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Background: Parkinson’s disease (PD) is an age-related neurodegenerative 
disease characterized by the death of dopamine neurons in the substantia nigra. 
A large number of studies have focused on dopamine neurons themselves, but 
so far, the pathogenesis of PD has not been fully elucidated.

Results: Here, we explored the significance of oligodendrocyte precursor cells 
(OPCs)/oligodendrocytes in the pathogenesis of PD using a bioinformatic 
approach. WGCNA analysis suggested that abnormal development of 
oligodendrocytes may play a key role in early PD. To verify the transcriptional 
dynamics of OPCs/oligodendrocytes, we  performed differential analysis, cell 
trajectory construction, cell communication analysis and hdWGCNA analysis 
using single-cell data from PD patients. Interestingly, the results indicated that 
there was overlap between hub genes and differentially expressed genes (DEGs) 
in OPCs not in oligodendrocytes, suggesting that OPCs may be more sensitive 
to PD drivers. Then, we used ROC binary analysis model to identify five potential 
biomarkers, including AGPAT4, DNM3, PPP1R12B, PPP2R2B, and LINC00486.

Conclusion: In conclusion, our work highlights the potential role of OPCs in 
driving PD.
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1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease, the main 
pathological feature of which is the degeneration and death of dopaminergic neurons in the 
substantia nigra compacta of the midbrain (Coukos and Krainc, 2024; Ben-Shlomo et al., 
2024). Causes of dopamine neuron cell damage include but are not limited to, α-Synuclein 
aggregation and the presence of Lewy bodies, oxidative stress triggering mitochondrial 
dysfunction, and abnormal autophagy [see review (Poewe et al., 2017; Dexter and Jenner, 2013; 
Dong-Chen et  al., 2023) for details]. Despite extensive work in decoding the molecular 
mechanisms driving PD, the heterogeneous etiology of PD has not been fully answered to date 
(Surguchov, 2022). Indeed, most research focuses on dopamine neurons themselves while 
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ignoring other cell types, such as glial cells (Guo et al., 2018; Surmeier, 
2018; Xiao et  al., 2023). Currently, with the rise of single-cell 
sequencing technology, some work has attempted to uncover the 
progression of PD from the perspective of cell communication and 
cellular heterogeneity at the single-cell level (Huang et  al., 2022; 
Smajić et  al., 2022). Emerging clues suggest that drivers of PD 
progression may lie outside dopamine neurons or between dopamine 
neurons and other cells (Huang et al., 2022; Drobny et al., 2021). 
Hence, decoding the transcriptional signatures of cells other than 
dopamine neurons is capable of providing valuable information on 
the mechanisms of PD.

There is a consensus that the correct execution of brain functions 
requires integrity in which functionally distinct neurons and 
non-neuronal cells interact in a coordinated and tightly regulated 
manner. Neuronal/oligodendrocyte precursor cells (OPCs) 
(Maldonado and Angulo, 2015; Xiao and Czopka, 2023), neuronal/
oligodendrocytes (Mitew et al., 2018; Azevedo et al., 2022) have been 
characterized, but it is not enough. OPCs are also called NG2-glial 
cells or O2A cells. Their main function is to serve as precursors of 
oligodendrocytes (Hayashi and Suzuki, 2019). Functionally, OPCs 
give rise to oligodendrocytes, which then wrap around axons and 
form myelin to provide electrical insulation (Nishiyama et al., 2021; 
Mi et al., 2009). Additionally, the most intriguing facet of OPCs is 
the fact that they represent the only type of glial cells that receives 
direct synaptic inputs from neurons and exhibits neuronal-like long-
term potentiation (LTP) at excitatory synapses (Zhang et al., 2021). 
And it is widely accepted that OPCs participate in neuronal 
circuitries in health and disease (Nagai et al., 2019). Furthermore, 
deficiency of NG2 glia contributes to neuroinflammation and nigral 
dopaminergic neuron loss in MPTP-induced mouse PD model 
(Zhang et  al., 2019). A recent study reports that transcriptome 
changes in oligodendrocytes and OPCs can predict clinical outcomes 
in PD. This work identified a unique subtype of OPCs that showed 
predictive power for movement disorders and was significantly 
increased in PD (Dehestani et  al., 2023). The above provides an 
exciting perspective that genetic disturbances in OPCs/
oligodendrocytes may serve as predictive targets for 
PD. Identification of PD biomarkers that can be used in clinical 
diagnosis and research, such as extensive molecular genetic studies, 
is crucial; however, these biomarkers remain to be  explored, 
especially in non-neuronal cells. Weighted gene co-expression 
network analysis (WGCNA) has been extensively used in different 
fields, such as PD (Jin et  al., 2020), reproductive development 
(Zhang et al., 2022; Zhang et al., 2023b), to explore the association 
between gene networks and phenotypes of interest, as well as the hub 
genes in the network, and ultimately identifies biomarkers. Recently, 
an exciting work has provided WGCNA on single-cell datasets, 
called hdWGCNA, which enables researchers to perform more 
efficient identification of single-cell data (Morabito et al., 2023).

