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Background and purpose: Asymptomatic carotid stenosis (ACS) is an

independent risk factor for ischemic stroke and vascular cognitive impairment,

a�ecting cognitive function acrossmultiple domains. This study aimed to explore

di�erences in static and dynamic intrinsic functional connectivity and temporal

dynamics between patients with ACS and those without carotid stenosis.

Methods: We recruited 30 patients with unilateral moderate-to-severe (stenosis

≥ 50%) ACS and 30 demographically-matched healthy controls. All participants

underwent neuropsychological testing and 3.0T brain MRI scans. Resting-state

functional MRI (rs-fMRI) was used to calculate both static and dynamic functional

connectivity. Dynamic independent component analysis (dICA) was employed to

extract independent circuits/networks and to detect time-frequencymodulation

at the circuit level. Further imaging-behavior associations identified static and

dynamic functional connectivity patterns that reflect cognitive decline.

Results: ACS patients showed altered functional connectivity in multiple

brain regions and networks compared to controls. Increased connectivity

was observed in the inferior parietal lobule, frontal lobe, and temporal lobe.

dICA further revealed changes in the temporal frequency of connectivity in

the salience network. Significant di�erences in the temporal variability of

connectivity were found in the fronto-parietal network, dorsal attention network,

sensory-motor network, language network, and visual network. The temporal

parameters of these brain networks were also related to overall cognition

and memory.

Conclusions: These results suggest that ACS involves not only changes in

the static large-scale brain network connectivity but also dynamic temporal

variations, which parallel overall cognition and memory recall.

KEYWORDS

carotid stenosis, fMRI, dynamic functional connectivity, functional connectivity,

dynamic independent component analysis

Frontiers in AgingNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2024.1497874
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2024.1497874&domain=pdf&date_stamp=2025-01-15
mailto:jlinzmc@163.com
mailto:ncu6096@126.com
https://doi.org/10.3389/fnagi.2024.1497874
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1497874/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnagi.2024.1497874

1 Introduction

Clinically, asymptomatic carotid stenosis (ACS) is defined by

the narrowing of the extracranial internal carotid artery without

recent stroke or transient ischemic attacks (TIA) (Coutts et al.,

2015; Inzitari et al., 2000). Despite the absence of overt neurological

events, ACS is increasingly recognized for its association with

cognitive complaints, particularly in the domains of memory

and executive function (Hu et al., 2023; Lazar et al., 2021).

Even mild forms of ACS can significantly impact daily living

activities (Ghaznawi et al., 2023). However, the neural mechanisms

underlying the cognitive impairments observed in ACS remain

poorly understood.

Recent research has leveraged large-scale brain networks

to understand both normal brain function and neurological

disorders (Wang et al., 2021). Functional connectivity (FC)

magnetic resonance imaging (MRI), which measures the statistical

dependencies between low-frequency blood oxygen level-

dependent (BOLD) signals across brain regions, has enabled

the identification of distinct intrinsic large-scale brain networks

(Biswal et al., 1995). These include primary networks such as

the visual networks (VIN), auditory, and somatosensory/motor

networks (SMN), as well as higher-order networks like the default

mode network (DMN), salience network (SN), language network

(LN), fronto-parietal network (FPN), and dorsal attention network

(DAN) for a review see (Raichle, 2011). The spatiotemporal

dynamics of these networks are considered essential for normal

brain function and cognition (Omidvarnia et al., 2021). Moreover,

several major neurodegenerative diseases (Filippi et al., 2019),

including Alzheimer’s disease (AD; Núñez et al., 2021), traumatic

brain injury (van der Horn et al., 2020), and Parkinson’s disease

Abbreviations: ACS, Asymptomatic carotid stenosis; HC, healthy controls;

TIA, transient ischemic attacks; ICA, independent component analysis; dICA,

dynamic independent component analysis; IC, independent component;

MRI, magnetic resonance imaging; BOLD, blood oxygen level-dependent;

SN, salience network; FPN, fronto-parietal network; DAN, dorsal attention

network; VIN, visual network; SM, sensory motor network; DMN, default

mode network; LN, language network; CN, Cerebellar Network; FC,

functional connectivity; sFC, static functional connectivity; dFC, dynamic

functional connectivity; AD, Alzheimer’s disease; MVPA, multivariate pattern

analysis; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive

Assessment Beijing Version; DST, Digit Span Test; RAVLT, Rey Auditory Verbal

Learning; FOV, field of view, TR, Repetition Time; FA, flip angle; TE, Echo Time;

