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Background: As a clinical precursor to Alzheimer's disease (AD), amnestic
mild cognitive impairment (aMCI) bears a considerably heightened risk of
transitioning to AD compared to cognitively normal elders. Early prediction of
whether aMCl will progress to AD is of paramount importance, as it can provide
pivotal guidance for subsequent clinical interventions in an early and effective
manner.

Methods: Atotalof 107aMCl cases were enrolled and their electroencephalogram
(EEG) data were collected at the time of the initial diagnosis. During 18-month
follow-up period, 42 individuals progressed to AD (PMCI), while 65 remained
in the aMCl stage (SMCI). Spectral, nonlinear, and functional connectivity
features were extracted from the EEG data, subjected to feature selection and
dimensionality reduction, and then fed into various machine learning classifiers
for discrimination. The performance of each model was assessed using 10-fold
cross-validation and evaluated in terms of accuracy (ACC), area under the curve
(AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and F1-
score.

Results: Compared to SMCI patients, PMCI patients exhibit a trend of "high to
low” frequency shift, decreased complexity, and a disconnection phenomenon
in EEG signals. An epoch-based classification procedure, utilizing the extracted
EEG features and k-nearest neighbor (KNN) classifier, achieved the ACC of
99.96%, AUC of 99.97%, SEN of 99.98%, SPE of 99.95%, PPV of 99.93%, and F1-
score of 99.96%. Meanwhile, the subject-based classification procedure also
demonstrated commendable performance, achieving an ACC of 78.37%, an
AUC of 83.89%, SEN of 77.68%, SPE of 76.24%, PPV of 82.55%, and Fl-score of
7847%.

Conclusion: Aiming to explore the EEG biomarkers with predictive value for
AD in the early stages of aMCl, the proposed discriminant framework provided
robust longitudinal evidence for the trajectory of the aMCl cases, aiding in the
achievement of early diagnosis and proactive intervention.
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1 Introduction

Dementia, resulting from various brain-related disorders and
injuries, is a major cause of geriatric functional decline and caregiver
reliance, ranking as the seventh leading cause of death globally (WHO,
2023). Currently, more than 55 million people are affected by
dementia, with an annual increment of nearly 10 million new cases
(Caoetal, 2020). AD is the most prevalent form of dementia and may
account for 60-70% of cases (Alzheimer's Association, 2020). AD,
distinguished by irreversible memory impairment, aphasia, apraxia,
agnosia, and changes in personality and behavioral patterns, onsets
insidiously with a prolonged course. Regrettably, effective
pharmacological treatments for AD are not yet available. This
underscores the critical importance of early screening and diagnosis
so as to retard the progression and alleviate its disease burden.

Mild cognitive impairment (MCI) is a stage that falls between
normal age-related cognitive decline and dementia, characterized by
a subtle decline in cognitive functions that is not substantial enough
to be classified as dementia. MCI may either stabilize or even improve
over time, or progressively deteriorate into dementia (particularly
AD), thus positioning it as a prodromal stage of AD. AMCI,
characterized by memory dysfunction, is a subtype of MCI with an
annual progression rate to AD ranging from 10 to 15% (Cai et al.,
2020) and a lifetime conversion rate ranging from 75 to 80% (Goémez-
Soria et al,, 2021). Therefore, early and accurate prediction of the
progression in aMCI stage becomes a crucial issue in managing the
continuum of the disease and alleviating its burden.

The diagnosis of aMCI requires a combination of various
examinations  including  biomarkers, neuroimaging, and
neuropsychological assessments. This process is time-consuming, labor-
intensive, and cost-prohibitive. Additionally, the insidious onset can
be easily mistaken for age-related cognitive decline, thus significantly
diminishing the detection rate of aMCI during clinical practice. As a
non-invasive examination, EEG presents the benefits of convenience,
cost-effectiveness, real-time diagnosis, and wide accessibility. It has been
universally applied for the diagnosis and disease progression monitoring
of aMCI. Compared to task-related EEG, resting-state EEG does not
require examinees to perform complex instructions and actions,

Abbreviations: ACC, Accuracy; AD, Alzheimer's disease; ADA, AdaBoost; AE,
Approximate entropy; aMCl, Amnestic mild cognitive impairment; AUC, Area
under the curve; CNN, Convolutional neural network; DT, Decision tree; EEG,
Electroencephalogram; FIR, Finite impulse response; HC, Healthy control; IA,
Interhemispheric asymmetry; ICA, Independent component analysis; KNN,
k-nearest neighbor; LDA, Linear discriminant analysis; LogReg, Logistic regression;
LZ, Lempel-Ziv; M-DCPSR, Median distance from the centroid of phase space
reconstruction; MSC, Magnitude squared coherence; NB, Naive Bayes; PCA,
Principal component analysis; PE, Permutation entropy; PLI, Phase lag index;
PMCI, Progressed mild cognitive impairment; PPV, Positive predictive value; PSD,
Power spectral density; PSDE, Power spectral density entropy; RF, Random forest;
SCD, Subjective cognitive decline; SE, Sample entropy; SEN, Sensitivity; SMCI,

