investigate such characteristics of
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FIGURE 4

Schematics depicting the dynamic hemodynamic and hydrodynamic differences due to body position in upright (A) and supine (B). Notice how,
especially in CSFc, exchange between the spinal and cranial spaces is greater in the supine position and it is mimicked by an increased in venous
blood flow (VBF) whilst arterial blood flow (ABF) barely increases. The proportion of the arrows’ size is exaggerated to better highlight the differences
in flows between the two body positions. Graphs (C,D) show flow velocity differences between supine (black dots) and upright (red dots), over a
single cardiac cycle, for arterial blood and cervical CSF (CSFc), respectively.

intracranial CSF and blood flow. These imaging techniques have
provided a way to non-invasively and accurately measure such flow
properties in the context of body position shifts.

5 MRI flow measuring techniques

Many direct and indirect techniques have been used to
investigate the brain fluid dynamic properties and the factors
affecting them. This report focuses on major non-invasive imaging
methods. Clinically, phase contrast MRI (PC-MRI), a fast and
robust technique established since the 1980s (Bryant et al., 1984;
Moran, 1982; Pelc et al., 1991), is often used to measure blood and
CSF flow.

5.1 Regular PC-MRI

For quantitative measurements, a single slice 2D PC-MRI is
commonly placed on structural or angiographic MRI reference
images (Figure 5A) to measure blood flow (BF) and CSF flow at
the cervical level (CSFc) (Sakhare et al., 2019). This technique relies
on predefined bipolar velocity encoding gradients (Battal et al.,
2011) to produce reliable in-vivo imaging measurements of flow
with physics details well explained in a recent work by Wymer
et al. (2020). Briefly, the application of two consecutive gradients
of opposing polarity results in no overall phase shifts in stationary
protons, while moving protons experience a phase shift based on
the distance traveled along the MRI gradient, representing their
intrinsic velocity.

Two image components are therefore obtained from this
flow-sensitive sequence. The magnitude component (Figure 5B)
which provides structural definition of the structures where flow

is observed, such as in neck arteries (bright circles), in contrast
with more static tissue (dark background). The phase image
component (Figure 5C), on the other hand, provides more flow-
related information by encoding the spin movement in each voxel
signal intensity. Importantly, depending on the direction of flow
specified in the sequence parameters, and conventionally used by
the manufacturer, the phase image would show high signal (bright
voxels) where flow is in the same direction of the velocity encoding
gradients, which are perpendicular to the imaging slice plane, (e.g.,
arteries in Figure 5C) and low signal (dark/black voxels) in voxels
where the flow is not zero, but it is high in the opposite direction
(e.g., veins in Figure 5C).

Accurate specification of velocity encoding (VENC) is crucial
to avoid flow artifacts like velocity aliasing (Figure 5D), when the
VENC is set too low compared to actual flow velocity, as well
as poor dynamic flow ranges observed when setting the VENC
too high compared to the actual flow velocities. It is therefore
fundamental to set an appropriate VENC based on the expected
velocities of the flow of interests that can be approximated by
established literature values. Recent advancements in PC-MRI have
improved spatial or temporal resolution while maintaining these
principles (Wymer et al., 2020).

5.2 Real time PC-MRI

Real-time phase-contrast (RT-PC) MRI is a cine gradient
echo sequence enabling simultaneous measurements of blood and
CSF flow at high sampling rates (Lagana et al., 2022b; Baselli
et al., 2022; Yildiz et al., 2017). Unlike similar sequences, RT-
PC MRI is non-gated, eliminating the need for external cardiac
monitoring. However, it sacrifices spatial resolution to achieve
a temporal resolution of approximately 50 2D phase contrast
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FIGURE 5

Example of phase contrast MRI (PC-MRI) sequence output using a time-of-flight (TOF) to place the imaging slice perpendicular to the main neck
vessels (A). The output images have a magnitude (B) and phase component (C) encoding for the flows within the bilateral internal carotid arteries
(RICA and LICA), vertebral arteries (RVA and LVA) and internal jugular veins (RIJV and LIJV). (D) Shows a classic example of velocity aliasing artifacts
on a PC-MRI phase image. This commonly happens when a too low velocity encoding (VENC) is chosen and the fast spins appear to be flowing in
the opposite direction (dark cores).

