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Objectives: The future emergence of disease-modifying treatments for 
dementia highlights the urgent need to identify reliable and easily accessible 
tools for diagnosing Alzheimer’s disease (AD). Electroencephalography (EEG) 
is a non-invasive and cost-effective technique commonly used in the study 
of neurodegenerative disorders. However, the specific alterations in EEG 
biomarkers associated with AD remain unclear when using a limited number of 
electrodes.

Methods: We studied pathological characteristics of AD using low-density EEG 
data collected from 26 AD and 29 healthy controls (HC) during both eye closed 
(EC) and eye opened (EO) resting conditions. The analysis including power 
spectrum, phase lock value (PLV), and weighted lag phase index (wPLI) and 
power-to-power frequency coupling (theta/beta) analysis were applied to extract 
features in the delta, theta, alpha, and beta bands.

Results: During the EC condition, the AD group exhibited decreased alpha power 
compared to HC. Additionally, both analysis of PLV and wPLI in the theta band indicated 
that the alterations in the AD brain network predominantly involved in the frontal 
region with the opposite changes. Moreover, the AD group had increased frequency 
coupling in the frontal and central regions. Surprisingly, no group difference was 
found in the EO condition. Notably, decreased theta band functional connectivity 
within the fronto-central lobe and increased frequency coupling in frontal region 
were found in AD group from EC to EO. More importantly, the combination of EC 
and EO quantitative EEG features improved the inter-group classification accuracy 
when using support vector machine (SVM) in older adults with AD. These findings 
highlight the complementary nature of EC and EO conditions in assessing and 
differentiating AD cohorts.

Conclusion: Our results underscore the potential of utilizing low-density EEG data 
from resting-state paradigms, combined with machine learning techniques, to 
improve the identification and classification of AD.
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Introduction

Alzheimer’s disease (AD) is a neurological disorder characterized 
by progressive neurodegeneration and synaptic dysfunction. The 
degeneration leads to decline in cognitive and behavioral functions, 
which ultimately interferes with the individual’s daily life. The early 
and accurate diagnosis of AD is of utmost important as it empowers 
AD patients and their families to understand the disease and explore 
available palliative therapies (Association A.s, 2009; Livingston et al., 
2020). Furthermore, the future advent of disease-modifying 
treatments for dementia underscores the urgent need to identify 
reliable and easily accessible tools for diagnosing AD (Cummings 
et al., 2007; Cova et al., 2017; Cruzat et al., 2023; Prado et al., 2023).

The diagnosis of AD in clinical setting indeed relies primarily on 
cognitive, biochemical, and neuroimaging markers. These 
measurements are often obtained through techniques such as positron 
emission tomography (PET) and magnetic resonance imaging (MRI) 
in research setting (Dubois et al., 2007; Prado et al., 2022). However, 
it’s important to acknowledge that while the accuracy of AD diagnosis 
based on these markers ranges from 85 to 90%, it requires experienced 
clinicians, meticulous and exhaustive testing sessions, as well as costly 
and limited access to neuroimaging tools and invasive procedures 
(Sarazin et  al., 2012). These constrains significantly hinder the 
widespread implementation of early AD diagnosis, particularly in 
low-income countries, remote and rural regions, and even in 
metropolitan areas with long wait times for non-emergency MRIs 
appointments, which can stretch to several months (Barua et al., 2014; 
Mukadam et al., 2024). Therefore, there is a critical need to develop 
alternative and more accessible diagnostic approaches, accompanied 
with the utilization of computerized algorithms, to enhance the early 
and accurate detection of AD.

Electroencephalography (EEG) is a non-invasive and cost-
effective technique used to study of neurodegenerative disorders. 
Numerous studies employing EEG have identified characteristic 
features of AD, such as a shift in the power spectrum towards lower 
frequencies (Anaya et al., 2021), alterations in functional connectivity 
and phase synchronization between different brain regions (Briels 
et al., 2020), and reduced variability and complexity of brain activity 
(Takahashi, 2013). EEG has become an intriguing tool for studying 
and diagnosing AD. While current research often utilizes high-
density electrodes setups in EEG studies, this approach may not 
always be  feasible or optimal, particularly in clinical populations 
during research (Brito et al., 2019; van den Munckhof et al., 2018) 
and diagnostic testing (Aeby et  al., 2021; Cassani et  al., 2017). 
However, there is a growing trend towards large-scale neuroscience 
studies and the implementation of community-based approaches, 
with a focus on precision medicine using brain-based biomarkers. 
This emerging trend may pave the way for the integration of 
low-density electroencephalography (EEG) in future research 
endeavors. The availability of novel, portable, cost-effective, and user-
friendly EEG systems within clinical settings holds promise as a 
valuable tool for assessing older individuals at risk of developing 
cognitive disorders, particularly in resource-limited regions. Previous 
investigations have demonstrated that these systems can reliably 
capture resting-state EEG activity with satisfactory signal-to-noise 
ratio across both young and elderly populations (McWilliams et al., 
2021; Troller-Renfree et al., 2021; Rogers et al., 2016). Nevertheless, 
the significance of the observed differences between healthy control 

