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Disruption of somatosensorimotor integration (SMI) after stroke is a significant

obstacle to achieving precise motor restoration. Integrating somatosensory

input into motor relearning to reconstruct SMI is critical during stroke

rehabilitation. However, current robotic approaches focus primarily on precise

control of repetitive movements and rarely e�ectively engage and modulate

somatosensory responses, which impedesmotor rehabilitation that relies on SMI.

This article discusses how to e�ectively regulate somatosensory feedback from

target muscles through peripheral and central neuromodulatory stimulations

based on quantitatively measured somatosensory responses in real time during

robot-assisted rehabilitation after stroke. Further development of standardized

recording protocols and diagnostic databases of quantitative neuroimaging

features in response to post-stroke somatosensory stimulations for real-time

precise detection, and optimized combinations of peripheral somatosensory

stimulations with robot assistance and central nervous neuromodulation are

needed to enhance the recruitment of targeted ascending neuromuscular

pathways in robot-assisted training, aiming to achieve precise muscle control

and integrated somatosensorimotor functions, thereby improving long-term

neurorehabilitation after stroke.

KEYWORDS

stroke, robot, rehabilitation, sensorimotor integration, somatosensory stimulation,

movement recovery, neuroimaging, neuromodulation

1 Introduction

Disruption of somatosensorimotor integration (SMI) after a stroke is a key

barrier to motor restoration because SMI incorporates somatosensation (mainly tactile,

proprioceptive, thermal, and painful perceptions) from the body and the external

environment to shape movement in a closed-loop mode (Asan et al., 2021). The SMI

coordination enables the execution of skilled tasks, learning of new skills, or relearning

skills by neuroplasticity after neurological disorders, such as stroke (Papale and Hooks,

2018). It has been reported that the post-stroke SMI process exhibited weakened

descending motor outputs to target muscles due to diverse compensatory neuroplasticity

Frontiers in AgingNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2024.1491678
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2024.1491678&domain=pdf&date_stamp=2024-11-06
mailto:xiaoling.hu@polyu.edu.hk
https://doi.org/10.3389/fnagi.2024.1491678
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1491678/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Lin et al. 10.3389/fnagi.2024.1491678

with disturbance of involuntary spasticity and overwhelmed

ascending somatosensory feedback from a target muscle against

those from the compensatory muscles, which could lead to

abnormal movement patterns with muscular compensation and

learned disuse in the long term (Hu et al., 2006; Zhou et al., 2021a).

In post-stroke rehabilitation, integrating somatosensory

input into motor relearning is crucial for reconstructing SMI.

Somatosensory in associated muscles and joints, primarily through

tactile (such as massage, tapping to mechanoreceptors of the

skin and muscles) and proprioceptive stimulations (such as joint

positions in a motion and changes in muscle length) (Hartmann,

2009), could enhance the ascending neuromuscular pathways

in the closed-loop SMI process, together with the descending

motor outputs of the affected limb in repeated physical training

(Asan et al., 2021). Moreover, precise SMI neuroplasticity for

target muscles can reduce muscular compensation by minimizing

learned disuse to achieve close-to-normal movement patterns in

daily tasks.

Repetitive and goal-oriented physical practice is necessary for

motor restoration post-stroke, even in the chronic phase. Thus,

robot-assisted physical training has gained prominence in stroke

rehabilitation because it offers precise and consistent delivery

of highly repetitive movements when professional manpower is

insufficient (Xing and Bai, 2020). However, current robots mainly

emphasize the control precision of repetitive motor outputs.

Seldom do robotic designs successfully recruit and/or control

the somatosensory responses in the desired ascending neural

pathways from the targeted, habitually disused muscles in post-

stroke physical practices, which impedes the motor restoration

requiring SMI compared to the interventions by human therapists

who provide instructive pressing and tapping to muscles. It has

been found that the post-stroke motor relearning process could

be more efficient once somatosensory feedback was provided

as tactile or proprioceptive cues in the practices (Handelzalts

et al., 2021). Precise integration and reinforcement of muscular

somatosensory pathways in robot-assisted rehabilitation requires

quantitative measurement of somatosensory responses in real time

to regulate the effective stimulation to a target muscle.

In this work, we discussed the technologies that may contribute

to precise SMI in robot-assisted motor restoration poststroke

from two different aspects, i.e., (1) the real-time quantitative

measurement in post-stroke responses to sensory stimulations and

(2) stimulation technologies for real-time control of somatosensory

integration in robot-assisted training.