TI, Inversion Time; MPRAGE, magnetization-prepared rapid gradient-echo;

SPM, Statistical Parameter Mapping; MNI, Montreal Neurological Institute;

aCompCor, anatomical component-based noise correction method; gPPI,

generalized psychophysiological interactions; ROI, region of interest; FDR,

false discovery rate; PoCG, postcentral gyrus; dlPFC, dorsolateral prefrontal

cortex; STG, superior temporal gyrus; MTG, middle temporal gyrus; SPG,

superior parietal gyrus; MFG, middle frontal gyrus; FFG, fusiform gyrus; ITG,

inferior temporal gyrus; SFG, superior frontal gyrus; MCG, middle cingulate

gyrus; SMG, supramarginal gyrus; FFG, fusiform gyrus; PreCG, precentral

gyrus; MFG, middle frontal gyrus; ORBinf, orbitofrontal inferior gyrus; INS,

insula; PCUN, precuneus; SMA, supplementary motor area; ANG, angular

gyrus; R, right; L, left; GLM, generalize linear model; MVPA, multivariate

pattern analysis.

(Dirkx et al., 2023), have been shown to involve alterations in

both the spatial organization and temporal dynamics of these

brain networks.

Using static FC (sFC), previous studies have identified altered

synchronization of spontaneous brain activity both within and

between hemispheres in ACS patients, particularly in SM, DAN,

SN, and DAN near the lateral sulcus (Gao et al., 2019). Huang

et al. (2020) found reduced activity in the left occipital gyrus

of ACS patients. Seed-based analysis further revealed decreased

FC between the left occipital gyrus and the FPN. Fan et al.

(2024) reported hemispheric asymmetry in intrinsic activity in

ACS patients, with structural and functional asymmetry decoupled.

They also found that declines in simple cognitive functions, such

as delayed memory recall and sensory-motor processing, were

closely related to weakened regional FC. These findings suggest that

static resting-state brain network connectivity is altered in multiple

large-scale networks both within and between hemispheres in ACS

patients, but how the temporal dynamics of these networks change

remains unclear.

Dynamic FC (dFC) provides a means to assess brain network

dynamics by characterizing variations in temporal fluctuations

along the time axis (Preti et al., 2017). In contrast to sFC, which

reflects the averaged correlations of time series, dFC captures

time-dependent changes, thus offering a more nuanced view of

the temporal variability and coupling dynamics within large-scale

brain networks (Fan et al., 2021). In recent years, dFC has gained

considerable attention as a research tool, demonstrating its ability

to detect subtle alterations in brain network dynamics in various

neurological conditions, including AD (Zhao C. et al., 2022).

Given that ACS represents a chronic hemodynamic disruption

associated with brain atrophy, an increased microinfarct burden,

and cognitive decline (Wang et al., 2017; Paraskevas et al., 2023),

the application of dFC may provide valuable insights into the

altered dynamics of spontaneous brain activity at both regional

and system levels. This approach holds potential for advancing

our understanding of the pathological mechanisms underlying

cognitive impairment in ACS.

In this study, we aimed to investigate changes in the temporal

variability and frequency of large-scale brain networks in patients

with ACS using dFC. We hypothesized that ACS patients exhibit

altered temporal variability in brain regions around the lateral

sulcus, involving multiple brain networks, and that these changes

are associated with deficits in memory and executive function.

2 Materials and methods

2.1 Participants

We collected data from 36 ACS patients and 33 healthy controls

(HC) who were matched for comorbidities (i.e., hypertension,

diabetes) and demographics (i.e., age, gender, and education). The

ACS patients, aged between 50 and 80 years, right-handed, were

recruited between January and December 2023. The inclusion

criteria for ACS patients were as follows: (a) moderate to

severe (50%−99%) unilateral internal carotid artery stenosis,

as per North American Symptomatic Carotid Endarterectomy

Trial criteria (Moneta et al., 1993; Staikov et al., 2002); (b) no
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history of stroke, TIA, or other lesions on conventional MRI;

(c) no significant cognitive impairment or dementia, with a

Mini-Mental State Examination (MMSE) score ≥24 (Tombaugh

and McIntyre, 1992) and Montreal Cognitive Assessment Beijing

Version (MoCA) score ≥26 (Nasreddine et al., 2005); (d)

functional independence (Modified Rankin Scale ≤1) (Banks and

Marotta, 2007); and (e) a minimum of 6 years of education.