(HC) individuals and seniors with AD remains unclear at both the 
group and individual levels when using a limited number of 
electrodes to extract EEG biomarkers for statistical models. 
Additionally, EEG recordings in the eyes closed (EC) resting state are 
commonly used in AD studies, while the procedure of keeping the 
eyes open (EO) is not widely employed in dementia research, despite 
being routine in clinical neurophysiology. Interestingly, AD cohorts 
have shown significant impairment, such as reduced reactivity of 
posterior alpha rhythms (Babiloni et al., 2022; Babiloni et al., 2010; 
Babiloni et al., 2019), during EO, highlighting the need for further 
investigation into EO datasets and their potential contribution to 
understanding AD.

To this end, we utilized an 8-channel EEG acquisition system to 
capture resting-state EEG from individuals with AD and HC under 
both EC and EO conditions. We then conducted a comprehensive 
evaluation and comparison of various features, including power 
spectrum, phase-locked values, weighted lag phase index, and 
frequency-coupling values between the AD and HC groups. Our aim 
was to investigate whether any of these EEG features or combinations 
of features could server as clinical biomarkers using low-density EEG 
devices. We hypothesized that combining EEG features with eye-states 
would result in a more effective distinction between the AD and HC 
groups compared to utilized features from single eye state alone.

Methods

Participants

Sixty-two participants were recruited from the Department of 
Neurology, the First People’s Hospital of Qin Huang Dao. Participants 
were evaluated by a panel of cognitive neurologists and fulfilled 
clinical diagnostic criteria for AD (Mueller et  al., 2005). Healthy 
controls were required to have a Mini-Mental State Examination 
(MMSE) score of 26 or above and a Clinical Dementia Rating (CDR) 
score of 0. We excluded individuals with a history of alcohol or drug 
abuse, current or known history of major depression or other 
neuropsychiatric conditions such as psychosis. Patients who were 
receiving medications known to affect brain activity, those with severe 
psychological distress and comorbid neurodegenerative diseases like 
Parkinson’s disease were also excluded. To minimize potential 
interference with EEG results, participants were instructed to avoid 
consuming caffeine and alcohol for 24–48 h prior to data collection. 
Additionally, participants were required to get adequate sleep and 
avoid staying up late before the session. The study was conducted in 
accordance with the Declaration of Helsinki and approved by the 
ethics committee of the First People’s Hospital of Qin Huang Dao. 
Written informed consent was obtained from each participant prior 
to recruitment into the study.

The neuropsychological battery was performed by trained 
psychologists who evaluated global cognition. Global cognition was 
assessed using the MMSE and Montreal Cognitive Assessment 
(MoCA) tool (Nasreddine et  al., 2005). Out of 62 participants, 
we included 55 participants in the analysis (26 subjects with AD and 
29 HC older adults) who passed quality control of EEG data (see EEG 
Acquisition and Preprocessing section). Both groups were well-
matched in terms of demographics including age, gender, and 
handedness, education level.
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EEG data acquisition and preprocessing

EEG data were collected with an active EEG-system (JL - EEG8w), 
developed by the State Key Laboratory of Cognition and Learning of 
Beijing Normal University. Data were recorded at 1 kHz sampling rate 
with 0.1–80 Hz. According to the 10–20 international standard 
electrode system, 8 electrode position was used, i.e., F3, F4, T3, T4, 
C3, C4, O1 and O2. The impedance of each active electrode was 
controlled below 100 kΩ. Resting-state EEG were recorded during two 
5-min blocks (one with EC and the other one with EO) in a random 
order. Participants sat in a comfortable chair, kept quiet and relaxed, 
and kept their bodies motionless or minimized as much as possible to 
reduce artifacts. During the eyes-open state, participants were 
instructed to focus steadily on a small cross displayed on the computer 
screen in front of them, a common method used to mitigate eye 
movements (Boytsova and Danko, 2010; Barry and De Blasio, 2017). 
They were instructed to sit still and minimize blinks or eye movements.