images per cardiac cycle. In brain MRI studies, it is commonly
used to assess the impact of cardiac and thoracic pump activity
on cerebral blood and CSF flow. Observations from RT-PC MRI
studies deepen understanding of the tight coupling between blood
and CSF flow, vital for maintaining optimal intracranial pressure
and brain homeostasis, in line with the Monro-Kellie doctrine
(Wilson, 2016). This sequence has been used to provide important
insights on the physiological factors, such as cardiac and breathing,
that might drive, or at least influence, the blood and CSF flow in
and out of the cranium (Lagana et al., 2022b; Lagana et al., 2022a;
Yildiz et al., 2017; Dreha-Kulaczewski et al., 2018; Kollmeier et al.,
2022).

Despite providing insights into physiological factors driving
cranial flow, RT-PC MRI has some limitations. Its low spatial
resolution makes it prone to motion artifacts and restricts
measurements to large vessels. This hinders observation of flow
changes in smaller structures relevant to neuronal pathologies, such
as small cerebral vessels and the cerebral aqueduct. Additionally, its
use in investigating body position-related flow changes is limited
due to reduced spatial resolution in upright low-field strength
scanners, complicating accurate region-of-interest definition. This
is mostly due to the hardware specifications of such scanners
which often have limiting factors such as: field strengths below 1
tesla, reduced gradient strength, slew rate and receiver channels
configurations that do not support fast imaging techniques such as
parallel acquisition.

5.3 Cardiac gated phase contrast MRI

A cardiac gating system, such as distal pulse oximeter
or electrocardiogram (ECG), guides or reconstructs PC-MRI
acquisition. Depending on its use, the sequence is classified as
prospectively or retrospectively gated PC-MRI. In the former,
a specific point of the cardiac cycle triggers rapid 2D image
acquisition, covering most of the cycle by adjusting the time delay.
In the latter, referred here as ReGa PC-MRI, imaging and heart rate

acquisition are continuous, allowing later data reordering based
on cardiac measurements for single cardiac cycle reconstruction
(Frayne and Rutt, 1993).

ReGa PC-MRI offers full cardiac cycle coverage, reducing
image and cardiac-related artifacts, albeit requiring additional
reconstruction processing. Widely used in clinical and research
cardiovascular imaging, it measures blood velocity, direction, and
flow rates critical for diagnosing conditions like valvular disorders,
arterial stenosis, and congenital heart abnormalities (Gatehouse
et al., 2005; Schneider et al., 2001). Gated PC-MRI, beyond
cardiac applications, explores cerebrovascular dynamics, revealing
blood flow patterns within the brain’s vascular network. With
greater spatial resolution than RT-PC MRI, it measures flows
within smaller structures like the aqueduct of Sylvius and cerebral
veins in healthy subjects and patients (Spijkerman et al., 2019;
Ringstad et al., 2016; Kapsalaki et al., 2012). Dual velocity encoding
enables simultaneous CSF and blood flow measurements, indirectly
deriving properties like intracranial pressure. It’s preferred for
investigating body position-related changes in larger structures like
cervical CSF canals and neck arteries. However, it may miss subject-
specific arrhythmias in cardiac-triggered acquisition, complicating
clinical use.