Exclusion criteria included: (a) bilateral internal carotid artery

stenosis ≥50%; (b) posterior circulation diseases; (c) severe

systemic or neuropsychiatric disorders; (d) contraindications for

MRI (e.g., metal implants, cardiac pacemaker, claustrophobia,

or inability to cooperate for scanning); and (e) illiteracy. This

study serves as the dataset for one of the centers in a multi-

center research project and has been approved by the Medical

Ethics Committee of the Third Affiliated Hospital of Zunyi

Medical University, and all participants gave written informed

consent. Detailed demographics and clinical measures are listed in

Table 1.

2.2 Neurobehavioral assessment

All participants completed a comprehensive cognitive test

before the MRI scan, neurobehavioral assessment was mainly

applied with the MMSE, MoCA, Digit Span Test (DST; Strauss

et al., 2006) and Rey Auditory Verbal Learning (RAVLT;

Schmidt, 1996) for, which are performed prior to the MRI

scan. These tests measure cognitive domains including (1)

global cognition: MMSE and MoCA; (2) information processing

speed: DST, using the Digit Span Forwards Test and the Digit

Span Backwards Test; and (3) memory and language learning

ability: RAVLT.

2.3 MRI data acquisition

Imaging was performed using a 3.0 T Siemens MAGNETOM

Vida MRI scanner with a 32-channel head coil. The data

sequences included (i) The resting-state blood oxygenation level

dependent (BOLD) signal was performed using a single-shot echo-

planar sequence with the following parameters: 33 axial slices,

3.8mm thick, gap 1mm, Repetition Time (TR) = 2,000ms,

Echo Time (TE) = 30ms, matrix size = 256 × 256 mm2, field

of view (FOV) = 256 × 256 mm2, duration 8min; (ii) high-

resolution 3D-T1 weighted structural images obtained using the

magnetization-prepared rapid gradient-echo (MPRAGE) sequence

for: TR/TE = 2,300/2.98ms, voxel size = 3.75 × 3.75 × 3.8

mm3, flip angle (FA) = 12◦, gap 0mm, sagittal slices, matrix

size = 256 × 256 mm2, FOV = 256 × 256 mm2); (iii)

T2WI-fluid-attenuated inversion recovery (T2-FLAIR) images:

[TR/TE/Inversion Time (TI) = 6,000/395/2,200ms, FA = 90◦,

voxel size = 0.5 × 0.5 × 1.0 mm3, 160 axial slices, FOV = 230

× 230 mm2]. Participants’ heads were lightly restrained using

soft pads to prevent head movement. Subjects were instructed

to rest quietly with their eyes close and to remain rest during

the scan.

2.4 rs-fMRI data processing

The CONN toolbox (CONN; https://www.nitrc.org/projects/

conn, version 21. a) was used based on the Statistical Parameter

Mapping (SPM12) program (http://www.fil.ion.ucl.ac.uk/spm,

version 7771). For each participant, a standard preprocessing

procedure was used based on recent studies (Luppi et al., 2023,

2024), including (1) discarding of the first ten volumes to

ensure steady-state longitudinal magnetization; (2) head motion

realignment: first, we examined each participant during the scan

images, and eliminate any translation for more than 2mm head

movement during the period of TR exists; second, rigid body

registration for inter-frame head motion; thirdly, compensation of

systematic slice-dependent time shifts by phase shift in the Fourier

domain; (3) functional slice timing correction: to ensure that all

voxels within the same volume had been acquired simultaneously,

the slice time was corrected based on slice order, and the middle

slice was chosen as the slice to reference; (4) Artifact Detection

Tools (ART; https://www.nitrc.org/projects/artifact_detect):

outlier scans for scrubbing was performed to remove the aberrant

time points (Carruzzo et al., 2022); (5) co-alignment of the T1

images; and (6) spatial normalization to the standard Montreal

Neurological Institute (MNI) space (resampled to 3 × 3 × 3 mm3

isotropic spatial resolution); (7) segmentation of functional and

structural data into gray matter, white matter, and cerebrospinal

fluid tissues; and (8) spatial smoothing at half-maximum using a

Gaussian kernel with a full width of 8mm. The default settings of

the CONN Toolbox, which contains 20 separate components, were

used. At each step, the processed functional and anatomical images

were carefully visually inspected.

To further reduce cardiac and motion artifacts, an anatomical

component-based noise correction method (aCompCor; Muschelli

et al., 2014) was applied to remove artifacts from the functional data

implemented in the CONN toolbox. Specifically, the aCompCor

method was used to remove several potential confounding

effects: five potential noise components in the white matter and

cerebrospinal fluid signals; estimated motion parameters (three

translational and three rotational parameters and their associated

first-order derivatives); data that were identified by ART; and

that predominantly affect scanning conditions. Finally, linear

detrending was applied to minimize low-frequency drift effects

and high-frequency noise by band-pass filtering at frequencies of

0.008–0.09 Hz.