Unfortunately, early PD studies in humans are almost impossible 
due to various limitations. Therefore, it is very important to use 

animal models to study the regulatory mechanism of early PD. In this 
study, a rat PD model dataset was selected for WGCNA analysis to 
obtain the key genes that regulate early PD. This model can reshape 
the main case features of PD in rats, such as the formation of Lewy 
bodies (Hentrich et al., 2020). The results repute that PD progression 
may be  associated with oligodendrocyte transcriptional 
abnormalities. Further, we performed hdWGCNA analysis on OPCs/
oligodendrocytes/neuronal cells of two human brain regions in 
single-cell transcriptomes. Interestingly, our results highlight that the 
early stages of PD may be  driven by OPCs rather 
than oligodendrocytes.

2 Methods and materials

2.1 Dataset correction and preprocessing

To investigate the progression mechanism of PD and perform 
WGCNA, we first collected bulk RNA-seq data (GSE150646) from 
an SNCA overexpression rat model, including 20 samples (Hentrich 
et al., 2020). Quality control of single-cell samples is based on the 
number of genes detected, the number of total RNA molecules 
detected, and the percentage of mitochondria or ribosomes from 
each sample. Since they come from different experiments, we adopt 
different data filtering methods. Expressly, for GSE140231, this 
study first excludes the data of two cases of cerebral amyloid 
angiopathy and it only includes four cortex single cell data 
(Agarwal et  al., 2020), and the data filtering threshold is 
10,000 > nCounts_RNA > 1,000, nFeature >200, and the percentage 
of mitochondrial genes <10%. For GSE157783, all samples were 
included in the study and the data filtering threshold is nCounts_
RNA > 1,000, nFeature >200, and the percentage of ribosomes 
genes <0.05% (Smajić et  al., 2022). Moreover, we  used a bulk 
RNA-seq dataset (GSE205450) of one human brain region for 
validation (Irmady et al., 2023).

This is an observational study. The Ethics Committee of Qingdao 
Agricultural University has confirmed that no ethical approval 
is required.

2.2 The workflow of scRNA-seq

After obtaining high-quality single-cell data through quality 
control, the data were processed using the Seurat (R software package 
v4.4.0) (Hao et al., 2021). The two datasets were then merged, and 
dimension reduction was performed using the canonical correlation 
analysis algorithm. The dimensionality reduction and clustering 
results are visualized by the uniform manifold approximate projection 
(UMAP) method at a resolution of 0.3 and a dimension of 10 via 
plot1cell (R software package v0.0.0.9000) or Seurat (R software 
package v4.4.0) (Hao et  al., 2021; Wu et  al., 2022). Next, cluster 
annotation using classic marker genes, Oligodendrocytes [MOBP, 
MOG (Montague et al., 2006; Juryńczyk et al., 2019)], OPCs [VCAN 
(van Bruggen et  al., 2017)], Astrocyte [AQP4, GFAP (Ikeshima-
Kataoka, 2016; Jurga et al., 2021)], Neuronal [GAD1, GAD2 (Kodama 
et al., 2012)], Microglia [CD74 (Hwang et al., 2017)], Endothelial 
[EGFL7, CLDN5 (Jang et al., 2011)] and Ependymal [FOXJ1 (Shah 
et al., 2018)].

Abbreviations: PD, Parkinson’s disease; OPCs, Oligodendrocyte precursor cells; 

WGCNA, Weighted gene co-expression network analysis; UMAP, Uniform manifold 

approximate projection; DEGs, Differentially expressed genes; GO, Gene ontology; 

KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein–protein 

interaction; GSEA, Gene set enrichment analysis.
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2.3 Identification of differentially expressed 
genes (DEGs)

For bulk RNA-seq data, the DESeq2 (R software package v1.42.1) 
was used for the DEGs detection, and the input was the gene counts 
matrix (Love et  al., 2014). Only genes satisfying padj < 0.05 & 
|log2FoldChange| > 0.5 were considered DEGs. For scRNA-seq data, 
FindMarkers() function of the Seurat was used for DEGs detection 
(Hao et al., 2021), and the threshold was set to logfc.threshold >0.1, 
min.pct > 0.1 and pvalue < 0.05. Unless otherwise specified, the default 
algorithms and parameters of the software were used.

2.4 Gene functional enrichment analysis

For functional exploration of the gene sets, including DEGs, hub 
genes and candidate genes, functional enrichment analysis, including 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG), was performed. The clusterProfiler (R software package 
v4.10.1) and metascape (v3.5.202401011) were used for gene functional 
enrichment analysis (Wu et  al., 2021; Zhou et  al., 2019). The 
significance level of padj < 0.05 was considered as the cut-off threshold.