Stable mild cognitive impairment; SPE, Specificity; SVM, Support vector machine.
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making it particularly suitable for elders with cognitive decline. Several
studies have explored the spectral features of EEG in aMCI patients and
identified indicators such as spectral power ratio (Flores-Sandoval et al.,
2023), antero-posterior localization of alpha frequency (Huang et al.,
2000), and spectral powers within the theta and delta bands (Roh et al.,
2011) that exhibit favorable discriminatory capabilities, with an
accuracy exceeding 80%. Simultaneously, researchers have investigated
the EEG functional connectivity and graph theory features in aMCI
patients, confirming the conjecture that aMCI serves as an intermediate
stage between normal aging and AD (Frantzidis et al., 2014; Toth et al.,
2014; Miraglia et al., 2016; Smailovic et al., 2022). Specifically, certain
studies have conducted functional connectivity and graph theory
analyses on the subdivisions of aMCI, namely stable MCI (SMCI) and
MCI progress to AD (PMCI), revealing differences between the two
groups and achieving promising predictive outcomes (Vecchio et al.,
2018; Miraglia et al., 2020). Serving as an intermediate stage between
normal aging and AD, aMCI exhibits considerable EEG variability,
reflecting the heterogeneity within the aMCI population.

Recently, there has been widespread use of machine learning methods
for discriminant diagnosis through EEG data in patients with AD and
MCI. However, few studies have specifically targeted the aMCI
population. Li et al. (2021) combined the characteristics of brain
functional network with support vector machine classifier in aMCI and
healthy controls (HC), achieved an accuracy of 86.60%. The same research
team (Li et al, 2022) incorporated spectral entropy features into a
convolutional neural network (CNN) model, attaining an accuracy of
94.64% in aMCI and HC. Kim et al. (2022) explored different patterns of
functional networks between aMCI and non-aMCI using EEG graph
theoretical analysis, the naive Bayes algorithm classified aMCI and
non-aMCI with 89% accuracy. Farina et al. (2020) employed penalized
logistic regression models to identified the power and functional
connectivity features of EEG in AD, aMCI, and HC populations, but the
accuracy remained unstable across various combinations of features. The
aforementioned studies all treated aMCI as a unified discrimination
category, without conducting follow-up assessments of the disease
progression within aMCI, which would allow for further subdivision into
SMCI and PMCI and subsequently exploration of EEG differences
between these two subgroups with imperative longitudinal study
(Mammone et al.,, 2018; Ruiz-Gomez et al., 2018; Ding et al., 2022; Jiang
et al, 2022; Kim et al., 2022; Lassi et al., 2023; Wijaya et al., 2023).
However, early prediction of whether aMCI will progress to AD is of
paramount importance, as it aids in guiding subsequent interventions
involving medications, lifestyle, rehabilitation, and healthcare in an
advanced and effective manner. Currently, there is a scarcity of
longitudinal studies concerning aMCI cases, as well as a lack of research
applying machine learning methods with constrained EEG features to
disease discrimination and prediction in SMCI and PMCI subgroups.

This study recruited aMCI patients and collected the EEG data at
the time of initial diagnosis. After an 18-month follow-up period,
patients were categorized into SMCI and PMCI groups based on
whether they progressed to AD, which was in alignment with
definitions from prior research (Vecchio et al, 2018). By
comprehensively extracting EEG spectral, nonlinear, and functional
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connectivity features, we conducted feature selection and
dimensionality reduction on extracted features. Subsequently, selected
features were integrated into different machine learning classifiers for
discrimination, to explore EEG biomarkers with potential for early
prediction. Utilizing the afore mentioned framework, we systematically
extracted EEG features with excellent discriminant ability between the
SMCI and PMCI populations and to discern the heterogeneity in
disease progression among individuals with aMCI, enabling the early
identification of progressing cases and facilitating the implementation
of three levels of prevention, which conducting prospective
exploration for follow-up study in the future.

2 Materials and methods

The discriminant framework of this study design was shown in
Figure 1, which consisted of five main steps: EEG data acquisition,
EEG preprocessing, feature extraction, classification, and evaluation.

