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AIM: Mild cognitive impairment (MCI) includes two distinct subtypes, namely

progressive MCI (pMCI) and stable MCI (sMCI). The objective of this study was to

identify the topological reorganization of brain functional networks in patients

with pMCI and sMCI.

Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) was

applied to patients with pMCI, sMCI and healthy controls. Graph theory

was applied to study the topological characteristics of the brain’s functional

networks, examining global and nodal metrics, modularity, and rich-club

organization. Analysis of covariance and two sample t-tests were applied to

assess differences in topological attributes between patient groups, alongside

correlation analysis, which examined the value of changing topological

attributes in predicting various clinical outcomes.

Results: Significant differences between each group with regard to network

metrics were observed. These included clustering coefficients and small-

worldness. At the nodal level, several nodes with an abnormal degree centrality

and nodal efficiency were detected. In rich club, pMCI and sMCI patients

showed declined connectivity compared with HC. Significant differences were

observed in the intra- and inter-module connections among the three groups.

Particularly noteworthy was the irreplaceable role of the cerebellar module in

network interactions.

Conclusion: Our study revealed significant differences in network topological

properties among sMCI, pMCI and HC patients, which were significantly

correlated with cognitive function. Most notably, the cerebellar module played

a crucial role in the overall network interactions. In conclusion, these findings

could aid in the development of imaging markers used to expedite diagnosis

and intervention prior to Alzheimer’s disease onset.

KEYWORDS

progressive mild cognitive impairment, stable mild cognitive impairment, rich club,
module, graph theory
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by progressive cognitive decline and memory
impairment (Silva et al., 2019). Amnestic mild cognitive
impairment (aMCI) is a largely asymptomatic antecedent of
AD. However, given the progressive nature of this cognitive
impairment, intervening at this pre-clinical stage is critical in
preventing eventual AD onset. Patients with aMCI fall into two
categories. Progressive MCI (pMCI) is defined as aMCI, which
progressively develops into AD. Meanwhile, stable MCI (sMCI)
is defined as aMCI, which either remains stable or improves over
time (Chen et al., 2023; Qian et al., 2018). Currently, clinical
biomarkers of AD primarily include changes in levels of tau
proteins (total tau and phosphorylated tau) and β-amyloid 1–42
peptide in cerebrospinal fluid (Botello-Marabotto et al., 2023).
However, due to their invasiveness, obtaining these biomarkers can
be burdensome to elderly patients who are already affected by the
disease.

In recent years, Resting-state functional magnetic resonance
imaging (rs-fMRI) has developed rapidly, offering high temporal
and spatial resolution that allows for the detection of spontaneous
neuronal activity in brain networks during the resting state
(Sun et al., 2023). This technology has become increasingly
important in studying brain function, contributing to a more
comprehensive understanding of network changes in the brain
during the progression of AD (Jiang et al., 2018). At the same time,
graph theory has emerged as a popular method for describing the
characteristics of brain networks. In this approach, the human brain
is considered as a highly intricate network that can be modelled
using a collection of nodes representing distinct brain regions and
a series of edges representing the connections between these regions
(Bertolero et al., 2018). rs-fMRI brain network methods have been
widely used to identify important topological features in human
brain functional networks through graph theory analysis (Wang
et al., 2013; Zdanovskis et al., 2021). In light of the growing evidence
that suggested that network connectivity may help predict future
Alzheimer’s disease (AD) diagnosis, analyzing differences in brain
network connectivity might provide insights into distinguishing
between patients with sMCI and pMCI (Delorme and Makeig,
2004; Stevens and Kircher, 1998). Several studies of brain graph
theory have confirmed that brain connections are not uniformly
distributed. Instead, significantly higher numbers of connections
appear in certain nodes of the brain, a phenomenon referred
to as "rich club" (van den Heuvel and Sporns, 2011; Yan et al.,
2018; Zamora-Lopez et al., 2010). These nodes exert a significant
influence on the brain’s network topology and are closely associated
with global information integration (Xu et al., 2010; Yan et al.,
2018). In addition, a wealth of evidence has shown the brain to
be organized into distinct, specialized communities, a phenomenon
known as “modularity”. Neurons within each of these communities
or “modules” have stronger intra-module connectivity compared
to inter-module connectivity, promoting efficient information
processing (Bertolero et al., 2015; Bertolero et al., 2017; Meunier
et al., 2010). Modularity and rich club, as well as global and nodal
connectivity indicators, such as the small-world characteristic and
nodal effectivity, play different roles in network communication.