EEG data were preprocessed and analyzed offline using the 
MATLAB 2020b (The MathWorks, Natick, MA, USA), the Harvard 
Automated Processing Pipeline for EEG (HAPPE), and the EEGLAB 
toolbox. The EEG data were first filtered from 0.1 to 45 Hz, the EEG 
data was resampled to a frequency of 250 Hz. The original data were 
referenced to the Cz electrode and the filtered EEG data were then 
re-referenced to the average reference. Automatic artifact detection 
algorithms are applied to identify and remove segments of the data 
that contain unwanted artifacts such as eye movement and blinks, 
breathing, and muscle activity. Specially, standard HAPPE processing 
were employed to reject artifacts, designed for the preprocessing 
pipeline of low-density EEG configurations (Gabard-Durnam et al., 
2018). The HAPPE artifact removal steps included bad channel 
identification, electrical line noise removal via Cleanline multitapering 
approach, artifact removal through wavelet-enhanced ICA and 
followed by a second ICA decomposition with automated component 
rejection above 50% artifact probability via the Multiple Artifact 
Rejection Algorithm (Winkler et al., 2014). Bad channels were then 
interpolated and EEG data were re-referenced to the average reference 
and mean signal detrended. Manual inspection of the remaining data 
is also important to ensure the accuracy of the analysis, participants 
with a bad channels or with <4 - s epochs were discarded. For each 
subject, the time series were divided into 75 sample (4 - s) segments. 
During the EO condition, the mean number of segments removed due 
to artifacts (mean ± std) was 13.12 ± 4.83 for the AD group, and 
8.53 ± 3.61 for the HC group. During EEG data collection, the EC and 
EO conditions were randomized for each participant, allowing for the 
formation of an average for each condition. To eliminate potential 
possible average or order effects and ensure equalization of the 
number of epochs for each participant and condition, we retained the 
2 min of EEG data (30 epochs) from the middle of each condition for 
further analysis. Seven participants were excluded for excessive 
artifacts (fewer than 30 epochs for at least one condition).

EEG analysis

Power spectrum
As mentioned in the above preprocessing section, the EEG signal 

has been divided into 30 epochs of 4 s data segment. The 250 points 
(1.0 s) Hamming window was used to slide each data in the 100 points 

(0.4 s) step, the overlap rate is 0.6. Calculate the Fourier transform of 
1,024 points to obtain the estimated power spectrum for each data 
point. Before calculating the Fourier transform of the EEG data, 
we applied data mirroring at the beginning and end of each 30-epoch 
segment, and the first and last epochs were replicated at the start and 
end of the segment to mitigate edge artifacts introduced by the 
Hamming window, respectively.

The whole brain power spectrum of all participants were calculated 
in both groups, perform group averaging (Cassani et  al., 2017), and 
calculated the absolute power spectrum in the following four frequency 
intervals: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 
(13–30 Hz) (Farina et al., 2020). In this study, we did not consider gamma 
oscillation, as the EEG in this frequency band is easily contaminated by 
muscle artifacts. Furthermore, the relative power of each frequency band 
was calculated by dividing the absolute power of each band by the sum of 
the absolute power of 1-45 Hz (Kwan et al., 2018).

Phase locked value (PLV)
Phase locked value is a metric used to quantify synchronous 

trends in EEG signals (Krusienski et al., 2012). The advantage of PLV 
is that it can measure the phase and amplitude components separately 
for a given frequency range. In the case of repeated stimulation, the 
latency period of phase synchronization or slight phase change in the 
PLV measurement test is observed. To calculate the phase 
synchronization of two EEG signals, the PLV calculation program 
calculates the instantaneous phase difference between signals within 
a specified frequency band. The synchronous measurement PLV at 
time t is defined as shown in Equation (1):
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Where N is the total number of tests, Δφ (t, n) = φ1 (t, n) - φ2 (t, 
n) is the instantaneous phase difference between signals.

In most EEG studies, PLV was used to measure the inter 
experimental variability of phase at time t. If there is no significant 
phase change during the test, the PLV approaches 1, otherwise it may 
be zero (Shan et al., 2022).

We sequentially calculated the phase-locking value (PLV) between 
the two electrodes by performing Hilbert transform on the respective 
electrode signals, extracted their imaginary parts, subtracted the 
phase, and subsequently computing PLV. Finally, we averaged PLV 
values from 30 epochs to obtain the final PLV characteristics.

Weighted phase lag index (wPLI)
The weighted phase lag index (wPLI) is an extension of the phase 

lag index (Šverko et al., 2022). PLI represents the asymmetry of the 
instantaneous phase distribution between two signals. The weighted 
version of PLI is defined as phase leading or lagging, weighted by the 
amplitude of the imaginary part of the complex cross spectrum. This 
limits the parasitic phase coupling around the origin caused by small 
disturbances (Tillem et al., 2018).