2 Quantitative somatosensory
measurement in real time

Although somatosensation is perceived as subjective and

context-dependent for individuals (ten Donkelaar et al., 2020),

assessed by descriptive ordinal scales manually in clinical

applications, neuroimaging techniques offer quantitative and

objective measures to reveal the brain responses to external

somatosensory inputs. Recent research achievements have

demonstrated their capabilities in capturing dynamic patterns

in response to external stimuli, which may be adopted in

the SMI design of rehabilitation robots. Potential candidates

include electroencephalography (EEG), functional near-infrared

spectroscopy (fNIRS), and functional transcranial Doppler

ultrasonography (fTCD). These technologies mainly reveal the

brain dynamics by measuring the neuroelectrophysiological

activities, i.e., EEG, and hemodynamics of the cerebrovascular

system, i.e., fNIRS and fTCD. Although functional magnetic

resonance imaging is currently a golden technology for brain

imaging, it has not been included in this opinion as the current

technology is hard to directly incorporate into robotic systems

due to the restricted measurement environment and low temporal

resolution for real-time applications.

2.1 EEG and fNIRS in assessing cortical
responses to somatosensory stimulations

EEG and fNIRS emerge as potential candidates for real-time

detection of the somatosensory responses in robot-assisted training

because of their high temporal resolution in the measurement of

brain responses, the low cost of the equipment, and the readiness

of integration in robots (Li et al., 2022). Currently, they have

not been used for SMI control in the robotic design because of

the uncertainties on the dynamic signal patterns in response to

different somatosensory stimulations after stroke.

Preliminary studies were conducted on analyzing EEG features

in both time and frequency domains during somatosensory

stimulations. For example, proportional relationships between the

P300 amplitude of event-related potential (ERP) and stimulation

intensities were observed in both focal vibratory stimulation

(FVS) and neuromuscular electrical stimulation (NMES) to stroke

survivors, as well as in unimpaired persons (Lin et al., 2024).

In measuring proprioceptive responses, the N90 component of

the somatosensory evoked potential during passive index finger

movement is an effective marker, with its duration proportional

to movement duration but unaffected by direction (Seiss et al.,

2002). Although ERPs are the main EEG features for evaluating the

cortical responses to somatosensory inputs, their accuracy requires

high stimulation repetition for averaging to achieve a sufficient

signal-to-noise ratio (Luck and Gaspelin, 2017), which limits

further application in real-time processing. Compared with ERPs,

EEG spectral features in the frequency domain have demonstrated

greater potential for industrial applications due to calculation

simplicity. For instance, studies have shown that EEG spectral

powers in the theta (4 Hz−7Hz) and beta (13Hz−30Hz) bands

could tell the fabric stimulations by cotton, wool, and nylon

(Huang et al., 2020). Moreover, desynchronization in EEG mu

wave (8 Hz−13Hz) in the contralateral hemisphere showed a

significant correlation with proprioceptive acuity in arm-reaching

tasks assisted by a robot (Albanese et al., 2023). On the other

hand, fNIRS measures characteristic changes in oxyhemoglobin

(HbO) and deoxyhemoglobin in the cortical blood flow and reflects

brain activities based on the neurovascular coupling mechanism

(Zhang et al., 2024b). Temporary and local variations in the HbO

concentration have been considered as a sensitive indicator of the

cortical response to tactile stimulation. For example, Zhou et al.

(2023) found higher HbO amplitudes in the dorsolateral prefrontal

cortex during passive touch than active touch. Hong et al. (2017)
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successfully classified four different tactile stimulations based on

HbO signal features (i.e., mean, peak value, and skewness).

Besides the respective features of EEG and fNIRS in

response to somatosensory inputs mentioned above, there are

also some mutual/similar analyses adopted in both EEG and

fNIRS investigation, such as cortical lateralization for exploring

the hemispherical asymmetry and functional connectivity (FC)

analysis to understand the connectivities in the neurocircuitries in

resting and dynamic states. For instance, fNIRS detected stronger

hemispherical lateralization to the contralateral hemisphere after

integrating vibrotactile stimulation into hand motor tasks in

unimpaired subjects compared with those without vibrotactile

stimulation (Du et al., 2022). Results of cortical lateralization were

also obtained in EEG studies (Inanç et al., 2021). Moreover, studies

have shown that FC differed between stroke and healthy individuals

(Zhou et al., 2021b) and was associated with somatosensory deficits

(Schlemm et al., 2023). Particularly, FCs of the supplementary

motor area, the supramarginal gyrus, the primary somatosensory

cortex, and the parietal opercular area have been found to be

highly associated with proprioceptive function (Kenzie et al., 2024).