2.1 Participants

Between September 1, 2021 and April 30, 2022, we recruited a
total of 113 aMCI patients from the Memory Clinic Unit of the First
Afhliated Hospital of Sun Yat-sen University (SYSU), and 107 patients
completed the follow-up without any censored data. We collected
their raw EEG data at the time of initial diagnosis and conducted an
18-month follow-up for each patient to obtain clinical outcomes after
18 months. The diagnosis of aMCI was based on the Petersen 2011
criteria (Petersen, 2004), and made in a blinded manner with respect
to the EEG examination. The inclusion criteria for this study were as
follows: (1) age of 50 years and above, (2) memory complaint usually
corroborated by an informant, (3) objective memory impairment for
age, (4) essentially preserved general cognitive function, (5) largely
intact functional activities. The exclusion criteria were: other forms of
dementia or accompanying Parkinson’s disease, epilepsy, psychiatric
disorders, and serious organic disease. Among 107 aMCI cases, 42
individuals were diagnosed with AD after 18 months, while 65
individuals remained in the aMCI stage. Next, the 107 aMCI patients
were divided into two groups: PMCI and SMCI. The diagnosis of AD
was based on the criteria provided by the National Institute on Aging
and the Alzheimer’s Association (NIA-AA) in 2011 (McKhann et al.,
2011). All disease diagnoses in this study were accomplished by
experienced neurologists. This study adhered to the Helsinki
Declaration and was approved by the Ethics Committee of the School
of Public Health, Sun Yat-sen University (2021-No.081). The
demographic information of the patients was shown in Table 1.

2.2 EEG data acquisition

Resting-state EEG was recorded using the Nicolet EEG machine
system (Natus Medical Inc., San Carlos, CA) with a sampling rate of
500 Hz. Electrodes were placed according to the 10-20 international
system, with a total of 16 channels (Fp1, Fp2, F3, F4, C3, C4, P3, P4,
01, 02, F7, F8, T3, T4, T5, and T6). All patients were right-handed,
and sufficient sleep was ensured the night before the EEG collection.
During the recording, patients were instructed to maintain a

Frontiers in Aging Neuroscience

10.3389/fnagi.2024.1470836

comfortable seated posture with their eyes closed for 5 min. EEG
technicians continuously monitored the EEG traces and promptly
alerted participants if any signs of drowsiness were detected.

2.3 EEG preprocessing

EEG signals are susceptible to various artifacts, highlighting the
importance of preprocessing prior to analysis. Firstly, the raw EEG data
were re-referenced using an average reference, and a finite impulse
response (FIR) band-pass filter was applied to filter the EEG signals
within the range of 0.1-70 Hz. Also, a notch filter was used to eliminate
the 50 Hz power line interference. The EEG signals were subsequently
down-sampled to 250 Hz. After joint screening by two experienced EEG
examiners, bad epochs were removed and bad channels were interpolated.
Then, 20-s segments of continuous EEG signals with clear background
rhythms and minimal interference were selected. Following, we conducted
independent component analysis (ICA) to remove common artifacts such
as blinks, eye movements, and cardiac interference. Finally, the EEG
signals were segmented into non-overlapping 2-s epochs for subsequent
feature extraction. The above preprocessing steps were all performed
using the EEGLAB toolbox (Delorme and Makeig, 2004) in MATLAB
(R2023a, MathWorks).

2.4 Feature extraction

For each 2 s EEG epoch, we extracted features in three feature sets:
spectral, nonlinear, and functional connectivity.

2.4.1 Spectral feature

Using Welch’s power spectral density (PSD) estimation (Alam
et al., 2020), we transformed the preprocessed EEG signals from the
time domain into the frequency domain and divided them into the
following five subbands: delta (0.5-4 Hz), theta (4-8 Hz), alpha
(8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz).

(1) Power spectral density ratio (PSD ratio): Considering the
variation in absolute PSD values among different patients,
we calculated the relative PSD values within the aforementioned
subbands for each patient (see Equations 1-5) resulting in the
following five ratios:

Ratiol = delta / alpha (1)
Ratio2 = theta | alpha (2)
Ratio3 = delta / (alpha + beta)) 3)
Ratio4 = theta | (alpha + beta)) (4)
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TABLE 1 The demographic characteristics of participants.

Variable SMCI PMCI Statistics
(n=65) (n=42)

Age (years) 68.85 £8.76 68.17 £ 8.08 t=10.40, p = 0.69

Gender (male/female) 24/41 22/20 +2:2 49,p=0.12

MMSE (scores) 23.58 £2.87 23.55+247 t=0.07,p=0.95

MoCA (scores) 19.31 £3.36 18.52 £3.01 t=1.23,p=022

Type of aMCI (single/

27/38 17/25 L2 _
multiple) +“=0.01, p=0.91
Diabetes (yes/no) 25/40 13/29 +2:0 63,p =043
Hypertension (yes/no) 41/24 23/19 +2:0 73,p=0.39
Level of education +2:0.03,p ~0.99

Primary education 10 6
Secondary education 49 32
Higher education 6 4

MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.