2.5 Weighted gene co-expression network 
analysis (WGCNA)

For bulk RNA-seq data, the WGCNA (R software package 
v1.72–5) was used for WGCNA, and the input was the gene counts 
matrix. First, missing values and outlier samples were checked 
(Langfelder and Horvath, 2008). The hclust() function was used to 
check outlier samples, and samples with obvious outliers were 
excluded from the analysis. Next, the pickSoftThreshold() function was 
used to calculate and pick a suitable soft threshold. The 
blockwiseModules() function was used to construct overexpression 
networks and module partitioning in one step, and the parameters 
we  set are power = sft$powerEstimate, maxBlockSize = 6,000, 
TOMType = “unsigned,” minModuleSize = 300, mergeCutHeight = 0.3 
and deepSplit = 2. Subsequently, the labeledHeatmap() function was 
used to visualize the relationship between modules and phenotypes. 
Note that since the genes in the gray modules did not participate in 
the clustering of any module, they were not included in the subsequent 
analysis. The module membership (MM) and gene significance (GS) 
algorithm was used to mine hub genes of WGCNA in bulk RNA-seq, 
which are often closely related to traits (Zhang et al., 2022; Zhang 
et al., 2023b). The cut-off threshold of hub genes was MM > 0.6 and 
GS > 0.4.

For scRNA-seq data, the hdWGCNA (R software package v0.3.03) 
was used for WGCNA, and the input was the integrated Seurat object 
(Morabito et al., 2023). First, we filtered genes. We only included genes 
expressed in more than 5% of cells as subsequent genes. Merging 
multiple cell expression patterns (KNN algorithm) into one metacell 
can avoid the sparsity of single-cell data. Next, three cell types, 
Oligodendrocytes, Neuronal, and OPCs, were selected for WGCNA 

1 https://metascape.org/gp/index.html#/main/step1

analysis. The TestSoftPowers() function was used for appropriate soft 
threshold screening and visualization. The ConstructNetwork() 
function was used for scale-free network construction and module 
division. The GetHubGenes() function obtained hub genes in 
different modules.

2.6 Construction of pseudo-time trajectories

To investigate the transcriptional dynamics of genes in 
oligodendrocytes and OPCs during PD progression, we performed 
pseudo-time trajectories analysis by monocle (R software package 
v2.24.0), which constructs cell lineage development based on the 
changes in gene expression levels of different cell subsets over time 
(Trapnell et  al., 2014). The reduceDimension() function is used to 
determine the trajectory, and the orderCells() function is used to sort 
cells. Since the algorithm trajectory does not conform to the actual 
biological law, we manually specified root_state = 2 in this step. The 
BEAM statistical analysis model was used to calculate cell fate 
trajectories before and after key fate nodes, using unsupervised 
clustering genes as markers.

2.7 Analysis of cell–cell communications

To characterize the differences in signal transduction pathways 
between normal physiological conditions and PD, the CellChat (R 
software package v1.6.1) algorithm was used to analyze intercellular 
communication at the single-cell level (Jin et  al., 2021). The Cell 
Communication Database uses CellChatDB.human as a reference. 
The global cell–cell communication network between normal and PD 
group was quantitatively and comparatively analyzed using the 
compareInteractions() function. The netVisual_bubble() function was 
used to visualize the differences in cellular communication between 
OPCs-neuronal and oligodendrocytes-neuronal.

2.8 Protein–protein interaction (PPI) 
network analysis

Proteins interact with each other to form complex interaction 
networks to regulate various aspects of life processes, such as gene 
expression regulation, cell cycle regulation, etc. (Tomkins and Manzoni, 
2021). The candidate genes were used as inputs for PPI construction using 
the String online database.2 The default parameters were run, and 
we removed node proteins with no interactions during visualization.

2.9 Construction of ROC binary analysis 
model

ROC curve analysis was used to evaluate the diagnostic value of 
candidate genes for PD and to obtain the final biomarker. The pROC (R 
software package v1.18.5) was used to calculate ROC curve and 

2 https://string-db.org/, v 12.0.
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visualization. Data from separate datasets (GSE205450) were used 
for input.

3 Results

3.1 SNCA overexpression causes gene 
expression disorder in rat brain

PD is a neurodegenerative disease that is closely related to age 
(Coukos and Krainc, 2024). However, the mechanism of PD 
progression has not been fully elucidated. Here, we first analyzed the 
data from the SNCA overexpression rat model and showed that SNCA 
overexpression could disrupt rat frontocortical gene transcription at 
an early stage. A total of 2,072 DEGs were obtained, including 1,433 
up-regulated genes and 639 down-regulated genes 
(Supplementary Figure S1A). GO enrichment analysis showed that 
items related to learning and cognition were significantly enriched, 
such as “learning or memory,” “cognition,” “learning” 
(Supplementary Figure S1B). KEGG pathway results suggested that 
“Neuroactive ligand-receptor interaction” was the most enriched 
pathway (Supplementary Figure S1C). Interestingly, in the late SNCA 
overexpression stage (named PD_old group), only 211 DEGs were 
detected (Supplementary Figure S1D). The GO terms results showed 
that they were related to “glycosylceramide metabolic process,” 
“ensheathment of neurons,” and so on (Supplementary Figure S1E), 
and no KEGG pathway was enriched.