Yet, for non-cardiac-focused studies, it normalizes acquisitions
for heart rate changes, minimizing episodic influences and
ensuring reliable flow quantification. Enhanced spatial resolution
at higher field strengths quantifies vascular-specific properties
like neurovascular compliance and vessel stiffness. This MRI
approach offers a comprehensive exploration of cardiac and
vascular dynamics, providing temporal and spatial insights into
CNS blood and CSF flow patterns. Its sufficient spatial and
temporal resolution allows relatively quick and reliable observation
of major hemodynamic and hydrodynamic components, though
not simultaneously acquired, reconstructed into a single cardiac
cycle for overall dynamic profile analysis. Figure 6A shows how
cerebral arterial and venous blood flow changes are mirrored
by cervical CSF flow changes, suggesting a dynamic mechanism
maintaining intracranial pressure and brain homeostasis, mainly
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driven by the net and arterial blood flow (Figures 6B, C). Moreover,
this imaging technique has the optimal spatial and temporal
properties to quantify the CSF flow at both the cervical and
aqueduct level (Figures 7A–C). An important drawback of this
type of sequence, however, is that the measurements will be
averaged over multiple cardiac cycles. Therefore, the effects that
physiological forces such as LFO and respiration have on blood and
CSF flows are significantly harder to be assessed.

5.4 4D phase contrast

In neuroimaging, 4D PC-MRI offers a comprehensive view
of brain fluid dynamics by combining 3D spatial resolution
and temporal resolution of within cardiac cycle measurements.
Synchronized with the cardiac cycle using ECG or pulse oximeter,
it acquires flow-compensated and bidirectional flow-encoded
datasets for each cardiac cycle phase (Youn and Lee, 2022; Soulat
et al., 2020; Rivera-Rivera et al., 2024).

While 2D PC-MRI provides accurate velocity and flow
measurements for a single slice, 4D PC-MRI sacrifices spatial
resolution for broader volume coverage. This sequence applies
same velocity encodings gradients as its 2D version but in all
three spatial axes (x,y,z), therefore providing as output a non-flow
sensitive reference image and a flow-sensitive image for each one
of the axial directions (Wymer et al., 2020; Markl et al., 2012).
For this reason, it excels in imaging complex structures like the
circle of Willis, offering detailed visualization and quantification
of flow. Recent advancements allow velocity extraction from 3D
flow images, though at the expense of longer acquisition times and
lower signal-to-noise ratios. This technique has recently been used
to image CSF dynamics and investigate the influences that other
factors such as age and morphology might play on CSF motion
(Vikner et al., 2024; Malis et al., 2024).

The relatively long scanning time for this sequence introduces
factors such as head motion and respiration artifacts that can
significantly affect the image and data quality. In addition, the
need for complex post-processing analyses combined with the
harsh tradeoff between spatial resolution, signal-to-noise ratio
and volume coverage are probably responsible for the relatively
uncommon use of this sequence, especially compared to other
techniques mentioned above. Despite these challenges, fast imaging
techniques have reduced scanning times (Vikner et al., 2024;
Jaeger et al., 2020) and new studies explore alternative methods
for measuring body orientation-related changes in craniospinal
properties, such as using head dielectric properties as indicators
of craniospinal compliance changes (Vikner et al., 2020; Schubert
et al., 2014; Meckel et al., 2013; Wen et al., 2019; Liu et al., 2018).

For instance, a recent study conducted by Boraschi et al.
(2023) used a device to measure the head dielectric properties,
composed of two electrically isolated electrodes placed on the
subject’s temples, to show that, although in a small sample size
of healthy young controls, body position changes including head
down and head up tilts produced craniospinal compliance changes
that are reflected in the dynamic changes of the head’s dielectric
properties. New techniques have also been developed that allow
routine MRI sequences such as functional MRI and diffusion tensor
imaging (DTI) to provide details of CSF and blood flow in the
human brain (Yang et al., 2022).

6 Neurodegeneration and aging

6.1 Neurofluid dynamic changes in
age-related neurodegenerative diseases

Recent research suggests that CSF movement helps clear
solutes from the brain along the perivascular pathways, crucial for
CNS waste clearance, nutrients distribution and immune activity.
Dysfunction in brain hemodynamics and hydrodynamics may
contribute to neurological disorders.