Ratio5 = (delta + theta) / (alpha + beta + gamma) (5)

(2) Power spectral density entropy (PSDE): In each subband, a
sequence of PSD values can be obtained. We used the Shannon
entropy method to assess the level of disorder in this sequence of
PSD values (Li et al., 2023). Assuming there are PSD series with N
values within the subband, the PSDE was calculated as follows:

N
E=-) pilogpi (6)
i1

where E and p; represent the PSDE of the signal and the
probability of having the i sample in the signal, respectively (see
Equation 6).

(3) Interhemispheric asymmetry (IA): IA quantifies the disparity
in PSD between the left and right channels, reflecting
differences in the distribution of PSD values in symmetrical
brain regions. IA is calculated as follows:

IA =log(PSD;. ) —log(PSDy.) (7)

where 1A, PSDy., and PSD,. stand for the interhemispheric
asymmetry, the PSD in the left hemisphere, and the PSD in the right
hemisphere, respectively. We computed the IA values for a total of
eight pairs (Fpl-Fp2, F3-F4, C3-C4, P3-P4, O1-02, F7-F8, T3-T4,
T5-T6) of channels across five subbands (see Equation 7).

2.4.2 Nonlinear feature

We extracted the following six nonlinear features to capture the
nonlinear characteristics of the EEG signals in aMCI patients. The
specific formulas can be found in Appendix A.
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(1) Multi-scale permutation entropy (PE): PE is an efficient
quantitative complexity measure that explores the local order
structure of a dynamic time series (Bandt and Pompe, 2002),
particularly in EEG signals from MCI and AD patients (Siuly
et al.,, 2020; Seker et al., 2021). Multi-scale PE provides a
multiscale perspective on signal complexity, facilitating the
investigation of these neurological conditions (PARK et al.,
2007; Wu et al,, 2013; Deng et al., 2017). Our study calculated
the PE for scales ranging from 1 to 10 (Busa and van
Emmerik, 2016).

(2) Multi-scale approximate entropy (AE): AE is a metric that
quantifies the repetitiveness of a time series, capturing its
irregular and chaotic nature by assessing the recurrence of
patterns within the time series, including the EEG signals in
MCI and AD cases (Abasolo et al., 2008; Nimmy John et al.,
2019). In our study, AE was calculated for scales ranging from
1 to 10.

(3) Multi-scale sample entropy (SE): The SE is proposed by
Richman and Moorman (2000) as an improvement over AE,
addressing the bias present in AE. Recently, SE has been
extensively utilized for feature extraction in patients with MCI
and AD (Tsai et al., 2012; Ruiz-Gomez et al., 2018). Also, our
study calculated the SE for scales ranging from 1 to 10.

(4) Lempel-Ziv complexity (LZ): LZ, a nonlinear feature in EEG
signal analysis, exhibits distinctive characteristics in MCI and
AD patients, highlighting encoding intricacies that could reveal
disease-related patterns (Abdsolo et al., 2006; Liu et al., 2016;
Ruiz-Gomez et al., 2018). We selected the average of the EEG
signal as the coarse-graining method for LZ analysis in
this study.

(5) Hurst exponent: The Hurst exponent quantifies the long-term
memory or self-similarity of a time series, indicating whether
it tends to exhibit persistent trends, mean reversion, or random
behavior. This is valuable for distinguishing different EEG
activity patterns and monitoring the temporal characteristics
of EEG signals in MCI and AD patients (Nimmy John et al.,
2018; Amezquita-Sanchez et al., 2019).

The aforementioned five nonlinear metrics all reflect the
complexity of the EEG signals, with higher values indicating greater
variability in the EEG signal, and vice versa.

(6) Median distance from the centroid of phase space
reconstruction (M-DCPSR): Phase space reconstruction (PSR)
is applied in EEG research to unveil the nonlinear dynamical
properties and spatiotemporal relationships of brain electrical
activity (Lee et al,, 2014; Kaur et al., 2020). We innovatively
propose M-DCPSR to unveil the nonlinear characteristics of
EEG in the aMCI population. Firstly, we set the embedding
dimension of PSR as m = 3 and determined the lag of the time
series (7) using the autocorrelation function. Subsequently, the
three-dimensional coordinates of the time series in the phase
space were constructed based on 7. Next, the centroid of the
structure formed by all points in the phase space was computed,
and the Euclidean distance between each point and the
centroid was calculated. Finally, we computed the median of
these Euclidean distances, resulting in the M-DCPSR for the
given time series.
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2.4.3 Functional connectivity feature

We extracted three functional connectivity metrics to measure the
consistency of EEG signals across channels in aMCI patients. The
specific formulas can be found in Appendix A.