Each indicator of weighted phase lag is characterized by the 
distribution of phase angle difference (Xing et  al., 2017). The 
instantaneous phase lag and amplitude can be obtained through cross 
power density spectra. Cross power density is defined as shown in 
Equation (2):
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Where xyS  is the cross spectral density function between the 
signals ( )yY t and ( )xY t . Signal ( )xY ω  is signal ( )xY t  in ω Finite Fourier 
Transform at Frequency, ( )xY ω∗  is Complex conjugate of ( )xY ω . Cross 
power density should be applied to each frequency band of interest 
(0.1 Hz–30 Hz).

The distribution of phase angle difference can face the positive or 
negative side of the composite plane (Cohen, 2015; Vinck et al., 2011). 
The more concentrated the phase angle difference is on the same side, 
whether it is positive or negative, the higher the phase lag synchronization 
will be (Cohen, 2015). WPLI is defined as shown in Equation (3):
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Where ( )xytimag S  represents the cross spectral density at time 
point t in the complex plane xy , and sgn  represents a symbolic 
function (−1, +1 or 0).

We sequentially computed the wPLI between two electrodes by 
segmenting the electrode signal involved in the calculation into 10-s 
windows with a 50% overlap. To achieve this, we employed the multi - 
frequency transformation method for multi-carrier frequency 
decomposition of the data at intervals of 0.1 Hz, followed by wPLI 
computation between the respective channel pairs.

Frequency coupling
To compare the changes near the alpha frequency band of the test 

subjects, we derived a novel feature by calculating the ratio of relative 
power between the theta and beta frequency bands. This ratio 
operation on both frequency bands yields the coupling value (theta/
beta) represent their interplay (Miao et al., 2021). The magnitude of 
this value indicates the relative energy distribution between the theta 
and beta frequency bands, with values greater than 1 suggest a higher 
energy concentration in the theta band, and vice versa for the beta 
band. Consequently, we employed this feature to quantify near the 
alpha frequency band alterations in our subjects.

Support vector machine (SVM)

Support vector machine (SVM) is a popular machine learning 
algorithm that is used for classification and regression analysis 
(Durongbhan et al., 2019). The algorithm works by finding the optimal 
boundary or hyperplane that can separate the data into different 
classes. The SVM algorithm can handle both linear and nonlinear 
classification problems (Fröhlich et al., 2021). In the case of nonlinear 
classification, the SVM algorithm uses a kernel function to map the 
data into a higher dimensional space, where the optimal boundary can 
be found (Cao et al., 2022). The commonly used kernel functions are 
linear, polynomial, and radial basis kernels. In this study, the linear 
kernel was found to be  the optimal kernel function for the SVM 
model, based on its performance compared to the other kernels tested. 
In order to avoid possible overfitting of the model and obtain a reliable 
performance of the proposed model. We  applied k  - fold cross 

validation (CV) technique to all the classifiers. The entire dataset 
testing was randomly divided into k folds of equal size. For each fold, 
the k − 1 subsets were applied for training and the remaining one 
subset was applied for testing. This process was repeated for k − 1 
more times. The overall performance of each classifier was evaluated 
by calculating the average result of k folds. In this study, we selected 
k = 10. In order to improve the performance of the classifier, a 10-fold 
cross-validated linear kernel SVM was selected in this study, and 
features were screened in two rounds, namely Mann–Whitney U test 
and single-feature classification accuracy of 70%.

Statistical analysis

Two-sample t test was used to compare age differences, Chi  - 
square test was used to compare sex differences, education levels and 
conventional hands between AD group and HC group. To examine 
the differences between groups, we used a linear regression model 
with EEG features as effects of interest, while age, sex, and education 
level were used as covariates. Residuals were analyzed using the 
Mann–Whitney U test, and EEG features were subsequently corrected 
for multiple comparisons using the Bonferroni method. The difference 
in relative power of oscillation, PLV, wPLI, and frequency coupling 
value, p < 0.05, is statistically significant.

Results

Group differences in demographic and 
clinical characteristics

There were no significant group differences in age, gender, 
education levels and handedness. However, clinical test scores differed 
between AD and HC groups (Table 1). AD patients had significantly 
lower MMSE and MoCA scores than the HC group (MMSE: 
t = −7.372, p < 0.001; MoCA: t = −11.712, p < 0.001).