For instance, altered CSF flow is seen in idiopathic normal
pressure hydrocephalus (iNPH) which is commonly characterized
by gait and cognitive impairments especially in the elderly, and
often treated with invasive techniques such CSF shunting and
lumbar drainage (Hebb and Cusimano, 2001; Wang et al., 2020;
Xiao et al., 2022). INPH patients have also been shown to have
greater CSF volume exchange between the third and fourth
ventricles and lower CSF pulsatility at the cervical level compared
to healthy individuals (Qvarlander et al., 2017). Age-related brain
atrophy may also contribute to an enlargement of the overall
CSF compartment (Kang et al., 2018), making iNPH a common
comorbidity of other neurodegenerative diseases (Koivisto et al.,
2016; Malm et al., 2013; Bech-Azeddine et al., 2007).

In diseases like Alzheimer’s (AD), Parkinson’s (PD) and
multiple sclerosis (MS), disrupted brain hemodynamics and
hydrodynamics are pivotal in disease progression. Impaired
glymphatic system efficiency may lead to toxic protein
accumulation and increased tissue cytotoxicity (Buccellato
et al., 2022; Silva et al., 2021). In AD, decreased regional blood
flow in areas linked to language and cognition (Leeuwis et al.,
2017) correlates with disease severity and progression (Zhang et al.,
2021). AD also shows impaired cerebrovascular reactivity (CVR)
(Glodzik et al., 2013), reduced CSF-neuronal activity coupling
(Han et al., 2021b) and impaired waste clearance through the
glymphatic system (Tarasoff-Conway et al., 2015).

In PD, a decoupling between brain activity and CSF flow
correlates with cognitive impairment (Han et al., 2021a; Wang
et al., 2023). This aligns with reduced regional perfusion (Syrimi
et al., 2017; Melzer et al., 2011), impaired blood-brain-barrier (BBB)
permeability (Gray and Woulfe, 2015) and CVR (Smolinski and
Czlonkowska, 2016) in PD patients.

In debilitating diseases such as MS, characterized by progressive
loss of motor and cognitive skills, many brain cortical regions have
shown reduced blood perfusion (Jakimovski et al., 2020; Debernard
et al., 2014; Ota et al., 2013) whilst some white matter areas showed
an increase in blood perfusion possibly caused by disease-related
inflammation (Bester et al., 2015; Rashid et al., 2004), in line with
the disease pathogenesis (Markovic-Plese and McFarland, 2001)
and progression characteristics (Dobson and Giovannoni, 2019;
Confavreux et al., 2000). Other studies have also reported reduced
CSF stroke volume and cranial arterial blood (ElSankari et al., 2013)
alongside correlation of decreased net CSF flow in the aqueduct of
Sylvius with enhanced MS lesion volumes (Magnano et al., 2012).

Healthy aging also brings metabolic, vascular, and systemic
changes including brain atrophy, altered brain activity (Petersen
et al., 2022; MacDonald and Pike, 2021; Oschmann and Gawryluk,
2020; Kalpouzos et al., 2012), molecular and chemical changes
(Gasiorowska et al., 2021; Blaszczyk, 2020). Cardiovascular changes
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FIGURE 6

(A) Supine position flow measurements of arterial (ABF) and venous blood flow (VBF) as well as cervical CSF flow (CSFc), over a single cardiac cycle,
extracted from a phase contrast (PC) MRI sequence whose output phase images are shown on the right. (B) Net blood flow calculated by adding
arterial and venous (A+V) blood flow measurements over the single cardiac cycle and overlapped with the CSFc measurements. (C) Correlation
between CSFc and arterial blood flow highlighting the strong coupling between the two neurofluids dynamics.

FIGURE 7

Example of phase contrast (PC) measurements of CSF flow at the cervical level (CSFc) and in the cerebral aqueduct (CSFAq) using anatomical
reference image for the imaging slice placement (A). Over a single cardiac cycle, notice the bidirectional nature of the CSFc flow in the cranial
(yellow) and caudal (blue) direction (B), mimicked by similar bidirectional flow in the aqueduct in the third ventricle (yellow) or fourth ventricle (blue)
directions (C).