Structural T1 images were skull-stripped, segmented, and

normalized to the MNI template as well yielding normalized

structural volumes. Differences in FC between the ACS and HC

groups were determined at two levels while controlling for the

effects of age and gender using: (i) ICA and (ii) dICA.

2.5 Dynamic independent component
analysis

The ICA enables the disaggregation and organization of voxels

associated with the time course of BOLD signals in specific brain

regions into spatially independent component (IC), it’s beneficial to

the next step of the analysis. Therefore, after data preprocessing, the
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TABLE 1 Participant characteristics and clinical information.

HC (n = 30) ACS (n = 30) χ2/t/Z p

Gender (male/female) 20/10 19/11 0.109# 0.742

Age (yrs.), mean± SD 62± 6.4 64± 7.0 1.128## 0.264

Education (yrs.) 9 (9, 12) 9 (9, 12) −0.695# 0.487

Hypertension, n (%) 13 (43.3%) 17 (56.7%) 0.295# 0.587

Diabetes, n (%) 13 (43.3%) 14 (46.7%) 0.645# 0.422

Drink, n (%) 15 (50%) 12 (40.0%) 0.783# 0.376

Smoking, n (%) 12 (40.0%) 13 (43.3%) 0.380# 0.846

Stenosis side N/A 15L/15R / /

Stenosis rate N/A 25/5 / /

MMSE 28.00 (27.00, 29.00) 27.00 (27.00, 28.25) −2.215## 0.027∗

MoCA 27.00 (26.75, 28.00) 26.00 (25.00, 26.25) −3.080## 0.002∗

Word fluency 37.00(36.00, 38.25) 34.00(31.75, 36.00) −4.975### <0.001∗∗

DST 29.50 (28.00, 32.25) 27.00 (26.00 32.25) −5.501### <0.001∗

Backwards span 6.00 (5.00, 7.00) 6.00 (6.00, 6.00) −1.483### 0.138

Forwards span 7.00 (7.00, 8.00) 7.00 (7.00, 7.25) −1.622### 0.105

Immediate recall, mean±SD 33.70± 1.91 31.13± 2.08 4.973## < 0.001∗

Delayed recall 6.00 (5.00, 7.00) 5.00 (4.25, 5.25) −2.920### 0.04∗

Two-sample t test was used for data conforming to normal distribution and homogeneity of variance, and the data were expressed as mean ± SD. The Mann-Whitney U test was used for

data conforming to normal distribution but with uneven variance or non-conforming to normal distribution, and the data are expressed as medians (first and third quartiles). The categorical

variables use a chi-square test, and the data are expressed as n (%). Among the 30 ACS patients, 25 had moderate unilateral carotid stenosis, and 5 had severe unilateral carotid stenosis.

ACS, asymptomatic carotid stenosis group; HC, healthy control group; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; L, left; R, right. # chi-square Test; ##

Two-sample t Test; ### Mann- Whitney U Test. ∗ p < 0.05, ∗∗p < 0.001, respectively.

group-ICA method was selected in the CONN toolbox, and both

groups of subjects were entered into the ICA analysis to assess the

number of components in the dataset for all subjects to determine

the major brain networks of the two groups, and the results show

the resting state networks between the groups. The results were

identified by visual inspection of the functional networks (as well as

noise components) and confirmed by comparison with functional

networks reported in previous studies. In addition, we confirmed

the validity of the identified networks by estimating the correlation

between each group-level spatial map and the CONN default

template network.

dICA analyses were performed by iterative double regression

on the BOLD time series data for all participant connections to

examine the temporal characteristics of brain FC, followed by ICA

analyses (controlling for confounding variables) and generalized

psychophysiological interactions (gPPI) back-projection. Since

differences in the resting state component between groups may be

caused by changes in connectivity between specific regions in that

component, the method essentially consists of a gPPI interaction

term between the component time series as a psychological factor

and the region of interest (ROI) BOLD time series as a physiological

factor. This technique identifies clusters of connections that exhibit

similar patterns of temporal functional change in FC over time. The

number of factors was set to 20, and the smoothing kernel was set

to 30 s per the default setting of CONN. The calculation of dFC

was performed using the 32 brain network nodes provided by the

CONN toolbox. Specifically, the CONN toolbox divides the human

brain into 8 large-scale brain networks by default, which include the

SN, VIN, DAN, LN, DMN, SM, FPN, and the Cerebellar Network

(CN). These 8 large-scale networks are then mapped onto 32 brain

regions, which are used to compute dFC. The correction for dFC

was performed at the connection level with a threshold of p < 0.05

(two-tailed), and at the cluster level with a p-value threshold of <

0.05, corrected for false discovery rate (FDR) using a multivariable

omnibus test.