Furthermore, dynamic FC, characterized by changes in both the

strength and directionality of the connection between two cortical

regions over rapid time scales (seconds to minutes) (Hutchison

et al., 2013), showed significant sensitivity to tackle post-stroke

alterations in somatosensory impairments in the subacute phase

(Bruyn et al., 2023).

EEG and fNIRS, with their complementary spatial and

temporal resolutions, allow for concurrent assessment of electrical

and hemodynamic brain activity, making their combined use

advantageous for comprehensively exploring the functional

activity of the brain. In BCI designs, an EEG-fNIRS system

showed improved classification accuracy on voluntary motor

intentions (Yin et al., 2015). Studies on cortical responses to

somatosensory stimuli also yielded multi-faceted information

with the combined EEG-fNIRS features for further understanding

of brain dynamics. For example, using EEG-fNIRS concurrent

measurement, Chen et al. (2023) reported that HbO changes in the

primary somatosensory cortex were mainly associated with tactile

perceptions raised by different fractal surfaces. Meanwhile, the

EEG entropy indicated a negative correlation with the comfortable

extent when stimulated with the textures.

2.2 fTCD in somatosensory measurements

Compared to the measurement of cortical dynamics by EEG

and fNIRS, fTCD provides continuous monitoring of cerebral

blood flow velocity (CBFV) in the major cerebral arteries

(D’Andrea et al., 2016). fTCD has been proposed for identifying

real-time brain events based on the observations that the diameters

of main-stem intracranial arteries remain almost unchanged

(Ainslie and Hoiland, 2014), suggesting that CBFV changes are

mainly related to the cortical activations supported by the blood

supply via the neurovascular coupling function (Ball et al., 2024).

Pioneering works have been carried out to explore fTCD features

in somatosensory stimulations. For example, Hage et al. (2018)

applied pneumotactile somatosensory stimulation to the right palm

of unimpaired subjects. They found bilateral CBFV increases of

about 20%, sharp decreases in pulsatility index of about 8%, and left

lateralization of up to 3.9% in the stimulation. Themagnitude of the

initial increase in CBFV exhibited significant adaptation between

subsequent trials.

2.3 Discussion on challenges in real-time
somatosensory measurements

The aforementioned somatosensory measurements, based

on the neuroimaging methods of EEG, fNIRS, and fTCD, have

been primarily explored in unimpaired populations without

systematic consolidation of their features for stroke rehabilitation.

Furthermore, the feature extraction and recognition were

performed manually in offline analysis, further hindering their

integration into the real-time design of rehabilitation robots.

Future studies are needed to address the following aspects: (1)

standardizing somatosensory stimulation protocols specifically for

post-stroke rehabilitation, (2) building up neuroimaging feature

databases for the diagnostic classification of clinical impairments

in the rehabilitative process, and (3) developing automatic signal

processing techniques for real-time measurements. Somatosensory

stimulations closely related to rehabilitative purposes should be

further investigated in stroke subjects using standardized protocols.

For example, FVS and NMES are common modalities in routine

practice. It is essential to quantify their neurological responses

to different dosages, durations, and stimulation patterns using

neuroimaging methods for stimulation precision. Additionally,

neuroimaging feature databases for stroke populations undergoing

rehabilitation should be established. These databases will facilitate

the development of machine-learning models for automatic feature

recognition in real-time applications.

3 Somatosensory integration in
robotic design

Based on the real-time quantitative measurement of the

brain responses to somatosensory stimulations in post-stroke

physical practice, the effective recruitment of the targeted SMI

neurocircuitries could bemonitored and regulated in robot-assisted

training. In the current rehabilitation robots, the recruitment of the

descending neural pathways is mainly implemented through two

strategies in the robotic control design: (1) peripheral-effort-driven

control, which promotes voluntary motor effort (VME) from the

peripheral neuromuscular system, e.g., detecting electromyography

(EMG) (Huo et al., 2023), to drive the robots, and (2) central-

intention-driven control, by capturing desired brain activities

in VME to control the robot, such as the BCI systems using

EEG patterns in motor imagery (Khan et al., 2020). Although

proprioception experiences, e.g., joint motions and positions,

could be provided even in continuous passive movement by

current robots, the neurological effectiveness of these afferent

inputs has seldom been assessed and regulated in robot-assisted

training. Moreover, effective control of somatosensory stimulation

to paretic muscles for SMI neuroplasticity is still lacking in current
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robots, which could be implemented via direct stimulation to

peripheral muscles and/or introduced by stimulations to the CNS

through neuromodulation.