3.2 WGCNA identifies critical modules 
involved in PD progression

To gain insight into the pathogenesis of PD, especially in its early 
stages, we used the WGCNA approach. The hierarchical clustering 
tree showed that one sample had significant outlier performance, so 
we  removed it (Figure  1A; Supplementary Figure S2A). 
We constructed a scale-free co-expression network for the remaining 
samples. First, we  performed soft threshold selection. The results 
showed that it performed well and met the goal of building a scale-free 
network when β = 4 (Figure  1B). Fifteen modules were obtained, 
among which the turquoise module had the largest number of genes, 
the cyan module had the least number of genes, and the grey module 
contained no meaningless genes (Figure 1C). We next attempted to 
explore the relationship between these modules and PD progression, 
and the results indicated that the brown module was obviously 
positively correlated with PD progression (r = 0.83, p = 1e-05) and 
clearly negatively correlated with the normal phenotype (r = −0.83, 
p = 1e-05) (Figure  1D). Furthermore, we  constructed a clustering 
matrix of PD phenotypes and modules, and the results showed that 
the brown module was closely associated with PD (Figure 1E).

3.3 Key module annotation suggests that 
PD is associated with oligodendrocyte 
abnormalities

After identifying the key modules, we explored the functions of 
the genes within the brown modules. The GO annotation results 

showed that the genes in the module were involved in 
“oligodendrocyte differentiation,” “oligodendrocyte development,” 
“glial cell development,” “regulation of gliogenesis,” etc. Moreover, 
“oxidoreduction-driven active transmembrane transporter activity” 
was also enriched (Figure 2A). This result suggests that abnormalities 
in oligodendrocytes may drive the progression of PD. Next, the 
MM&GS algorithm identified the hub gene in the brown module 
(Figure  2B), and functional annotation of hub genes was also 
performed. The GO annotation results showed that the hub genes 
were related to “oligodendrocyte differentiation,” “oligodendrocyte 
development,” “glial cell development,” “ATP synthesis coupled 
electron transport,” etc. (Figure 2C). The KEGG pathway results 
showed that the hub genes were involved in “oxidative 
phosphorylation” (Figure  2D). This result suggests that 
mitochondrial dysfunction is also involved in the progression of 
PD. Subsequently, we compared the relationship between hub genes 
and DEGs. The results showed that hub genes had 162 overlapping 
DEGs in the two groups (Figure 2E). The GO annotation of 162 
genes indicated that they were associated with “oligodendrocyte 
differentiation,” “mitochondrial respiratory chain complex I,” etc. 
(Figure  2F). The above results strongly suggested that 
oligodendrocyte abnormalities are significant for the 
progression of PD.

3.4 scRNA-seq altas of human brain in 
normal and PD

Considering that the above analysis was performed in a rat model, 
to verify our hypothesis that oligodendrocyte abnormalities are involved 
in PD progression, we reanalyzed two human brain tissue scRNA-seq 
data sets (see detail in Supplementary Table S1). The UMAP map showed 
that 47,562 cells, including 28,621 cells in the normal group and 18,941 
cells in the PD group, were obtained by dividing into 17 clusters, and a 
total of 7 cell types were annotated (Figure 3A; Supplementary Figure S3A). 
The dot plot showed the expression characteristics of related cell type 
marker genes in different groups, Oligodendrocytes [MOBP, MOG 
(Montague et al., 2006; Juryńczyk et al., 2019)], OPCs [VCAN (van 
Bruggen et al., 2017)], Astrocyte [AQP4, GFAP (Ikeshima-Kataoka, 2016; 
Jurga et al., 2021)], Neuronal [GAD1, GAD2 (Kodama et al., 2012)], 
Microglia [CD74 (Hwang et al., 2017)], Endothelial [EGFL7, CLDN5 
(Jang et  al., 2011)] and Ependymal [FOXJ1 (Shah et  al., 2018)] 
(Figure 3B). Moreover, we used UMAP to display the maps of different 
groups and different samples (Supplementary Figures S3B,C).