2.6 Statistical analysis

A total of 69 participants met the study’s inclusion and

exclusion criteria and underwent rs-fMRI scanning. However, 6

ACS patients and 3 HC participants were excluded due to motion

artifacts. The final cohort consisted of 60 participants, including

30 ACS patients and 30 HC participants individuals (Table 1).

Among the ACS patients, 25 had moderate stenosis (approximately

50%−69%) and 5 had severe stenosis (70%−99%). All clinical,

cognitive and demographic variables were analyzed using SPSS

29.0 (IBM Crop., Armonk, NY, USA, Version 29.0) for between-

groups statistics at a significance level of p < 0.05. For age,

cognitive test score, which followed a normal distribution and

had homogeneous variances, an independent two-sample t-test was

used. For variables that followed a normal distribution but did

not meet the assumption of homogeneity of variances, or those

that did not follow a normal distribution, the Mann-Whitney

U test was applied for inter-group comparisons. For categorical
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FIGURE 1

ICA analysis. (A) Shows the spatial distribution of the 20 components estimated using group-level averaged ICA. (B) Shows Components LN (IC_02),

SM (IC_05), and FPN_L (IC_06 and IC_12) correspond to the LN, SM, FPN, and SN, respectively. (B) Displays the components with group di�erences

and the corresponding brain anatomy. Except for SN (IC_10), which shows significantly higher spontaneous brain activity in the ACS group compared

to the control group, the other four networks—LN (IC_02), SM (IC_05), FPN_L (IC_06 and IC_12) —exhibit regions with higher spontaneous brain

activity in the HC group compared to the ACS. The values on the adjacent colorbar reflect the magnitude of the statistical t-values. A negative t-value

(represented by cool colors on the jet colormap) indicates that the ACS group has lower activity than the control group, while a positive t-value

(represented by warm colors on the jet colormap) indicates that the ACS group has higher activity than the control group.

variables, including gender, diabetes, education, hyperlipidemia,

and smoking status, Chi-square tests were used to determine group

differences, with statistical significance set at p < 0.05.

For imaging data, all statistical group-level comparisons were

implemented in the CONN toolbox. In ICA comparisons, cluster-

level FDR corrected threshold was set at p< 0.05 based onGaussian

random field theory. In ICA comparisons, the cluster-level FDR

correction threshold was set to p< 0.05 based on Gaussian random

field theory. In dICA comparisons, cluster-based inference was

based on a cluster-level p - FDR correction threshold of p < 0.05

and tested using multivariate pattern analysis (MVPA) synthesis.

To understand how the observed differences in static

and dynamic resting-state brain activity relate to cognitive

performance, we performed Pearson correlations at both

the voxel-level and the connection-level to explore brain-

cognition associations in clusters or connections that exhibited

group differences.

3 Results

3.1 Characteristics of participants

As compared to HC, ACS patients had worse memory

(immediate recall, p < 0.001; delayed recall, p < 0.05), executive

functioning (DST, p < 0.001) and word fluency (p < 0.001) than

controls (Table 1).

3.2 ICA results

We first report the spatial differences of ICA. We estimated

20 ICs and matched these components with large-scale brain

network templates, adapting the best-fitting brain network for

each component, as shown in Figure 1A. We performed voxel-wise

group comparisons for components that reflect brain networks,

within the corresponding brain network component masks.

We first report the spatial differences of ICA. We estimated

20 ICs and matched these components with large-scale brain

network templates, adapting the best-fitting brain network for

each component, as shown in Figure 1A. We performed voxel-wise

group comparisons for components that reflect brain networks,

within the corresponding brain network component masks. ACS

brain networks - LN (IC_02), SM (IC_05), and FPN_L (IC_06 and

IC_12)-showed significant group differences, specifically, sFC was

enhanced in the SN, while it was reduced in the FPN-L, SM, and LN,

as shown in Figure 1B. These results were corrected for voxel-level

p < 0.001 and cluster-level p < 0.05 using FDR cluster correction.