3.1 Somatosensory stimulation to the
peripheral muscles and nerves

NMES, FVS, ultrasound stimulation, and infrared stimulation

are promising modalities for muscle stimulation in robot-assisted

training, mainly because of their ready-to-integrate platforms and

non-invasive applications. Among them, NMES and FVS have been

adopted for sensorimotor rehabilitation after stroke (Calabrò et al.,

2017; Conforto et al., 2018). Preliminary NMES and robot hybrid

systems (NMES-robot) indicated the benefits of introducing NMES

to target muscles in addition to the mechanical assistance in limb

motions, improving muscular coordination and leading to faster

motor relearning compared to the traditional pure mechanical

support (Qian et al., 2019). For example, Nam et al. (2020) designed

a mobile exoneuromusculoskeleton for multi-joint upper limb

telerehabilitation (Figure 1). The system integrated multi-channel

NMES to upper limb muscles, together with pneumatic actuation

to the elbow and fingers, to provide assistance in arm-reaching

tasks. Residual EMGs in the paretic muscles were detected as VME

to control the NMES and mechanical supports from the system.

Patients with chronic stroke obtained significant motor gains in the

upper limb after 20 sessions of self-help exoneuromusculoskeleton-

assisted training in lab and home environments (Nam et al.,

2020, 2021). However, the effects of somatosensory responses

to NMES are ignored in the controls of NMES-robot currently.

Compared to NMES’s direct application for muscle contractions

with a high stimulation intensity, transcutaneous electrical nerve

stimulation (TENS) is mainly adopted for peripheral pain relief

but also could enhance the somatosensory input by stimulating

target peripheral nerves. For example, the REINFORCE system was

designed to complement an exosuit’s assistance by providing TENS

on the medial tibial nerve and sural nerve on the feet to enhance

somatosensation under the foot sole during the stance phase of

walking (Basla et al., 2023). However, NMES and TENS as electrical

stimulations widely excited neuroreceptors, e.g., nociceptors, which

impedes the spatial precision and target specificity and the comfort

in long-term usage.

FVS can also activate the post-stroke sensorimotor cortex

by mainly depolarizing the mechanoreceptors in the skin and

muscles (Lin et al., 2024), with less pain sensation compared to

NMES. Similar to the NMES-robots, simple integration between

FVS to target muscles and mechanical robots was proposed in the

literature. For example, Calabrò et al. (2017) integrated on-and-off

FVS to spastic upper limb muscles post-stroke together with robot-

assisted limb movements; and the related clinical trial showed

additional release of spasticity in the muscles. Different from

NMES, whose motor effects could be easily inspected by the related

muscle contractions, FVS mainly introduced sensations that have

not been well evaluated in stroke survivors, as discussed previously.

Future works are needed on the design of real-time regulation of

the neurological effectiveness of each stimulating event in robotic

control, based on the success in real-time measurement of the

somatosensory responses in the CNS.

FIGURE 1

(A) Overview of the mobile exoneuromusculoskeleton for multi-joint upper limb telerehabilitation including wrist/hand and elbow modules (Nam

et al., 2020). Home-based self-help training assisted by the exoneuromusculoskeleton with (B) horizontal and (C) vertical tasks using the wrist/hand

module (Nam et al., 2021).
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In addition to FVS and NMES, pulsed ultrasound stimulation

(PUS) and pulsed infrared stimulation (PIRS) hold promise

for modulating somatosensory processing in the peripheral

nervous system. PUS produced both mechanical and thermal

bio-effects and shared cortical-response characteristics similar

to conventional somatosensory stimulus modalities, but with

significantly improved spatial resolution and stimulation depth

(Legon et al., 2012). This makes PUS an ideal stimulation candidate

for the activation of small and/or deep muscles. On the other hand,

PIRS has been explored for neurostimulation on the somatosensory

cortex in animal models, e.g., rats, probably by its thermal bio-

effects (Cayce et al., 2011). It showed promise as an alternative to

electrical stimulation in peripheral applications with the advantages

of contact-free or high spatial precision in stimulation. However,

its peripheral neuromodulatory effects after stroke are not well

understood. Besides the investigation of individual effects of the

stimulation modalities, multi-modal somatosensory stimulation

could be further explored for integration in SMI robotic design due

to their complementary advantages, such as deep stimulation by

PUS together with NMES and/or FVS.