Taking the WGCNA results into account, OPCs were also included 
in the analysis because they are precursors of oligodendrocytes. First, 
we extracted oligodendrocyte populations from the integrated data and 
re-clustered and visualized them. The results showed that there were 
significant differences in OPCs between the PD and Normal groups 
(Figure 3C). 1,435 DEGs were detected in OPCs (Supplementary Table S2). 
This result seems to suggest that PD progression was driven by OPCs. 
Interestingly, the top GO term of DEGs in OPCs was “regulation of 
nervous system development” (Figure 3E). The KEGG pathway results 
showed that “Chemical carcinogenesis  - ROS” was most enriched 
(Supplementary Figure S3D). Next, the same analysis was performed on 
oligodendrocytes, and the UMAP showed the differences between PD 
and Normal groups (Figure 3D). Further, we performed differential 
analysis with a total of 851 DEGs (Supplementary Table S3). The GO 
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annotation showed that the 851 DEGs were participated in “protein 
folding,” etc. (Figure 3F). The KEGG pathway results suggested that they 
were related to neurodegenerative diseases, such as “Parkinson disease,” 
“Huntington disease,” “Alzheimer disease” (Supplementary Figure S3E).

3.5 The pseudo-time trajectory of 
oligodendrocytes and OPCs

To dissect the fate decisions of OPCs/oligodendrocytes 
throughout the study period, they were sorted according to their gene 
expression patterns in a pseudo-temporal trajectory. We defined the 
stage in which OPCs were as the initial stage of the trajectory, and 

then a total of three cell stages were obtained, which were classified 
into two different cell fates (Figures  4A,B). Subsequently, 
we attempted to explore the transcriptional regulatory program of 
OPCs differentiation into oligodendrocytes, and the results suggested 
that PI3K/AKT/mTOR signaling may play a key role 
(Supplementary Figures S4A,B). Next, we observed the proportion of 
cells in different groups at three different cell stages, and we found 
that the proportion of PD cells was higher in state_3. We speculated 
that the stage where state_3 was located may be  driven by the 
development of PD (Figure 4C). Next, we used the BAEM algorithm 
to try to parse the driving factors that lead to different cell fate 
decisions. Interestingly, we found that the emergence of cell fate_1 
was driven by two distinct gene expression patterns. The SNCA gene 

FIGURE 1

WGCNA analysis in PD rat models. (A) The hierarchical clustering tree shows the discreteness of different samples, and the different color blocks below 
represent different phenotypes. (B) Scale-free network topology analysis with different soft threshold powers in scale-free networks. (C) The bar graph 
shows the number of genes contained in different modules. (D) The heat map shows the correlation between different modules and phenotypes. 
Purple represents positive correlation, black represents negative correlation, numbers represent correlation coefficients, and numbers in brackets 
represent p-value. (E) The hierarchical clustering diagram shows the relationship between PD progression and various modules.
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FIGURE 2

Functional exploration of genes in the key modules of WGCNA. (A) The bar plot shows the top 20 GO functional annotations of genes in the brown 
module, including biological Process (BP), cellular component (CC), and molecular function (MF). (B) The scatter plot shows the hub genes screening 
by MM&GS algorithm, and the red star points are hub genes. (C) The bar plot shows the top 20 GO functional annotations of hub genes, including BP 
and CC. (D) The dot plot shows the KEGG pathways of hub genes. (E) The Venn diagram shows the relationship between hub genes and DEGs. (F) The 
bar plot shows the top 20 GO functional annotations of shared genes between hub genes and DEGs, including BP, CC, and MF. Of note, the red 
triangles appearing in the functional annotations represent entries related to glial cell development.
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was highly expressed in cell fate 1 and lowly expressed in cell fate_2, 
which is consistent with the fact that high SNCA expression promotes 
PD progression (Hentrich et al., 2020; Figures 4A,D). We divided the 
genes driving cell fate decisions into four gene sets. C2 was highly 
expressed in cell fate_1(PD), and functional enrichment analysis 
showed that “regulation of autophagy” and “Parkinson disease” were 
significantly enriched (Figure 4E). C3 was highly expressed in cell 
fate_2 (Normal), and functional enrichment analysis showed that 
“regulation of TOR signaling” and “cell cycle” were significantly 
enriched (Figure 4F).

3.6 Alterations in cell–cell communications 
between oligodendrocytes/OPCs and 
neuronal in PD

To investigate the dynamics of cell–cell communications 
between oligodendrocytes/OPCs and neurons, we performed cell–
cell communication analysis using CellChat (R software package 
v1.6.1). The results found that the number and intensity of cell 
communication in the PD group were higher than those in the 
normal group (Supplementary Figure S5A). Interestingly, cellular 