Group differences in EEG characteristics

Whole-brain power spectrum
Figure 1 showed the distribution of EEG power across different 

frequency bands for both AD and HC during EC and EO. The power 
spectrum during EC showed a significant difference (Mann–Whitney 
U test, p < 0.001) between the two groups in the alpha frequency band, 
with AD patients showing a lower peak frequency compared to 
HC. Specifically, the peak frequency of AD patients was 9.76 ± 0.34 Hz, 
while that of HC was 10.09 ± 0.65  Hz (Mann–Whitney U test, 
p  < 0.05). However, no significant difference was observed in the 
corresponding frequency band between the two groups during 
EO condition.

Functional connectivity
In terms of PLV, group differences were observed in the theta 

frequency band during EC. Compared with HC, AD patients exhibited 
higher left fronto-occipital (F3 - O1: Mann-Whitney U test, p < 0.001) 
and centro-occipital (C3 - O1: Mann-Whitney U test, p < 0.001) PLV 
as shown in (Figure 2). Correspondingly, no group difference was 
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found during EO for each frequency band. The inter-electrode 
differences of PLV between EC and EO conditions were further 
analyzed, AD patients had lower values in the left fronto-right 
temporal region (F3 - T4: Mann–Whitney U test, p < 0.001).

In terms of wPLI, group differences were also observed in the 
theta frequency band during EC. Compared with HC, AD patients 
exhibited higher left fronto-right frontal (F3 - F4: Mann-Whitney 
U test, p  < 0.001), left fronto-right temporal (F3 - T4: Mann-
Whitney U test, p < 0.001), and right fronto-left occipital (F4 - O1: 
Mann-Whitney U test, p < 0.001) wPLI as shown in (Figure 3). 
Correspondingly, no group difference was found during EO for 
each frequency band. For the differences of wPLI under EC - EO 
conditions, AD patients had significant difference in the left 
fronto-right temporal (F3 - T4: Mann–Whitney U test, p < 0.001) 
and right center-temporal (C4-T4: Mann–Whitney U test, 
p < 0.001) regions (Figures 2, 3).

Frequency coupling
The spatial distributions of the average frequency coupling (theta 

/ beta) for AD patients and HC during EC and EO were shown in 
Figure  4. During EC, AD patients exhibited significantly higher 
coupling values in the frontal and central lobes compared to HC (F3: 
Mann–Whitney U test, p < 0.001, F4: Mann–Whitney U test, p < 0.001; 
C4: Mann–Whitney U test, p < 0.001). However, no significant group 

differences were observed during EO. In order to further reduce the 
impact of volume conduction, we proposed to use frequency coupling 
to conduct a comparative analysis of AD and HC, EC - EO condition 
characteristics (F4: Mann–Whitney U test, p < 0.001).

Classification comparison of two 
paradigms

After two filtering steps, the retained features were combined into 
a feature group. The Combined Conditional Characteristics (EC-EO) 
were derived by subtracting the EEG signature of the corresponding 
EO from that of the EC. Feature selection for the combination 
underwent two rounds of screening, namely Mann–Whitney U test, 
followed by a classification accuracy threshold of 70% for each 
individual feature. The final selected features included PLV for left 
fronto-right temporal region, wPLI for both left fronto-right temporal 
and right center-temporal regions, and frequency coupling (theta/
beta) for the right frontal lobe. The obtained feature group was fed 
into a linear kernel support vector machine (SVM) and classified 
using 10-fold cross validation. The classification indicators obtained 
by the two groups of participants were compared and listed in the 
table below.

The classification performance based on single condition (EC) 
and combined conditions (EC - EO) were evaluated, with the letter 
showing improved performance. Under the combined conditions, the 
accuracy, sensitivity, and specificity were found to be 96.36, 98.10, and 
97.78%, respectively. These values showed an improvement of 3.63, 
5.77 and 4.45% respectively, when compared to the single normal 
form. In this study, a random forest (RF) classifier was also used, and 
the accuracy, sensitivity, specificity, and AUC of RF under the 
combined conditions were 94, 92.00, 96.00, and 95.5%, respectively. 
These results indicate that the SVM method has higher accuracy, 
sensitivity, specificity, and AUC than RF. Detailed RF results are 
provided in the Supplementary material.

ROC curves of two paradigms

In order to compare the performance of classifiers obtained using 
feature groups under two different paradigms, we plotted the ROC 

FIGURE 1

The grand average of the EEG power spectrum residuals for AD and HC groups during the resting state, both in the EC (eye closed) condition (left) and 
EO (eye open) condition (right).

TABLE 1 Subject demographic and clinical characteristics.