Studying these indicators can help reveal distinct and unique
patterns in the connectome of the brain.

Rich club nodes have been suggested to have higher metabolic
demands compared to other nodes, potentially making them more
susceptible to the impact of degenerative diseases (Bullmore and
Sporns, 2012). The existing body of research suggests that the global
and local network organization of the whole brain is altered in
AD and antecedent cognitive decline (Li et al., 2018; Shu et al.,
2012). Patients with each stage of AD (from preclinical to late-stage
dementia) have distinctive distributions of centrally concentrated
lesions (Buckner et al., 2009; Crossley et al., 2014). Recently,
researchers have investigated the predictive efficacy of various
measures of modularity in assessing MCI and AD progression
stage (de Haan et al., 2012). Previous studies using multiparametric
graph theoretical analysis revealed altered functional and structural
network topology in AD and these different connectivity metrics
indicated additional or complementary information of brain
networks regarding the topological changes in MCI or AD
(Berlot et al., 2016; Jiang et al., 2018). Compared with other
methods focusing on functional network connectivity and brain
network properties in patients with cognitive impairment, whether
differences in multiparametric network may be predictive of a
patient having either pMCI or sMCI is unknown. Studying the
alterations in brain network properties associated with pMCI and
sMCI is crucial for understanding the patterns of changes in
their brain networks and elucidating the pathological mechanisms
underlying both conditions.

Therefore, in this study, we used rs-fMRI to construct
functional networks for sMCI, pMCI, and healthy control (HC)
patients. Subsequently, we used graph theory analysis to compare
the diversity of the topological properties of the whole-brain
functional networks across three groups. Our main goal was
to explore the differences in the network topological properties
between pMCI and sMCI. Overall, we hypothesized: 1) pMCI and
sMCI network topology attributes to be different; 2) differences
to potentially be significantly associated with cognitive function;
3) during the progression of AD, alterations in specific brain
regions may occur, which might contribute to the diagnosis and
prediction of the disease.

Methods

Participants

The applied research data for our study were acquired from
the Alzheimer’s disease Neuroimaging Initiative (ADNI) database.1

The details regarding the diagnostic criteria used to categorize
patients into either pMCI, sMCI or HC groups are provided in
Supplementary Table 1.

MRI data acquisition

We attained all MRI scans on a 3.0T scanner, unifying scanning
protocols obtained from various manufacturers, including Philips

1 www.adni-info.org
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(Best in the Netherlands), General Electric (Cleveland, OH,
USA) and Siemens (Munich, Germany). Detailed information can
be obtained from the MRI Training Manual FINAL.pdf2 and
the http://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-
MRI-protocols.pdf.

Neuropsychological assessment

Participants’ general cognitive abilities were evaluated by
the Montreal Cognitive Assessment (MOCA). Meanwhile,
episodic memory (EM) was assessed using the composite
score derived from the Rey Auditory Verbal Learning Test,
the Alzheimer Disease Assessment Scale-Cognitive, Logical
Memory and the mini mental state exam (MMSE) and
executive function (EF) was assessed using the composite
score derived from Category Fluency, WAIS-R Digit Symbol,
Trails A & B, DigitSpan Backwards, and clock drawing tests. All
neurocognitive assessments are available on the ADNI website.3

The methods for measuring EM and EF are described in the
Supplementary Table 1.

Data pre-processing

The preprocessing was conducted in MATLAB
(2015b) and Data Processing and Analysis for Brain
Imaging (DPABI), which was based on the Statistical
Parametric Mapping software package (SPM12). The
details regarding image pre-processing are provided in the
Supplementary Table 1.

Network construction

Functional connectivity networks were analysed using the
Graph Theoretical Network Analysis (GRETNA) toolbox (Wang
et al., 2015). The details regarding network construction are
provided in the Supplementary Table 1.

Network properties

Recent researches have suggested that small-world topology
exists in functional brain networks (Xue et al., 2020). To research
the topological attributes of each network, the study assessed the
following graph metrics (see Supplementary Table 1): characteristic
path length (Lp), normalized characteristic path length (λ),
clustering coefficient (Cp), normalized clustering coefficient (γ),
small-world parameters (σ), global efficiency (Eg), local efficiency
(Eloc), betweenness centrality (BC), degree centrality (DC), nodal
efficiency (NE), and nodal local efficiency (NLE). Additionally, for
each property, we calculated the area under the curve, providing a
scalar, which was independent of threshold selection. This allowed

2 http://adni.loni.usc.edu/wpcontent/uploads/2010/05/ADNI2

3 https://ida.loni.usc.edu/pages/access/studyData

better characterization of the topological characteristics of the brain
network.