3.3 dICA results

dICA analyzes group-ICA and the properties of the dICA (i.e.,

kurtosis, skewness, temporal variability, and frequency), creating a

z-score based threshold that includes factors associated with each
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FIGURE 2

dICA analysis. (A) Shows the ROI-to-ROI connectivity matrix for the 20 ICs spatial components, with the factor loadings for each connection

color-coded by circuit. (B) Shows the circuit connections with significant group di�erences, for example, brain networks—LN (IC_02), FPN_L (IC_12),

VIN (IC_15), and IC_03 shows significantly higher FC temporal modulation in the ACS group compared to the control group. A negative t-value

indicates lower connectivity in the ACS group compared to the control group, while a positive t-value indicates higher connectivity in the ACS group.

FIGURE 3

dICA temporal components and their correlation with cognitive tests. In terms of temporal average characteristics, IC_02 in the ACS group was

positively correlated with MoCA [r2 = 0.25, p = 0.018; as shown in (A)], which was positively correlated with MMSE [r2 = 0.14, p = 0.043; as shown in

(B)], and delayed recall [r2 = 0.25, p = 0.005; as shown in (F)]. Regarding time-frequency characteristics, IC_02 in the ACS group was positively

correlated with language fluency [r2 = 0.19, p = 0.016; as shown in (C)]. In terms of temporal-variability characteristics, IC_06 in the ACS group was

positively correlated with digit symbol substitution [r2 = 0.14, p = 0.039; as shown in (D)], while IC_05 was positively correlated with immediate recall

[r2 = 0.14, p = 0.040; as shown in (E)]. Using GLM, regions with dFC di�erences between the ACS and HC groups were identified, with cluster-based

inference using a p-FDR corrected threshold of p < 0.05, and MVPA was applied for comprehensive testing [as shown in (G)]. GLM, generalize linear

model; MVPA, multivariate pattern analysis.
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TABLE 2 Properties of the estimated circuits/ICs.

Circuits Kurtosis Skewness Variability Frequency Networks

Circuit_01 7. 4871 0.81966 0.04208 0.0076419 CN

Circuit_02 7.4992 1.5528 0.040622 0.0076673 LN

Circuit_03 6.1631 0.93403 0.036082 0.0080227 NA

Circuit_04 7. 5947 1. 7438 0.041741 0.0080735 CN

Circuit_05 6. 6679 −0.092573 0.044547 0.0083528 SM

Circuit_06 6.0216 0.82233 0.041496 0.0079466 FPN_L

Circuit_07 6. 3938 0.23157 0.043369 0.0079212 VIN

Circuit_08 6.2983 1.07 0.035887 0.0086067 NA

Circuit_09 6.9855 1.5486 0.03759 0.0086828 DMN

Circuit_10 4.6128 0.62269 0.039701 0.0072865 SN

Circuit_11 5.9941 0.75296 0.038741 0.0082766 DMN

Circuit_12 4. 5638 0.26007 0.02683 0.0086321 FPN_L

Circuit_13 2.4054 0.080623 0.043079 0.0075404 SN

Circuit_14 4.0022 0.62158 0.040806 0.0081497 VIN

Circuit_15 3. 6254 0. 3115 0.033927 0.0076419 VIN

Circuit_16 3.5504 0.042327 0.031083 0.0084797 DAN

Circuit_17 3.6126 0.24249 0.032835 0.0081751 DAN

Circuit_18 3.4553 −0.042262 0.035529 0.007972 NA

Circuit_19 2.82 0.2469 0.036745 0.0079466 SM

Circuit_20 2.8643 0.25284 0.039957 0.0074896 CN

This table lists the properties of the 20 estimated circuits/ICs, including kurtosis, skewness, variability, frequency, and brain networks. Components IC_01, IC_04 and IC_20 correspond to

the CN; IC_02 correspond to the LN; IC_06, IC_12 correspond to the FPN_L; IC_05, IC_29 correspond to the SM; IC_07, IC_14 and IC_15 correspond to the VIN; IC_09 correspond to the

DMN; IC_11 correspond to the DMN; IC_10 correspond to the SN, IC_10 correspond to the SN; IC_16,IC_17 correspond to the DAN, respectively. IC, independent component; LN, language

network; FPN, fronto-parietal network; SM, sensory motor; SN, salience network; DAN, dorsal attention network; VIN, visual network; DMN, default mode network; CN, Cerebellar Network;

NA, null-able values; L, left hemisphere.

individual connection. These factors are color-coded in the ROI-

to-ROI connection matrix. Next, the connection time series is

reconstructed, and a connection matrix is established to show the

change in ROI-to-ROI connection values over time (as shown in

Figure 2A). These dynamic changes in FC are then analyzed by

applying thresholds based on both connection-level and seed or

network-level factors. Non-parametric analysis, along with other

display and analysis options, is performed to generate a correlation

connection graph (as shown in Figure 3G).