(1) Correlation coefficient: The Pearson correlation coefficient (r)
can measure linear relationships in EEG connectivity research.
The equation for calculating r between two signals X and Y is:

z?:l(Xf _)?)(Yi _?)

;= — — ®)
(S (% -XP S (1 -7)

where 7 is the number of data points, X and Y are the means of
signals X and Y, respectively (see Equation 8).

(2) Phase lag index (PLI): PLI, which is used to measure the degree
of phase synchronization between two signals, can exclude the
influences of volume conduction in EEG signals. It is
commonly employed as a functional connectivity feature in
MCI and AD patients (Nufez et al., 2019; Nobukawa et al.,
2020; Kuang et al., 2022). PLI values range from 0 to 1. A PLI
of zero indicates either no coupling or coupling with a phase
difference centered around 0 or z. A PLI of 1 indicates perfect
phase locking at a value different from 0 or 7.

(3) Magnitude squared coherence (MSC): MSC is frequently
employed in EEG connectivity studies to assess the dependence
between two signals. The MSC value ranges from 0 to 1. An
MSC of 0 indicates no linear dependence between the two
signals. A larger MSC value suggests a higher degree of
statistical dependence between the two signals.

The total number of extracted features can be found in
Appendix B.

2.5 Classification and validation

We employed eight commonly used machine learning classifiers for
binary discrimination in AD Spectrum (Perez-Valero et al, 2021;
Tzimourta et al., 2021; Rossini et al., 2022), including support vector
machine (SVM), decision tree (DT), naive Bayes (NB), linear discriminant
analysis (LDA), AdaBoost (ADA), k-nearest neighbor (KNN), random
forest (RF), and logistic regression (LogReg). The detailed descriptions of
eight classifiers can be found in Appendix C. All the parameters for
machine learning models were set to the default settings in MATLAB. All
2 s EEG epochs were divided into training and testing sets using a 10-fold
cross-validation approach at the subject level, ensuring that EEG epochs
from the same participant were not simultaneously included in both the
training and testing sets. We conducted feature selection and
dimensionality reduction on the aforementioned extracted features.
Firstly, we employed two-sample ¢-test and Wilcoxon rank-sum test to
select features with statistical significance between the two groups in the
training set. Then, the selected features were standardized and subjected
to principal component analysis (PCA) for dimensionality reduction,
extracting principal components that contribute to 95.00% cumulative
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variance. Next, we applied the feature selection parameters from the
training set to the testing set, to prevent data leakage issues in
machine learning.

Finally, we accessed the classification performance of the machine
learning model using six metrics: sensitivity (SEN), specificity (SPE),
positive predictive value (PPV), F1-score, accuracy (ACC), and area
under the curve (AUC) for the receiver operating characteristic curve
(see Equations 9-14). The formula for the previously mentioned
metrics is as follows:

ACC = TP +TN ©)
TP+ FN +TN + FP
TP
SEN = ——— (10)
TP+ FN
P .
FP+TN
ppy =12 (12)
TP + FP
Fl—score:i (13)
2TP + FP+ FN
M x(M +1
Z:ins e positiveclassrankmsf - %
AUC = d (14)

MxN

where M, N are the number of positive sample and negative
sample, separately (Hanley and McNeil, 1982; Cortes and Mohri,
2003). TP is the number of PMCI cases that are correctly predicted,
EN is the number of PMCI cases that are incorrectly predicted as
SMCI samples, FP is the number of SMCI cases that are incorrectly
predicted as PMC cases, and TN is the number of SMCI samples that
are correctly predicted.

3 Results

In this section, we firstly presented the statistical differences of three
feature sets in SMCI and PMCI cases. Since the assumptions of
parametric tests were not met for these feature sets, we employed
two-sample Wilcoxon rank-sum tests to explore the statistical differences
of aforementioned features between the two groups. Finally, we presented
the discriminant performance of different classifiers.