Modular organization

Based on previous research (Suo et al., 2022), the AAL116
template divided the 116 regions of interest (ROIs) into six
modules, namely the sensorimotor network (SMN), default mode
network (DMN), frontoparietal network (FPN), visual network
(VN), subcortical network (SN), and cerebral network (CN).
A modularity metric, Q, was calculated to assess the degree of
subdivision within each network into specific modules, which were
defined by having more intra-modular connections than inter-
modular connections (Newman, 2006). The GRETNA software
utilized a modified greedy optimization algorithm to identify the
optimal modular architecture by averaging the functional networks
of all participants. For each subject, the mean intra-modular
strength was defined as the average number of connections to other
regions of the selected module, whilst the mean inter-modular
strength was defined as the average number of connections between
the selected module and other modules.

Rich-club organization

Rich-club regions were defined as the top 13 regions with
the highest average nodal degree of all regions in HC patients,
accounting for 12% of the total number of regions (Daianu
et al., 2015; Yan et al., 2018). Regions other than the rich-club
regions were classified as peripheral nodes. The edges in the
network were categorized into three types of connections: rich-club
connections, which linked two rich-club nodes; feeder connections,
which connected one rich node and one peripheral node; and
local connections, which connected two peripheral nodes (van den
Heuvel et al., 2013). The connectivity strength was a summary
measure of connectivity, which was calculated using the sum of the
edge weights for each connection type (Yan et al., 2018).

Statistical analysis

Analysis of covariance (ANCOVA) and chi-squared tests were
used to compare the demographic and neurocognitive data across
the three groups, containing pMCI, sMCI and HC patients.
Bonferroni’s correction with a p < 0.05 was used for post hoc
analysis when test parameters were met.

Furthermore, two-sample t-tests (age- and sex-corrected) were
performed to compare the AUC values of network metrics,
including between the three groups (p < 0.05, FDR-corrected).

Lastly, correlation analysis was conducted to explore the
relationship between altered network metrics and various types of
cognitive function, including EM and EF. The correlation between
network metrics and age, gender, years of education and volume of
grey matter was also assessed (Bonferroni-corrected, p < 0.05).

All statistical tests and comparisons were conducted using the
Statistical Package for the Social Sciences (SPSS; version 22.0; IBM,
Armonk, NY, USA).
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TABLE 1 Demographics and clinical measures of three groups, including pMCI, sMCI, and HC.

pMCI (31) sMCI (40) HC (80) F-values (χ 2) P-values

Age (years) 72.99 (7.06) 71.46 (7.68) 72.68 (6.02) 0.593 0.554

Gender (F/M) 15/16 19/21 46/34 0.863 0.650

PTEDUCAT 15.60* 15.71* 17.04 5.594 0.005ac

MMSE 26.93 (1.78)***/* 27.90 (1.54)*** 29.06 (1.39) 23.874 <0.001abc

MOCA 21.50 (3.79)***/* 23.76 (3.30)*** 26.23 (2.72) 27.347 <0.001abc

EM −0.11***/*** 0.43*** 1.07 54.720 <0.001abc

EF −0.08***/** 0.57** 1.16 27.259 <0.001abc

Numbers are given as means (standard deviation, SD) unless stated otherwise. Scores reflect the number of correct items unless stated otherwise. Values for age derived from ANOVA; gender
from chi-square test; all clinical measures from ANOVA with age and gender as covariates. MMSE, Mini-Mental State Examination; MOCA, Montreal Cognitive Assessment; EM, episodic
memory; EF, executive function; a, post-hoc analyses showed a significantly group difference between pMCI and HC; b, post-hoc analyses showed a significantly group difference between pMCI
and sMCI; c, post-hoc analyses showed a significantly group difference between sMCI and HC; *p < 0.05; **p < 0.01;***p < 0.001; pMCI, progressive mild cognitive impairment; sMCI, stable
mild cognitive impairment; HC, healthy controls; Detailed neuropsychological test results are provided in SI results.