FIGURE 3

Integrated scRNA-seq data revealed a cellular landscape associated with PD. (A) The UMAP plots of control and PD cell distribution. (B) The dot plots 
show the expression patterns of different cell type marker genes in the PD and normal group. (C) UMAP plots of OPCs between PD and Normal group, 
left is normal and right is PD group. (D) UMAP plots of oligodendrocytes between PD and Normal group, left is normal and right is PD group. (E,F) The 
bar plot shows the top 10 GO functional annotations of DEGs of PD vs Normal group in OPCs (E) and oligodendrocytes (F).
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communication between oligodendrocytes/OPCs and neuronal 
cells was enhanced in PD group (Supplementary Figure S5B). Next, 
the signals of cell communication in different samples were aligned, 
and we found two signaling networks related to nervous system 
development have strong information flows, including NRG, NRGX 
signaling network (Supplementary Figure S5C). Interestingly, our 
cell communication networks observed that neurons communicated 
strongly with OPCs in both NRG and NRXN signaling 
(Figures  5A,B). Specifically, NRG3-ERBB4 was only present 
between OPC-neurons (Figure 5C). This result suggests that PD 
may be  driven by OPCs because the communication between 
OPCs-neurons is closer than that between oligodendrocytes 
(Maldonado and Angulo, 2015; Xiao and Czopka, 2023; Boulanger 
and Messier, 2017; Orduz et al., 2015).

3.7 Constructing the gene co-expression 
network of OPCs/oligodendrocytes/
neuronal at single-cell resolution

To construct the gene co-expression network in OPCs/
Oligodendrocytes/Neuronal and identify hub genes involved in PD, 
hdWGCNA analysis was performed. The hdWGCNA results 
suggested that when the soft threshold β = 4, scale-free network 
construction can be  performed (Figure  6A). The hierarchical 
clustering tree showed the relationship between modules and genes 
(Figure 6B). A total of 8 valuable modules were identified (Figure 6C). 
The UMAP plot was used to display the OPCs/Oligodendrocytes/
Neuronal gene co-expression network and highlighted the hub genes 
of each module involved in nervous system development (Figure 6D). 

FIGURE 4

The pseudo-time trajectory analysis of oligodendrocytes and OPCs in Normal and PD. (A) Single-cell trajectories of oligodendrocytes and OPCs reveal 
distinct fate trajectories. (B) Single-cell trajectories of oligodendrocytes and OPCs along with celltype. (C) Single-cell trajectories of oligodendrocytes 
and OPCs during the three states through the pseudo-time. (D) The heatmap shows the dynamic changes in gene expression before and after the fate 
decision stage 1. (E) The bar plot shows the GO and KEGG pathway functional annotations of C2 cluster genes. (F) The bar plot shows the GO and 
KEGG pathway functional annotations of C3 cluster genes.
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The dot plot showed that the turquoise module is highly expressed in 
PD group, and the co-expression network of the top 25 hub genes was 
displayed (Figures 6E,F). Gene function annotation results showed 
that the hub genes of the turquoise module were involved in “negative 
regulation of neurogenesis,” “JNK kinase binding,” and so on 
(Figure 6G).

3.8 Identification of specific biomarkers for 
predicting PD progression

We compared the relationship between hub genes and DEGs from 
scRNA-seq data, and the results showed that hub genes had 45 
overlapping DEGs in OPCs groups. In contrast, it had no overlap with 
oligodendrocytes, which suggesting that PD progression may be more 
sensitive to OPCs. In other words, studying OPCs may be  more 
critical (Figure  7A). Only four terms were enriched, including 
“regulation of RNA splicing,” “cell junction assembly,” “negative 
regulation of neuron projection development” and “protein 
polyubiquitination” (Figure 7B). Then, the PPI network was built, and 
showed PPP2R2B, DNM3 and ATXN1 may play a significant role 
(Figure 7C). Importantly, we sought to identify markers that drive PD 
and performed ROC binary analysis model in an independent dataset 
(Supplementary Table S1). The results showed that AGPAT4, DNM3, 
PPP1R12B, PPP2R2B and LINC00486 levels could distinguish PD 
patients from healthy controls. The area under the ROC curve was 
followed by 0.764, 0.745, 0.725, 0.721, and 0.711, which suggesting 
these five gene may serve as the potential biomarkers for predicting 
PD (Figure 7D).

4 Discussion

Emerging scRNA-seq applications have promoted the qualitative 
development of life sciences by shaping the unbiased transcriptomic 
roles of individual cells, such as mechanism of PD, reproductive 
development, identification of tumor subcellular populations, etc. 
(Smajić et al., 2022; Zhang et al., 2023a; Kieffer et al., 2020). With the 
optimization and development of analysis algorithms, it is easier to 
monitor transcriptional dynamics and construct cell development 
trajectories, and reveal the mechanisms of gene expression regulation 
(Morabito et al., 2023; Trapnell et al., 2014; Jin et al., 2021). Here, in 
this study, through bulk RNA-seq and single-cell WGCNA analysis, 
we  highlighted the role of OPCs in PD progression. In addition, 
we identified five potential biomarkers using ROC binary analysis 
model, including AGPAT4, DNM3, PPP1R12B, PPP2R2B, 
and LINC00486.