3.1 Spectral features
As shown in Figure 2, the disparities in PSD ratiol, PSD ratio2,

and PSD ratio3 between SMCI and PMCI cases were more significant
compared to PSD ratio4 and PSD ratio5. The PSD ratiol exhibited the
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axis represents 16 channels, and the vertical axis represents the values of PSD ratiol. (C) The EEG topoplot in terms of the mean of PSD ratiol within

the SMCI and PMCI groups.
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FIGURE 3

The combination chart of statistical differences for PSDE and IA in SMCI and PMCI groups. (A) The EEG topoplot in terms of p-value of five PSDE
between the SMCI and PMCI groups using the Wilcoxon Rank-Sum Test. (B) The boxplot of IA in the delta band for the SMCI and PMCI groups. The
horizontal axis represents 8 channel pairs, and the vertical axis represents the values of IA. (C) The EEG topoplot in terms of the mean of PSDE in the

alpha band within the SMC| and PMCI groups.

most pronounced distinguished capability between the two groups,
followed by PSD ratio3 and PSD ratio2. In the frontal, central, parietal,
and occipital regions, the value of PSD ratiol in the PMCI group was
noticeably higher than that in the SMCI group.

As illustrated in Figure 3, the differences in PSDE in the alpha and
beta bands were more significant than those in the delta, theta, and
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gamma bands between SMCI and PMCI cases. The PSDE in the alpha
band exhibited the best distinguished capability between the two
groups, followed by the beta band. The PSDE in the alpha band were
notably lower in all brain regions in the PMCI cases compared to the
SMCI cases. However, there was no significant difference between
SMCI and PMCI in IA in the delta band. The same results were
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and PMCI groups using the Wilcoxon Rank-Sum Test.

The topoplot of statistical differences for nonlinear features in SMCl and PMCI groups. (A) LZ; (B) Hurst exponent; (C) M-DCPSR; (D) AE, scale = 2;
(E) SE, scale = 2; (F) PE, scale = 2. The first two columns of each subplot represent the EEG topoplot in terms of the mean of various nonlinear features
within the SMCI and PMCI groups, respectively. The last column shows the EEG topoplot in terms of p-value of nonlinear features between the SMCI

observed in IA with the four other frequency bands as well (see
Appendix B).

3.2 Nonlinear feature

As shown in Figure 4, the differences in SE, PE, and M-DCPSR
between SMCI and PMCI cases were more significant compared to
AE, LZ, and the Hurst exponent. Compared to the SMCI group, the
PMCI group exhibits lower values of SE, PE, and M-DCPSR in all
brain regions. AE exhibited better discriminant performance in the
frontal, parietal, and occipital regions; the Hurst exponent
demonstrated better discriminant performance in the frontal and
occipital regions. However, LZ showed limited distinguished efficacy
between SMCI and PMCI patients.

3.3 Functional connectivity feature

As shown in Figure 5, regardless of the functional connectivity
features employed, the differences in the functional connectivity in the
full-frequency, alpha, theta, and delta bands between SMCI and PMCI
patients were more significant than those in the beta and gamma
bands. The functional connectivity of full-frequency and alpha bands
exhibited better discriminant performance between the two groups,
followed by the theta and delta bands.

Also, Figure 5 exhibits the 15 functional connections that yielded
the lowest p-values for PLI of the full-frequency band between the
SMCI and PMCI cohorts. The connectivity strength in the SMCI
group was notably higher than in the PMCI group. The SMCI group
exhibited a significantly greater number of connections compared to
the PMCI group when applying a threshold of 0.125.
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3.4 Discriminant performance

Table 2 illustrates the discriminant performance of eight classifiers
using the previously extracted features between the SMCI and PMCI
groups. It can be observed that the KNN exhibited the best
classification performance. It had the highest mean and the lowest
standard deviation for all evaluation metrics, with an average ACC of
99.96%, AUC of 99.97%, SEN of 99.98%, SPE of 99.95%, PPV of
99.93%, and F1-score of 99.96%. The SVM, LDA, and LogReg fell into
the second tier, with the mean for each metric surpassing 95%. The
DT, ADA, and RF exhibited slightly lower classification performance,
with the mean for each metric remaining above 80%. The NB showed
inferior classification performance, although its lowest metric
exceeded 75%. The boxplots of discriminant results by different
classifiers using 10-fold CV can be found in Appendix B.

4 Discussion

Based on EEG spectral, nonlinear, and functional connectivity
features, we proposed a discriminant framework utilizing machine
learning methods to diagnose SMCI and PMCI through computer-
aided techniques. We achieved satisfactory classification performance
by our data.