Results

Demographic and clinical variables

Table 1 presents the demographic and neurocognitive
characteristics of all participants, including 31 pMCI, 41 sMCI,
and 82 HC participants. SPSS revealed that the HC group
exhibited a significant difference in years of education compared
to the pMCI and sMCI groups and significant differences in
cognitive performance were noted between all groups. SPSS
revealed that the pMCI and sMCI groups exhibited significantly
lower EM, EF, and MOCA test scores compared to the HC
group (Bonferroni’s post hoc correction, p < 0.05). Detailed
neuropsychological test results are provided in Supplementary
Table 1.

Group differences in global network
organization

In this experiment, HC, pMCI and sMCI patients all showed
small-worldness (γ > 1, λ ≈ 1, σ > 1.1). Cp Eloc and Eglob
for all three groups increased with higher thresholds, while the
values of Lp, γ, λ, and σ decreased (Figure 1). Interestingly, as
shown in Figure 1, compared with pMCI patients, those with
sMCI or who were HCs had significantly lower values of γ and σ

(FDR < 0.05).

Group differences in nodal network
metrics

As shown in Figure 2, for nodal metrics, compared with HC
patients, pMCI showed significantly increased Dc in the right
superior parietal gyrus (SPG.R) and decreased Dc and Ne in the
left inferior cerebellum (CRBLCrus2.L). Meanwhile, sMCI patients
showed significantly increased Dc in the right gyrus rectus (REC.R)
and decreased Dc in right (CRBLCrus2.R) and the left inferior
cerebellum, and left superior cerebellum (CRBLCrus1.L) compared

with HC patients. No significant differences in these metrics were
observed between patients in the pMCI and sMCI groups.

Group differences in intra-and
inter-modular connections

As shown in Figure 3, for inter-modular connections, pMCI
patients showed increased connectivity between the SN and CN,
the DMN and VN, the FPN and VN, and the FPN and CN
when compared with HC patients. Meanwhile, sMCI patients
showed increased connectivity between the CN and SMN, the FPN
and DMN and the SMN and DMN when compared with HC
patients. Importantly, compared with pMCI patients, sMCI showed
decreased connectivity between the FPN and VN. For intra-
modular connectivity, compared with HC patients, both sMCI and
pMCI patients showed decreased connectivity within the SMN,
DMN and CN. Although there was no significance between pMCI
and sMCI patients with regard to intra-modular connectivity,
pMCI patients did display a non-significant downward trend.

Group differences in rich-club
organization

As shown in Figure 4, based on the group-averaged functional
network, the rich-club nodes were defined as the top 13 (12%) brain
regions with the highest average nodal degree of all regions in HC
patients. For rich-club connection, there was a significant difference
between HC patients and both pMCI and sMCI patients (p< 0.05).
For local connection, there are significant differences between
sMCI and HC. However, there was no significant difference for
feeder connection.

Correlation analysis

Figure 5 demonstrates a significant correlation between
network topology attributes and neurocognitive test scores for
patients with pMCI and HC. The intramodular connectivity in
SMN was positively correlated with EM (p = 0.0152, r = 0.4622).
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FIGURE 1

The differences in global metrics of the brain functional networks among progressive mild cognitive impairment, stable mild cognitive impairment,
and healthy controls. pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment; HC, healthy controls; Cp, clustering
coefficient; Lp, shortest path length; sigma (δ), small-world characteristic; gamma (γ), normalized clustering coefficient; lambda (λ), normalized
characteristic path length; aCp, AUC in Cp; aGambda, AUC in Gambda; aLambda, AUC in Lambda; aLp, AUC in Lp; aSigma, AUC in Sigma. *p < 0.05.

FIGURE 2

The bar graphs show the post hoc pairwise comparisons with significant differences in nodal efficiency and nodal degree. The y-axes are the area
under the curve of the two network parameters and the three groups are color coded as in the key. The x-axis shows the brain regions. pMCI,
progressive mild cognitive impairment; sMCI, stable mild cognitive impairment; HC, healthy controls; REC.R, right gyrus rectus; SPG.R, right superior
parietal gyrus; CRBLCrus1.L, left superior cerebellum; CRBLCrus2.L, left inferior cerebellum; CRBLCrus2.R, right inferior cerebellum; *p < 0.05.