By WGCNA analysis of bulk RNA-seq, the results suggested that 
oligodendrocyte transcriptional disorders may be  involved in 
regulating PD progression. Oligodendrocyte is a type of glial cell 
whose primary function is to wrap around axons in the central 
nervous system and form an insulating myelin structure (Duncan 
et al., 2021). Its abnormality may induce neuronal damage (Pandey 
et al., 2022).

Next, we integrated two different single-cell data to provide more 
biological information. Cell trajectory analysis is able to infer the 
differentiation trajectory of cells during development or the evolution 
of cell subtypes (Trapnell et al., 2014). In our analysis, consistent with 
previous knowledge, OPCs, as precursor cells of oligodendrocytes 
(Huang et al., 2020), were in the early stages of the cell trajectory, 

FIGURE 5

Inference of cell–cell communications in PD and Normal brain by CellChat. (A,B) Cellular communication in the NRG (A) and NRXN (B) signaling 
networks in PD and Normal. (C) The dot plots demonstrate the significantly increased cellular communication between OPCs-neuronal and 
oligodendrocytes-neuronal in PD.
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while oligodendrocytes appear in two different cell fate stages along 
the cell trajectory, which can explain the results of WGCNA, that is, 
oligodendrocyte abnormalities promote PD. Then, the BEAM 
algorithm was used to analyze the transcriptional patterns that 
caused this cell fate transition and, as expected, found that two 
different transcriptional patterns drove the generation of cell fates. 

Significantly, we found that SNCA was in a state of gradually high 
expression in cell fates with a high proportion of PD cells. As far as 
we know, high expression of SNCA usually means the accumulation 
of α-Synuclein and the occurrence of PD (Hentrich et  al., 2020; 
Oliveira et  al., 2015). Cell communication analysis can provide 
differential information about how cell subpopulations within 

FIGURE 6

Overview of single-cell hdWGCNA results for oligodendrocytes, OPCs and neuronal cells. (A) Scale-free network topology analysis with different soft 
threshold powers in scale-free networks. The best soft threshold is highlighted. (B) The hierarchical clustering tree shows the relationship between 
genes and modules in the genes co-expression network. (C) Gene features within different modules, showing the top 10 genes with the highest 
connectivity. (D) The co-expression network of oligodendrocytes, OPCs and neuronal cells. (E) The dot plot shows the expression characteristics of 
different modules in different groups. Yellow star marks the modules with high expression in PD. (F) Co-expression network of the top 25 genes in the 
turquoise module. (G) The dot plot shows the GO functional annotations of top 200 genes in the turquoise module, including BP, CC, and MF.
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different groups achieve signal transduction through ligand-receptor 
binding (Jin et  al., 2021). The analysis results showed that the 
inflammatory signaling network is significantly enhanced in PD 
group, such as IL16 and CD22. Because it was found that the neural 
response to inflammation in the brain area of PD patients was 
enhanced (Pereira et al., 2023). Moreover, a large number of ligand-
receptor interactions were observed to be  enhanced in OPCs-
neuronal and oligodendrocytes-neuronal in PD. Interestingly, 
we  found that OPCs-neuronal signaling was stronger than 
oligodendrocytes-neuronal signaling. One example is the 
enhancement of NRG ligand-mediated signaling, which was 
highlighted in a review regarding its relevance to PD (Iwakura and 
Nawa, 2013). The above results supported that changes in the 
transcriptional patterns of oligodendrocytes/OPCs are involved in 
regulating the progression of PD.

On the other hand, we explored the gene co-expression network 
of oligodendrocytes/OPCs/neuronal cells at the single-cell level by 
hdWGCNA analysis, a novel and soon-to-be widely used algorithm 
(Morabito et al., 2023; Sziraki et al., 2023). A new functional module 
involved in regulating PD was identified, and the hub genes showed 
the presence of genes that potentially regulate the development of the 
nervous system, such as DNM3 and DST (Trinh et al., 2016; Lalonde 
and Strazielle, 2023). Furthermore, we compared and analyzed the 
hub genes with DEGs. Interestingly, the hub genes overlapped only 
with the DEGs of OPCs, but not with those of oligodendrocytes, 

which seems to indicate that abnormal developmental regulation of 
OPCs drives PD formation. A recent report showed that the 
transcriptional dynamics of OPCs can effectively predict the clinical 
prognosis of PD (Dehestani et al., 2023). The above suggested that 
more work is needed to focus on the mechanisms by which OPCs 
regulate the progression of PD. Importantly, we attempted to use the 
ROC binary analysis model to identify effective biomarkers to 
identify PD better. Based on the AUC values, we  selected five 
biomarkers, including AGPAT4, DNM3, PPP1R12B, PPP2R2B, and 
LINC00486. AGPAT4 is mainly involved in regulating lipid 
metabolism and is an acylglycerol phosphate acyltransferase. It has 
been reported to be abnormally expressed in PD (Girard et al., 2020). 
DNM3 belongs to the dynein family and is involved in regulating the 
development of the nervous system (GO database), but its role in PD 
seems to be ambiguous (Trinh et al., 2016; Berge-Seidl et al., 2019). 
PPP1R12B encodes protein phosphatase 1 regulatory subunit 12B, 
which may be  involved in regulating PD through LRRK2 (Häbig 
et al., 2008). Another evidence showed that it interacts with IL16, and 
in our analysis, the IL16 signaling network was significantly enhanced 
in PD (Bannert et  al., 2003), which further emphasized that 
PPP1R12B plays a key role in PD. PPP2R22B encodes the Serine/
threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta 
isoform, which is also a protein phosphatase involved in the negative 
control of cell growth and division, and has been reported to 
be downregulated in PD (Mayer et al., 1991; Cheng et al., 2009; Kim 