The differences in PSD ratio3 and PSD ratiol between the two
groups are pronounced, revealing a distinct “high to low” EEG
frequency shift in PMCI patients compared to SMCI patients. This
finding provides novel and robust longitudinal evidence for the
association between the tendency of change in PSD ratio features
and clinical outcomes in aMCI patients, in line with relevant
research findings (Luckhaus et al., 2008; Ding et al., 2022; Sadegh-
Zadeh et al.,, 2023). However, the differences in IA between the two
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The combination chart of statistical differences for functional connectivity features in SMCI and PMCI groups. (A) Pearson correlation coefficient;

(B) PLI; (C) MSC. In each subplot, the connections have statistically significance between the SMCI and PMCI groups, with color variations indicating
the magnitude of p-values. (D) The boxplot of the 15 functional connections with the lowest p-values of PLI (full-frequency band) between the SMCI
and PMCI groups. (E) The circulargraph of the functional connections with mean PLI (full-frequency band) values exceeding 0.125 within the SMCI and

groups are not pronounced, suggesting minimal disparities in the
distribution of PSD values across the bilateral symmetrical regions
of the brain for each frequency band, and requesting further
longitudinal evidence. The extracted nonlinear features indicate that
the complexity of EEG in the PMCI group is lower than that in the
SMCI group. Additionally, the classification performance of SE and
PE is superior to that of AE, LZ, and the Hurst exponent. This
further underscores that nonlinear features that exhibit outstanding
discriminant performance among the AD, MCI, and HC populations
may not necessarily apply to distinguishing between the SMCI and
PMCI groups (Ruiz-Gomez et al., 2018; Araujo et al,, 2022; Ding
etal., 2022; Lee et al., 2022). Additionally, we have introduced the
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innovative nonlinear feature, M-DCPSR, which exhibits significant
differences between the two groups and holds promising potential
for EEG studies involving aMCI patients or “HC-subjective cognitive
decline (SCD)-MCI-AD” spectrum. Significant disparities in
functional connectivity were noted between the two groups in both
the full frequency and alpha bands, suggesting that the PMCI group
exhibits early-stage reductions in intra- and inter-brain region
communication during the aMCI phase (Vecchio et al., 2018;
Miraglia et al., 2020). Our study showed that the collection of EEG
features at the aMCI stage and their follow-up in future studies may
crucial for for personalized and precise prevention and
treatment strategies.
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TABLE 2 The discriminant results using 10-fold CV with 2 s epochs (mean + standard deviation, %).

10.3389/fnagi.2024.1470836

Classifier ACC AUC SEN SPE PPV Fl-score
SVM 9535 +2.11 99.12 + 0.67 9432 +3.81 95.59 +3.21 9523 +2.85 94.73 +2.62
DT 84.93 + 3.58 84.68 + 4.12 83.35+7.17 85.02 +6.13 82.84 + 6.64 82.90 + 5.64
NB 77.65+5.19 9338 +2.54 85.84 + 14.59 76.13 + 16.04 7525 + 16.82 77.30 + 5.68
LDA 96.23 + 1.87 99.37 +0.47 9538 +3.81 96.40 + 3.04 96.20 +2.48 95.73 +2.34
ADA 90.58 +2.96 96.66 + 1.48 88.31+5.44 91.50 + 5.07 90.34 +4.22 89.20 + 3.80
RF 88.87 +3.22 98.13 + 1.11 81.47 + 13.85 90.97 + 12.20 94.06 +7.02 86.13 +5.69
KNN 99.96 +0.18 99.97 +0.16 99.98 +0.16 99.95 +0.27 99.93 +0.40 99.96 +0.21
LogReg 95.59 + 1.84 98.39 + 1.22 94.65 +3.26 95.94 +2.91 95.46 + 2.89 95.01+2.32

Bold values indicates the best discriminant performance.

TABLE 3 Comparison between our proposed framework and previous studies (resting-state EEG).

Studies Subjects Duration of = EEG features Classifiers Accuracy Validation
EEG signal (%)
Vecchio et al.
(2018) 74 SMCI, 71 PMCI 2-s SW property polynomial regression 61.00 10-fold cross-validation
Lietal. (2021) 28 aMCI, 21 HC 1-s Graph theory SVM 86.60 10-fold cross-validation
Li et al. (2022) 26 aMCI, 20 HC 4-s Spectral entropy CNN 94.64 10-fold cross-validation
LogReg, SVM, RFE, NB,
Kim et al. (2022) 139 aMCI, 58 non-aMCI 2-s Graph theory 89.00 train-test split of 3:7
GB, NN
Youssef et al. Leave-one-out cross
43 aMCI, 51 HC 4-s Graph theory DT 87.20
(2021) validation
Holler etal. (2017) | 71aMCI, 39 AD 3-min Graph theory SVM 60.00 10-fold cross-validation
Spectral, nonlinear,and | SVM, DT, NB, LDA,
Our study 65 SMCI, 42 PMCI 2-s 99.96 10-fold cross-validation
functional connectivity ADA, KNN, RF, LogReg

SW, small world; CNN, convolutional neural network; WPLI, weighted phase lag index; GB, gradient boosting; NN, neural network. Bold values indicates the best accuracy.