AD
(N = 26)

HC
(N = 29)

p-value

Age(years) 69.35 (10.08) 64.17 (10.64) —

Gender(M/F) 11/15 12/17 —

Handedness(L/R) 0/26 0/29 —

Education(P/J/S/A/U) 4/2/13/2/5 5/2/15/3/4 —

MMSE 15.45 (9.03) 29.39 (0.89) <0.001

MoCA 12.05 (6.48) 28.22 (1.98) <0.001

Values represent mean (standard deviations). Group difference in age, MMSE, and MoCA 
were evaluated with independent-sample t test, while those of gender, handedness and 
education were evaluated with Chi-square test. N, number of subjects; HC, healthy controls; 
AD, Alzheimer’s disease; P, Primary school; J, Junior high school; S, Senior middle school; A, 
Associate College; U, University; MMSE, Mini-Mental State Examination; MoCA, Montreal 
Cognitive Assessment.

https://doi.org/10.3389/fnagi.2024.1485132
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnagi.2024.1485132

Frontiers in Aging Neuroscience 06 frontiersin.org

curves of the two classifiers in Figure  5. From the graph, it was 
observed that the blue ROC curve (EC - EO) was located above the 
red curve (EC), and the AUC of the blue curve was closer to 1, 
indicated that the classifier trained using normal form combined with 
features had better classification performance.

As shown in Table 2, AUC for the single condition was 0.9520, and 
AUC for the combined conditions was 0.9970. Compared to the single 
EC conditions, the classifier obtained by combining EC and EO 
conditions with the feature group had better classification 
performance. It indicated that the features combined with EC and EO 

conditions had better classification potential compared to the single 
form, and were expected to become powerful biomarkers. These 
findings suggest that these combined features have the potential to 
serve as powerful biomarkers.

Discussion

The present study employed low-density EEG to identify potential 
biomarkers that can effectively differentiate between two distinct 
populations. During the EC condition, decreased alpha power in the 
AD group. Both analysis of PLV and wPLI in the theta band indicated 
that the alterations in the AD brain network predominantly involved 
in the frontal region. In addition, the AD group had increased 
frequency coupling in the frontal and central regions. Furthermore, 
decreased theta band functional connectivity within the fronto-central 
lobe and increased frequency coupling in frontal region were found 
in AD group from EC to EO. More importantly, the combination of 
EC and EO quantitative EEG features improved the inter-group 
classification accuracy when using support vector machine (SVM) in 
older adults with AD. Our findings highlight the promise use of 
low-density EEG data from resting-state paradigms combined with 
machine learning techniques in enhancing our understanding and 
diagnosis of AD.

Both the AD and HC groups exhibited a noticeable peak in the 
alpha band during the EC condition compared to EO. This distinct 
peak can be attributed to activation of the visual system, which is more 
prominent during EC (Barry et al., 2007). Consistently, AD patients 
showed a decrease in average power spectrum, primarily within in 
alpha frequency band during EC (Blackburn et al., 2018). In patients 
with AD, the power of low-frequency alpha waves is significantly 
reduced compared with normal older adults, reflecting the gradual 

FIGURE 2

Alterations in theta-band PLV (phase locking value) connectivity residuals of the occipital region in individuals with AD compared to HC subjects. 
Statistically significant group difference was indicated by * (p < 0.05, with Bonferroni correction for multiple comparison).

FIGURE 3

Alterations in theta-band wPLI (weighted phase lag index) 
connectivity residuals of the frontal region in individuals with AD 
compared to HC subjects. Statistically significant group difference 
was indicated by * (p < 0.05, with Bonferroni correction for multiple 
comparison).
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weakening of the function of the thalacortex and cortical systems in 
controlling visual attention (Arnáiz and Almkvist, 2003). This finding 
echoes the clinical manifestations of visuospatial deficits in AD 
patients (Arnáiz and Almkvist, 2003). Further studies have suggested 
that this significant reduction in low-frequency alpha wave power may 
be due to damage to the cholinergic pathway, which affects cerebral 
blood flow and thus affects the improvement of attention and memory 
function (Claassen and Jansen, 2006). In addition, the AD group 

demonstrated a lower peak frequency in the alpha band compared to 
the NC group, supporting the pathological shift of oscillatory power 
from higher to lower frequencies in AD patients (Meghdadi 
et al., 2021).