Further analysis using dICA revealed significant differences

in the temporal dimensions (i.e., kurtosis, variability, skewness,

and frequency) of 20 ICs in ACS, as shown in Table 2. These

differences were then mapped to eight brain networks, and dFC

characteristics were analyzed for all participants, as detailed in

Table 3. The results indicated significant higher FC temporal

modulation in patterns in ACS, particularly in the brain networks -

LN (IC_02), FPN_L (IC_12), VIN (IC_15), and IC_03 (as shown in

Figure 2B).

Specifically, dynamic connectivity at the network level showed

significant differences between the ACS and HC groups (as shown

in Table 3). Compared to the HC group, the ACS group exhibited

statistically significant differences in connectivity patterns across

seven major brain networks (FPN, DMN, SM, SN, DAN, VIN, and

LN). Specifically, the ACS group showed significantly weakened FC

in the bilateral postcentral gyrus (PoCG), dorsolateral prefrontal

cortex (dlPFC), cerebellar Crus1, left superior temporal gyrus

(STG.L), left middle temporal gyrus (MTG.L), right superior

parietal gyrus (SPG.R), right middle frontal gyrus (MFG.R), right

fusiform gyrus (FFG.R), and right inferior temporal gyrus (ITG.R).

In contrast, FC was significantly enhanced in the bilateral superior

frontal gyrus (SFG), middle cingulate gyrus (MCG), supramarginal

gyrus (SMG), left cerebellum_8, left fusiform gyrus (FFG.L),

IPL.L, right precentral gyrus (PreCG.R), right middle frontal gyrus

(MFG.R), IPL.R, right inferior orbital gyrus (ORBinf.R), right

insula (INS.R), right precuneus (PCUN.R), right supplementary

motor area (SMA.R), and left angular gyrus (ANG.L) (as shown in

Table 3).

Furthermore, our results revealed significant group-level

differences in the time-space characteristics between ACS and

HC groups in the SN, FPN, DAN, SM, and VIN networks

(as shown in Table 4). Compared to the HC group, the ACS

group exhibited significant differences in temporal-frequency

characteristics in the SN (p < 0.05), while significant differences

in temporal-variability characteristics were observed in the FPN,

DAN, VIN, and SM networks (p < 0.01; as shown in Table 4).

Additionally, we found linear correlations between connectivity
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TABLE 3 Comparison of network di�erences using dICA.