(Strait and Lakatta, 2012) in the elderly include reduced heart
rate (Fleg et al., 2005), hypertension (Buford, 2016), altered
vascular morphology (Sun et al., 2022; Sun et al., 2023; Lee and
Oh, 2010) and flow (Liu et al., 2012), all contributing to brain
fluid dynamic changes, brain atrophy and ventricles enlargement
(Vemuri et al., 2010).

Targeting brain changes from fluid dynamic alterations may
offer new therapies for neurodegenerative diseases, aiming to
restore waste clearance and promote brain health. For instance,
new interventional techniques have showed that external stimuli
can effectively alter neuronal activity (Ke et al., 2023; Williams
et al., 2010; Bolognini et al., 2009), global cerebral blood flow
and neuronal metabolism (Muccio et al., 2022; Stagg et al., 2013;
Zheng et al., 2011) as well as brain structural (Jog et al., 2023;
Hirtz et al., 2018) and functional connectivity (Kim et al., 2021;
Sankarasubramanian et al., 2017; Weber et al., 2014) with parallels
in clinical motor and cognitive measures (Simani et al., 2022;
Eilam-Stock et al., 2021; Nissim et al., 2019; Agarwal et al., 2018;
Charvet et al., 2018).

6.2 Body position in disease and aging

Although changes in hemodynamic and hydrodynamic
properties are being reported in aging and neurodegenerative
diseases, little is known on their alterations due to body position
change. It has recently been observed that AD patients have a
greater drop in cortical oxygenation (van Beek et al., 2010) and
blood pressure (Isik et al., 2022) when moving from supine to
upright, affecting cerebral perfusion. In PD, altered CBF has been
reported (Camargo et al., 2015) in Niehaus et al. (2002) who
found that PD patients have a smaller HR increase and take longer
(5 min vs 2 min) for arterial pressure to adjust when moving to
upright compared to controls. This has been confirmed by other
studies reporting increased arterial blood pulsatility, pressure
and autoregulation during table-tilt challenges (Xing et al., 2022;
Angeli et al., 2003).

The few studies on postural effects in neurodegeneration and
aging focus on either the hemodynamic or hydrodynamic effects
individually, ignoring their dynamic and complementary aspects.
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FIGURE 8

Comprehensive flowchart of the hemodynamic and hydrodynamic changes following shift in body position from upright to supine positions. Sizes
of structures are not proportional and only indicative of differences between the two positions. ICP, intracranial pressure; CSF, cerebrospinal fluid;
IJV, internal jugular vein; CCJ, cranio-cervical junction.

Understanding the link between postural changes and intracranial
dynamics response is crucial for comprehending disease-related
impairments. Future research should explore if postural-induced
changes can predict treatment effectiveness, potentially informing
new therapeutic guidelines.

7 Conclusion

Recent neurofluid research is trending toward investigating
hemodynamic and hydrodynamic changes as indicators of
neurodegenerative diseases. The brain constantly adapts to varying
external stimuli, making it crucial to understand how dynamic
properties respond to challenges like body position shifts. Figure 8
summarizes the important findings on the effects of body position
on intracranial fluid dynamics, highlighting their potential impact
on a number of CNS diseases. Comparisons between body position
and sleep-induced changes in intracranial blood and CSF flow are
lacking, presenting an opportunity for more systematic studies.
Investigating how the brain responds to daily and repetitive tasks
like body position shifts will help to improve our understanding of
the effects of neurofluid movement on aging and neurodegenerative
processes (Smolinski and Czlonkowska, 2016; Rasmussen et al.,
2018; Keage et al., 2012).

The present review offers insights into how external factors,
particularly body position, influence neurofluid circulation. Despite
recent advancements, research in this area remains in its early
stages, necessitating further investigation, especially in the effects
of body position in aging and neurodegenerative disorders.

While existing imaging techniques have provided valuable
insights, improvements in spatial resolution and flow measurement
accuracy are needed. PC-MRI measurements often rely on precise
velocity encoding determination, requiring multiple sequences

and extending scanning time. Recent advancements in artificial
intelligence, machine learning, and radiomics offer promising
solutions to these limitations by better detecting flow mechanics
and predicting disease progression.
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