Cross-frequency coupling plays a crucial role in coordinating 
perception, memory, consciousness, and other cognitive processes 
(Palva and Palva, 2007; Wang et al., 2014). Theoretical perspectives 
propose four models for cross-frequency coupling: phase-to-
amplitude, power-to-power, phase-to-phase, and phase-to-
frequency interactions (Abubaker et al., 2021). While some studies 
have explored changes in phase-to-power coupling in AD 
(Goodman et al., 2018; Musaeus et al., 2020), our study focuses on 
alterations in power-to-power coupling in AD. We discovered that 
the increase in theta activity can be accompanied by a decrease in 
beta activity, resulting in an increase in theta/beta coupling during 
the eye closed (EC) condition. This finding aligns with previous 
studies on phase-to-power coupling in AD (Wang et al., 2017), 
indicating a disruption of coupling between frequency bands in 
AD patients. Moreover, the spatial distribution of theta/beta 
coupling revealed predominant alterations in the frontal and 
central regions, suggesting a potential underlying mechanism for 
the deficits in these brain areas. Notably, this is the first study to 
analyze alterations in power-to-power coupling in AD. These 
findings, along with our power spectrum results, provide further 
evidence of the pathological shift of oscillatory power from higher 
to lower frequencies in AD.

Both the PLV and wPLI calculated in theta band revealed 
functional network (FC) differences between the AD and HC 
groups, particularly in the frontal lobe. Although PLV and wPLI 
belong to the same category of methods for evaluating FC strength 
based on phase lag, our study observed diverse changes in FC 
when using these two measures, which aligns with findings from 
other research (Chen et al., 2024; Močilnik et al., 2024). On one 
hand, wPLI exhibited higher sensitivity (Šverko et al., 2022), along 
with a higher standard deviation across individuals. On the other 
hand, in the AD group, PLV revealed an increase in inter-regional 

FIGURE 4

Differential theta/beta frequency coupling residuals in individuals with AD relative to HC during both EC and EO conditions. Statistically significant 
group difference was indicated by * (p < 0.05, with Bonferroni correction for multiple comparison).

FIGURE 5

ROC curves and AUC values for different feature constructions 
extracted from the EC (eye closed) condition only and EC combined 
with the EO (eye open) condition.

TABLE 2 Classification performance comparison between different 
feature construction schemes for distinguishing AD from HC.

EC EC + EO

ACC 92.73% 96.36%

Sensitivity 92.33% 98.10%

Specificity 93.33% 97.78%

AUC 0.952 0.997
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FC between frontal and occipital regions, while wPLI showed an 
increase in intra-regional FC within frontal lobe and an increase 
in inter-regional FC between occipital, temporal, and frontal 
regions. This discrepancy is related to the different calculation 
methods employed by these two measures. PLV quantifies the 
consistency of the phase difference between two signals. When the 
phase difference remains relatively constant over time, the PLV 
value is high, indicating strong phase locking or synchronization. 
Conversely, wPLI is designed to measure the degree of phase delay 
between two EEG signals, assigning weights to each phase 
difference based on the amplitude of the signals, which reduces 
the influence of phase differences that are close to zero (Vinck 
et  al., 2011). Although PLV is more susceptible to volume 
conduction effects, the combined use of both measures in EEG 
classification study has demonstrated a significant improvement 
in classification accuracy (Duan et al., 2021), indicating that the 
integration of different methods can provide a more 
comprehensive understanding of brain connectivity. Given the 
potential limitations associated with volume conduction, our 
study implemented strategies to minimize its impact. We utilized 
a low-density EEG configuration with a minimum inter-electrode 
distance of 11 centimeters. This design helps mitigate volume 
conduction effects, which tend to be  more pronounced when 
inter-electrode distances are less than 10 centimeters (Srinivasan 
et  al., 2007). Additionally, our analysis primarily focuses on 
group-level differences rather than direct comparison of 
connectivity strength between electrode pairs within individual 
networks. Consequently, despite these differences, it is important 
to recognize that abnormalities in FC were expected to locate in 
the frontal lobe in the theta band. However, the PLV-based 
calculation method must still consider the issue of volume 
conduction, particularly for future studies involving low spatial 
resolution but high-density EEG. These findings support the 
presence of alterations in the frontal lobe and changes in 
low-frequency signals in individuals with AD (Fallon et al., 2017). 
In our study, AD patients exhibited a significant increase in wPLI 
in the theta band compared to HC, which is consistent with 
previous studies. Furthermore, a significant negative correlation 
between functional connectivity in the theta band and cognitive 
scores was found in AD patients (Yan et al., 2021), suggesting that 
increased theta band connectivity may be associated with more 
severe cognitive impairment in this population. These finding 
demonstrate that altered brain network connectivity, particularly 
in the theta band, may play a role in the cognitive decline observed 
in Alzheimer’s disease.