Discussion

We employed graph theory analysis in the study with rs-fMRI
data to explore if they exist in differences of the network topology
across pMCI, sMCI, and cognitive health. Meanwhile, whether the
whole-brain functional network could serve as predictors of the
three patient groups. Consistent with our hypotheses, our research
found in the following: first, there were significant differences
among the pMCI, sMCI, and HC patient groups in terms of global
properties, local properties, rich club organization, and modularity.
Moreover, these differences were significantly associated with

cognitive function. Lastly, our findings indicated that these network
topological properties were most strongly associated with the CN.
Understanding the value of the CN in AD severity may provide
valuable information for analyzing pathology mechanisms and
predicting the prognosis of MCI patients.

Global and local properties are related to the small-world
property, which is measured by the degree to which networks
exhibit high clustering coefficients and short path lengths (Sun
et al., 2014). Networks with such properties were thought to
possess higher network and local efficiency, resulting in faster
information transmission (van den Heuvel et al., 2008). The
previous studies revealed the pMCI and sMCI patient groups
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FIGURE 3

Progressive mild cognitive impairment, stable mild cognitive impairment, and healthy controls have significant differences in intra- and
inter-modular connections. pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment; HC, healthy controls; SMN,
sensorimotor network; DMN, default mode network; FPN, frontoparietal network, VN, visual network; SN, subcortical network; CN, cerebral network.

FIGURE 4

Boxplots exhibit connectivity strengths for rich club, feeder and local. pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive
impairment; HC, healthy controls; *p < 0.05, ***p < 0.001.

exhibited some special small-world topology (Sun et al., 2018).
In our study, compared with both HC and sMCI patients, pMCI
patients showed significantly lower small-world parameters (σ),
and normalized clustering coefficient (γ). γ was defined as the
probability of connections between adjacent regions, and its
reduction in pMCI patients may suggest disruptions in brain
networks, leading to restricted information flow (Pereira et al.,
2016). Based on a previous study, this limitation may impact
memory, cognition and other cognitive functions that may be
linked to the progression to dementia in AD (Li et al., 2012).
At the same time, networks with a high small-world parameter
(σ) have most nodes tightly connected, while maintaining a short
average path length between any two nodes, enabling efficient local
information processing and rapid global communication (Guo
et al., 2022). A decrease in σ may indicate that the integration and

allocation of the pMCI networks have been affected. These reduced
global network attributes indicated the functional network of pMCI
patients to be abnormal with reduced efficiency of specialized and
integrated processing (van den Heuvel et al., 2008; Wang et al.,
2013). Moreover, in comparison to pMCI patients, our findings
indicated sMCI patients to not exhibit a significant decline in global
properties. This could be attributed to the actions of compensatory
mechanisms in these individuals, which might effectively offset
impaired brain function. Ultimately, similar to previous studies,
our results showed that various small-world topological properties
change with the progression of AD, and the differing degrees of
change between pMCI and sMCI may help distinguish between
them (Sanz-Arigita et al., 2010; Xue et al., 2020).

Nodal network metrics may contribute to distinguish from
the three groups in this study, and we found that compared
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FIGURE 5

Significant associations between altered network metric and
cognitive function in groups between pMCI and HC. Age, the
volume of gray matter and sex were used as covariates of results
(Bonferroni-corrected, p < 0.05). EM, episodic memory; SMN,
sensorimotor network.

with HC patients, pMCI and sMCI patients exhibited significantly
lower degree centrality (Dc) and nodal efficiency (Ne) at
CRBLCrus1.L, CRBLCrus2.L, CRBLCrus2.R, while the opposite
was at SPG.R, REC.R. Degree centrality is an important attribute
measuring the number of connections a node has with other
nodes its own network, while nodal efficiency is an index to
evaluate the efficiency of information transmission (Itahashi
et al., 2014; Liao et al., 2017). Our results implied higher
hub connectivity to be associated with increased vulnerability
to pathology, likely because such connectivity would have been
more energy intensive to maintain (Griffa and Van den Heuvel,
2018). Alteration in the network properties of these nodes may
affect the connectivity and efficiency of communication with
other areas more. Therefore, early prevention of the decline
of these hub nodes connections may delay the course of
AD.