By comprehensively extracting EEG features, our discriminant
framework utilizing machine learning methods has displayed
exceptional performance in distinguishing between SMCI and PMCI
cases. Notably, all six metrics surpassed 99% in KNN, while all eight
classifiers exhibited ACC surpassing 75% and AUC exceeding 80%.
These results underscore the value of EEG in automated diagnosis and
AD prediction. As KNN excels in handling feature sets with significant
dependent, and performs better when the class distributions exhibit
distinct clustering characteristics within the feature space (Hu et al.,
2022), it outperformed other methods in our research. In contrast, NB
relies on the assumption of independence between features (Taheri
et al,, 2014), which is clearly not met in our research. The observed
results may be attributed to the use of PCA for feature dimensionality
reduction prior to inputting the data into the machine learning model,
aiming to reduce the correlation among the original features. However,
while PCA ensures linear independence among the principal
components, it does not rule out the possibility of
nonlinear relationships.

Given the limited prior application of machine learning methods
for longitudinal classification studies involving the aMCI population,
we concurrently selected machine learning studies that utilized aMCI
as one of their classification labels for comparison with our results (see
Table 3). It can be observed that the discriminant framework in this
study achieved the highest ACC among all similar studies, indicating
significant potential for its application in automated diagnosis and
early prediction. Furthermore, using the same discriminant
framework, we classified the whole 20-s EEG signals of 107 aMCI
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patients (results shown in Appendix B). Despite a slight performance
decrease, most performance evaluation metrics still exceeded 75%,
confirming the stability of our machine learning discriminant
framework. The superior classification performance of 2-s epochs
compared to 20-s signals in this study may stem from the ability of
shorter segments to provide higher temporal and spectral resolution.
Differences in frequency domain features between PMCI and SMCI
groups likely contributed to this result. We recommend that future
studies employing machine learning for EEG analysis report both
epoch-based and subject-based classification results whenever possible.

From the perspective of early prediction, we established a machine
learning discriminant framework for SMCI and PMCI using EEG
features, achieving remarkable classification performance. However,
our study still has several limitations. Firstly, the sample size is
relatively small, as all cases were recruited from the First Affiliated
Hospital of SYSU. Despite our efforts to expand the epochs to 1,070 by
segmenting the EEG data and utilizing 10-fold CVto mitigate the risk
of overfitting, the small sample size may still affect the stability and
generalizability of the models. With limited data, the models may fail
to capture all the important patterns within the data, thereby limiting
their applicability and performance in real-world settings.
We conducted simulation studies of classifiers under different sample
size scenarios and calculated sample size from a statistical perspective
(see Appendix C). The results indicate that the sample size in our
study is sufficient to infer differences in the metrics. However,
we advocate that studies applying machine learning methods in the
EEG field should estimate sample sizes beforehand to enhance the
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credibility of the results. It remains essential to further validate the
generalizability of our discriminant framework by increasing the
sample size. Therefore, we continue to recruit new cases to enlarge this
aMCI cohort and plan to conduct a multi-center study intended for
external validation. However, we utilized calibration curves for
internal validation of the model, demonstrating the relationship
between the predicted probabilities and the observed frequencies (see
Appendix B). The results indicate outstanding model calibration, with
the curves closely aligning with the ideal diagonal line, suggesting that
the predicted probabilities in this study accurately reflect the actual
likelihood of events. Secondly, we have overlooked the ranking of
feature importance though inter-group comparisons have highlighted
statistical significance in extracted features between the two groups.
In our future work, we will explore the importance of certain features
and the discriminant efficiency under various combinations of feature
sets. Additionally, we exclusively employed EEG data obtained at the
time of the initial diagnosis, although a longitudinal study on the
aMCI cases was conducted. It could be crucial to collect multiple EEG
recordings for the aMCI cases during follow-up, as this would aid in
dynamically monitoring the trends in EEG features within the aMCI
population, thus facilitating the development of an adaptive risk
model for the progression from aMCI to AD. However, we proposed
a computer-aided diagnostic discriminant framework based on
machine learning methods, capable of early predicting AD during the
aMCI stage, and achieving satisfactory classification performance.

5 Conclusion

Aiming to explore the EEG biomarkers with predictive value for
AD in the early stages of aMCI, the proposed discriminant framework
provided robust longitudinal evidence for the trajectory of the aMCI
cases, aiding in the achievement of early diagnosis and
proactive intervention.
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