Prior to conducting the two sets of classification, a feature screening 
process was applied to the extracted frequency domain features and 
frequency coupling. It was found that incorporating frequency coupling 
in the EC condition, along with the previously mentioned features in both 
the EC and EO conditions, significantly enhanced classification accuracy 
compared to using only the PLV and wPLI in the EC condition as 
classification features. The substantial differences observed between the 
EC and EO conditions highlight the importance of incorporating 
experimental paradigms and their associated features as classification 
variables. This approach not only improves the accuracy and performance 
of the classification, but also allows for a more effective differentiation 
between the two groups. By combining multiple paradigms, the early 
diagnosis of AD can be facilitated (Kang et al., 2020).

The current study highlights the potential of utilizing low-density 
EEG data from resting-state paradigms, combined with machine 
learning techniques, to improve the identification and classification of 
AD, providing a promising approach for early diagnosis. Given the 
small sample size of our study, we chose SVM for classification due to 
their advantages in such scenario. SVM, through its regularization 
properties, effectively prevents overfitting and can extract meaningful 
features even with limited data, maintaining strong generalization 
capabilities (Cervantes et al., 2020). In contrast, random forest, as an 
ensemble learning method, improves prediction accuracy by 
combining the outputs of multiple decision trees. It is relatively easy 
to adjust and is suitable for handling large data sets. However, for 
small sample sizes, random forests can be  affected by overfitting, 
especially if the number and depth of trees are not optimally adjusted 
(Breiman, 2001), on the other hand, neural networks are adept at 
capturing complex nonlinear relationships and are particularly well-
suited for modeling complex data patterns. However, neural networks 
often require large amounts of training data to perform well, and on 
small datasets, neural networks are highly sensitive to network 
architectures such as the number of layers and neurons, which makes 
training on small datasets easy to overfit (Schmidhuber, 2015). 
Therefore, considering our research objectives and the current sample 
size, we believe that SVM is the most appropriate choice. Compared 
with other models, SVM significantly improves the robustness of our 
classification method, effectively avoids overfitting, and provides more 
reliable classification results.

However, the small sample size in this study increases risk that the 
model may capture noise and specific patterns from the training data 
rather than generalizable features, which can lead to diminished 
performance on unseen data. Additionally, a limited number of 
samples may result in unstable parameter estimates, adversely 
affecting the model’s predictive accuracy. In terms of generalization 
capability, the small sample size may not adequately represent the 
diversity of the target population, thereby limiting the model’s 
applicability to broader clinical contexts. While we believe that our 
choice of SVM mitigates some risks associated with small sample sizes 
through its regularization properties (Cervantes et al., 2020), we agree 
that future studies should aim to utilize larger datasets to validate our 
findings and enhance the robustness of the results.

Limitations and future work

This study has a few limitations that should be addressed in future 
research. Firstly, the analysis did not include individuals with mild 
cognitive impairment (MCI), which is an intermediate stage between 
normal aging and AD. While the current study primarily aims to 
confirm the electrophysiological markers for identifying AD, the 
absence of an MCI group limits our ability to explore the transition 
from normal cognition to the early stages of AD. Future research is 
planned to include an MCI group to study the continuity of cognitive 
decline leading to AD and to enhance early diagnostic efforts. 
Secondly, we could not conduct comprehensive neuropsychological 
tests on the participants. While our study focused on the diagnostic 
potential of EEG features, this limitation prevented us from 
establishing correlations between the EEG features and the cognitive 
performance, which could have potentially improved classification 
accuracy. Future studies could explore whether different EEG changes 
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associated with specific cognitive functions exhibit varying 
classification efficacy, or investigate the potential of combining EEG 
data with specific cognitive classifications. Thirdly, the small sample 
size of 26 AD patients and 29 healthy controls may restrict the 
generalizability of our findings. Future studies should utilize larger 
datasets to validate these results and enhance the robustness of the 
conclusions drawn. Additionally, incorporating advanced feature 
extraction methods, such as nonlinear dynamic features and network 
analysis, will help to further elucidate changes in EEG activity in AD 
patients. In summary, future studies should aim to address these 
limitations by including MCI individuals and conducting additional 
neuropsychological tests prior to EEG data collection. By 
implementing these measures, more biomarkers can be identified that 
effectively distinguish AD from healthy controls HC, ultimately 
leading to more accurate early diagnosis of AD.

Conclusion

In conclusion, our study identified the pathological 
characteristics of patients with AD using low-density EEG. The 
integration of multiple experimental paradigms led to improved 
classifier performance and enhanced classification accuracy 
compared to using a single paradigm alone. Future research 
should focus on incorporating new experimental paradigms, 
including EEG signals from individuals with MCI, and 
comprehensively investigate the progression from HC to AD for 
effective early diagnosis.
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