3.2 Stimulation to the central nervous
system

Apart from the direct stimulation to a target muscle,

neuromodulatory stimulations to the CNS could elevate the

efficiency in both the somatosensory and motor neural tracts, as

well as their convergence in the cerebral cortex. Interventional

stimulations, such as trans-spinal and transcranial stimulations by

electricity, ultrasound, or magnetic field, are all potential modalities

for SMI in robots.

Stimulations targeting SMI in the spinal cord, e.g., cervical

spinal cord neuromodulation via trans-spinal electrical stimulation

(tsES), could modulate the excitation of the intact spinal cord

after stroke to facilitate the delivery efficiency of the residual

neural drives from the ipsilesional hemisphere to a target

distal muscle (Powell et al., 2023). For example, tsES enhanced

the residual descending excitatory control, activated the local

inhibitory circuits within the spinal cord, and reduced the

cortical and proximal muscular compensation for stroke survivors

(Zhang et al., 2024a). However, the post-stroke rehabilitative

effects of tsES for the ascending pathway still remain unclear

when targeting SMI for humans, even though it is effective in

promoting local and cortical neuroplasticity changes through the

activation of ascending corticospinal pathways (Marangolo et al.,

2023). Further research is needed on the modulation of tsES

on somatosensory feedback through afferent pathways, based on

which the integration of tsES in robotic system design could

then be further investigated in coordination with the peripheral

somatosensory and movement interventions.

Transcranial neuromodulation techniques, including

transcranial magnetic stimulation (TMS), transcranial direct

current stimulation (tDCS), transcranial alternating current

stimulation (tACS), and transcranial ultrasound stimulation

(TUS), have been applied to promote neural plasticity and/or

improve motor functions in stroke patients (Guo et al., 2022).

Some of them have been adopted in timed paired stimulation

(TPS) of sensory and motor systems for direct target sensorimotor

integration, which arises from the basic learning properties of

nervous systems (Asan et al., 2021). For example, TPS by TMS

on the motor cortex paired with TENS on the peroneal nerve in

the affected limb of participants with chronic stroke strengthened

the evoked potentials from the cortex and improved gait patterns

after the intervention (Uy et al., 2003). However, the direct paired

stimulation of the motor and sensory cortex is seldom investigated

targeting for SMI. Besides, in addition to their uncertain safety,

the absorption and scattering of magnetic and electrical energy

of TMS, tDCS, and tACS in the brain tissues limited the spatial

resolution and penetration depth of the stimulations. Studies have

found TUS a safer technique with deeper penetration and tinier

spatial focus than those of magnetic and electric stimulations

for modulation in the brain when applied to neurological and

psychiatric disorders (Guo et al., 2022). Unfortunately, studies of

TUS for stroke rehabilitation are sparse.

3.3 Discussion on challenges in
somatosensory integration

Neuromodulatory stimulation to the CNS amplified the motor

gain in physical training. For example, Asan et al. (2021) reviewed

the catalyzing effects when central stimulations were paired with

peripheral stimulations or traditional physical interventions for

stroke survivors. However, these neuromodulatory methods have

not been integrated with robot-assisted training. An optimized

combination of CNS modulation, peripheral somatosensory

stimulation, and robotic assistancemay result inmore effective SMI

for motor restoration post-stroke, as synaptic efficiency could be

elevated when stimulating neuromodulation concurrently applied

during physical training (Cantone et al., 2021). More efforts are

needed to understand the interactive mechanism between, or

among, different stimulations with the baseline physical training

assisted by a robot. Novel control strategies are also required to

coordinate the different compartments in a real-time platform.

4 Conclusion

This article discussed the future directions of somatosensory

integration in robot-assisted motor restoration after stroke

in these two aspects: (1) Somatosensory measurement: real-

time precise detection, standardized recording protocols, and

diagnostic databases of quantitative neuroimaging features are

required for real-time monitoring and regulation of the targeted

somatosensory neurocircuitries in robots. (2) Somatosensory

stimulation: regulated somatosensory stimulations on target

muscles based on real-time somatosensory measurement and

their optimized combination with robotic assistance and CNS

neuromodulations are required in robotic design for enhancing

the recruitment of targeted ascending neuromuscular pathways

in robot-assisted training. In conclusion, it is time to implement

somatosensory integration in robot-assisted motor restoration

based on closed-loop SMI neuroplasticity to achieve precise

muscular control and integrated somatosensorimotor functions for

better long-term neurorehabilitation after stroke.
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