The rich club refers to a trend in brain networks where high-
degree nodes are more tightly connected than low-degree nodes,
with these hub nodes (rich club nodes) connections playing a
crucial role in global information transmission (Albert et al., 2000;
Xue et al., 2019). In our study, compared with HC patients,
there were significantly decreased rich-club connections in both
pMCI and sMCI patients. Additionally, as mentioned above, we
found that reduced node attributes in the disease group were
mainly within the rich club nodes, while increased attributes were
primarily located outside these nodes. In a previous study, it
had been demonstrated that AD spectrum rich-club connection
is preferentially attacked (Shu et al., 2018), which was consilient
with our findings. Besides, although there was no significant
difference between sMCI and pMCI patients with regard to
the number of feeder and local connections, we found that
connections tended to be higher in pMCI than in sMCI patients.
This elevation of non-richclub connections may compensate for
some of the impaired brain function caused by reduced rich-club
connections. However, the rich-club connections were a leading
factor in facilitating the comprehensive integration of neural

information across diverse brain regions, explaining why global
information processing function in pMCI and sMCI patients was
still reduced.

In contrast to the high-degree nodes of the rich club,
modularity refers to groups of nodes within a network that are
densely connected internally but sparsely connected externally
(Liang et al., 2015). These modular groups achieve a complex
balance between energy costs and communication efficiency, and
changes in their structure can impact system efficiency and
performance (Andric and Hasson, 2015; Sporns and Betzel, 2016).
In our study, both pMCI and sMCI patients had widespread
alterations compared with HC patients at the modular level. They
showed decreased intra-modular connectivity within the DMN,
SMN and CN. The DMN is considered to be a key network
in several neurodegenerative diseases, including AD (Buckner
et al., 2008; Turner and Spreng, 2012). A decline in intra-
modular connectivity within the DMN in disease groups may
lead to reduced efficiency in information transmission within
the network. Moreover, recent studies have also shown certain
regions of the SMN to play an important role in the regulation
of memory (Liang et al., 2013). Consistent with this, the results
of this study indicated a significant correlation between intra-
module connectivity of the SMN and EM test scores, revealing
the important role of this network in perceptual cognition,
motor learning, and other aspects of MCI disease progression
(Figure 5). Interestingly, both pMCI and sMCI patients showed
an upward trend in inter-modular connectivity compared to HC
patients, possibly to counter the cognitive decline caused by
the decline in intra-modular connectivity. At the same time, we
found pMCI patients to have a significantly higher number of
connections between the FPN and VN compared to sMCI patients.
This is consistent with previous studies showing that cognitive
decline in aMCI patients is related to disrupted connectivity
between the FPN and VN and that this disruption accelerates
progression to AD (Chen et al., 2022). Patients with pMCI may
compensate for their declining cognitive function by increasing
connectivity.

Most importantly, our experiment revealed that changes
in both intra-modular and inter-modular connectivity were
predominantly associated with CN, suggesting that CN may play
an indispensable role in the progression of AD. In the past,
most researches on AD focuses on the interaction of cerebral
networks, the thought of an effect of cerebellar networks on
AD may be a new perspective. Previous studies have shown
that cognitive dysfunction after CN injury involves multiple
cognitive domains (Yao et al., 2022). Additionally, changes in
the modular structure in aMCI were primarily observed in the
CN (Zhang et al., 2020). In fact, in our study, we observed that
nodes with significantly different attribute values at the nodal
level and hub nodes within the rich club predominantly reside
within the CN. Additionally, in terms of modularity, the CN
exhibited the highest degree of interaction with other network
modules. Damage to cerebellar networks can lead to extensive
disconnection of whole brain networks (Wang et al., 2022). Our
study has contributed to new evidence indicating abnormalities
in CN connectivity among individuals with MCI. Furthermore,
our research highlights the importance of understanding the
relationship between CN connectivity and MCI, given the potential
for this knowledge to potentially help delay the progression of the
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disease. By gaining a deeper understanding of these connections,
we can develop more effective interventions and treatments
to improve outcomes for individuals with early-stage cognitive
decline.

Limitations

There were several limitations to the current study. First,
the patient sample size was small, perhaps making the results
less generalizable. However, to avoid this problem, we applied
a non-parametric permutation test to improve the accuracy
and will continue to increase our sample size as the ADNI
database is updated. Second, the HC showed significant differences
according to years of education in the pMCI and sMCI groups.
Thus, years of education were treated as a covariable in
all the analyses.

Conclusion

Our study revealed significant differences in network
topological properties among the three groups of participants,
which were significantly correlated with cognitive function.
Furthermore, distinct patterns of connectivity were observed
within and between modules. Most notably, the cerebellar
module played a crucial role in overall network interactions.
This suggested that exploring the progression of Alzheimer’s
disease with a focus on cerebellar networks to be a
potentially viable strategy. In conclusion, these findings
may be used as imaging markers for early diagnosis and
intervention of AD.
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