FIGURE 7

The identification of candidate biomarkers in PD. (A) Venn diagram shows the comparative analysis of hub genes and DEGs in the turquoise module. 
(B) The functional enrichment network of 45 candidate genes. (C) The PPI network of 45 candidate genes. (D) The ROC curve of candidate biomarkers. 
The figure shows the best sensitivity, specificity and AUC values.
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et al., 2017). LINC00486 is a long intergenic non-protein coding RNA 
that participates in “Protein aggregates” through epigenetic regulation 
(Shmookler Reis et al., 2021). It is worth noting that Lewy bodies 
formed by the accumulation of α-Synuclein are a prominent 
pathological feature of PD (Dong-Chen et al., 2023; Hentrich et al., 
2020), although there is no direct evidence showing the relationship 
between LINC00486 and Lewy bodies.

Although we  used the latest algorithms and described the 
transcriptional signatures of OPCs/oligodendrocytes/neuronal cells 
under normal and PD conditions, our analysis is not without 
limitations. The first and most prominent limitation is that we lack 
the necessary experimental validation, although these data are 
derived from human samples of PD disease. Our analysis showed that 
these candidate biomarkers are DEGs that were highly associated 
with PD, but experimental validation is still lacking. In addition, 
we have not explored the molecular mechanisms by which OPCs 
participate in regulating PD, which needs to be  strengthened in 
future studies.

5 Conclusion

In summary, our work highlights the potential value of OPCs in 
driving PD and screens five potential biomarkers, including AGPAT4, 
DNM3, PPP1R12B, PPP2R2B, and LINC00486.
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SUPPLEMENTARY FIGURE S1

Transcriptome differences in PD rat models. (A) The volcano plot shows the 
DEGs from PD_young vs young group. The horizontal axis is log2 
FoldChang, and the vertical axis is −log10(padj). (B) The top 10 GO terms of 
DEGs in (A), the color represents padj, and the horizontal axis expresses the 
number of genes. (C) The top 10 KEGG pathways of DEGs in (A), the color 
represents padj, and the size of dot expresses the number of genes. (D) The 
volcano plot shows the DEGs from PD_old vs old group. The horizontal axis 
is log2 FoldChang, and the vertical axis is −log10(padj). (E) The top 10 GO 
terms of DEGs in (D), the color represents padj, and the horizontal axis 
expresses the number of genes.

SUPPLEMENTARY FIGURE S2

(A) The hierarchical clustering tree shows the discreteness of all samples.

SUPPLEMENTARY FIGURE S3

(A,B) The UMAP plots shows the seurat_clusters, groups (B left) and smaples 
(B right) in integrated data (GSE140231 and GSE157783). (C) The UMAP plots 
shows the groups (up) and smaples (down) in OPCs. (D) The UMAP plots 
shows the groups (up) and smaples (down) in oligodendrocytes. (E) The dot 
plot shows all KEGG pathways of DEGs of PD vs Normal group in OPCs. 
(F) The dot plot shows the top 10 KEGG pathways of DEGs of PD vs Normal 
group in oligodendrocytes.

SUPPLEMENTARY FIGURE S4

(A) Expression trends of VCAN, MOBP, and MOG in pseudo-time trajectories. 
(B) Heatmap shows the changes in the expression of regulatory genes in the 
differentiation of OPCs into oligodendrocytes. (C) The dot plot shows the 
KEGG pathway functional annotations of regulatory genes in the 
differentiation of OPCs into oligodendrocytes.

SUPPLEMENTARY FIGURE S5

(A) The bar graph shows the cell communication profile in brain tissues of PD 
and Normal group, with the number of cell communications on the left and 
the intensity of cell communication on the right. (B) The network diagram 
shows the amount of cell communication in different cell types, with the PD 
group on the left and the Normal group on the right. (C) The bar chart shows 
the interaction network between PD and Normal samples arranged by the 
overall information flow differences.

SUPPLEMENTARY TABLE S1

The detail information of data collection.

SUPPLEMENTARY TABLE S2

The DEGs of oligodendrocytes between PD vs. Normal group.

SUPPLEMENTARY TABLE S3

The DEGs of OPCs between PD vs. Normal group.
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