X Y Z Size p-unc p-FDR Region Direction

LN

−54 −12 −2 281 0.000004 0.000006 Temporal_Sup_L POS

−46 −54 12 270 0.000006 0.000006 Temporal_Mid_L NEG

IC_02 +46 −50 +54 660 <0.000001 0.000009 Parietal_Inf_R NEG

−56 −44 +34 381 0.000008 0.000390 SupraMarginal_L NEG

−52 −22 −02 377 0.000002 0.000390 Temporal_Mid_L NEG

+56 +30 +04 343 <0.000001 0.000567 Frontal_Inf_Tri_R NEG

−02 −16 +46 140 0.000028 0.043909 Cingulate_Mid_L NEG

FPN

6 34 14 6 119 0.000033 0.000037 Insula_R POS

22 30 50 133 0.000051 0.000051 Frontal_Sup_2_R NEG

0 −2 42 156 0.000008 0.000012 Cingulate_Mid_L POS

−38 −72 −34 165 0.000024 0.000032 Cerebellum_Crus1_L NEG

−56 −40 30 176 0.000006 0.000012 SupraMarginal_L POS

48 0 56 204 0.000001 0.000003 Frontal_Mid_2_R POS

48 22 −10 210 0.000001 0.000003 Frontal_Inf_Orb_2_R NEG

48 −60 38 346 0.000033 0.000037 Angular_R POS

64 −38 36 413 0.000006 0.000012 SupraMarginal_R NEG

36 −62 −42 553 0.000001 0.000003 Cerebellum_Crus1_R NEG

64 −20 −24 798 <0.000001 0.000001 Temporal_Inf_R POS

10 16 34 981 <0.000001 <0.000001 Cingulate_Mid_R NEG

IC_06 −08 −06 +42 9,161 <0.000001 <0.000001 Cingulate_Mid_L NEG

+32 −32 +02 401 0.000001 0.000432 / NEG

−42 −56 +54 235 0.000014 0.007411 Parietal_Inf_L NEG

−40 +56 −06 198 0.000001 0.012610 Frontal_Mid_2_L NEG

+30 −38 +22 169 0.000014 0.019882 / NEG

−08 +24 +30 154 0.000005 0.023892 / NEG

11 −36 58 0 656 <0.000001 <0.000001 Frontal_Sup_2_L NEG

40 −8 −30 264 <0.000001 <0.000001 Fusiform_R POS

−48 −56 54 137 0.000060 0.000060 Parietal_Inf_L NEG

IC_12 −60 −38 +50 193 0.000004 0.017958 / NEG

−44 +46 +24 182 0.000007 0.017958 Frontal_Mid_2_L NEG

DAN

−28 −36 26 610 <0.000001 <0.000001 / POS

2 −36 0 208 0.000002 0.000005 / POS

−26 −6 62 207 0.000004 0.000007 Frontal_Sup_2_L NEG

26 −4 46 170 0.000013 0.000019 / NEG

34 −54 64 408 0.000026 0.000031 Parietal_Sup_R NEG

−38 −36 42 366 0.000048 0.000048 Postcentral_L NEG

VIN

−36 −64 −6 142 0.000002 0.000005 / NEG

42 −74 48 236 0.000023 0.000023 Angular_R POS

(Continued)
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TABLE 3 (Continued)

X Y Z Size p-unc P-FDR Region Direction

SM

−46 −12 32 503 0.000002 0.000005 Postcentral_L NEG

58 −4 22 279 0.000025 0.000025 Postcentral_R NEG

IC_05 +44 −22 +16 918 0.000003 <0.000001 Rolandic_Oper_R NEG

+14 −28 +80 453 0.000007 0.000109 Precentral_R NEG

−08 +16 +44 259 0.000049 0.003382 Supp_Motor_Area_L NEG

−44 +26 +00 160 0.000003 0.026208 Frontal_Inf_Tri_L NEG

−28 +38 +16 132 0.000003 0.044048 Frontal_Mid_2_L NEG

DMN

22 −48 12 543 0.000001 0.000003 Precuneus_R POS

−26 8 −44 129 0.000002 0.000003 Fusiform_L POS

12 10 48 141 0.000024 0.000024 Supp_Motor_Area_R NEG

SN

−20 −66 −38 444 <0.000001 0.000001 Cerebellum_8_L POS

38 −12 48 165 0.000011 0.000016 Precentral_R POS

10 42 36 176 0.000031 0.000031 Frontal_Sup_Medial_R POS

IC_10 −38 +14 +34 799 <0.000001 <0.000001 Frontal_Mid_2_L POS

+56 +10 +38 710 0.000013 0.000001 Precentral_R POS

Comparison of connectivity differences in FC networks base on dICA. X, Y, and Z represent peak-voxel location within each cluster in the MNI space; Size represents the size of the cluster;

p-FWE represents cluster-size p-value corrected for family wise error; p-FDR represents cluster-size p-value corrected for false discovery rate. NEG indicates that the connectivity of the ACS

group is lower than that of the control group, while POS indicates that the connectivity of the ACS group is higher than that of the control group. MNI, Montreal neurological institute; NEG,

negative; POS, positive; R, right hemisphere.

strength within certain clusters identified by dICA and cognitive

scale scores.

In addition, we also to all ICs in temporal frequency and

variability analysis, compared to the HC group, the ACS group

showed significant differences in the time frequency analysis in the

LN (IC_02), and SN (IC_13) (as shown in Table 5); while significant

differences in the temporal-variability LN (IC_02), SM (IC_05), SN

(IC_10, IC_13), FPN_L (IC_12), and DAN (IC_17) (as shown in

Table 6).

Finally, the dICA results revealed significant differences in dFC

between ACS and HC groups in specific brain regions [F(2,27)
= 10.13, p-uncorrected = 0.0005, p-FDR = 0.014] (as shown in

Figure 3). The connectivity cluster involved the following brain

networks: FPN (right dorsolateral prefrontal cortex), SN (bilateral

cingulate cortex and left anterior insula), SM (bilateral lateral

regions), DAN (right EFE), and CN (bilateral anterior regions). In

these dICA results, the ACS group showed enhanced connectivity

between the DAN and FPN, CN, and SN, whereas the HC group

showed enhanced connectivity between the FPN and CN, and

between the SM and SN.

3.4 Association analysis

In particular, LN (IC_02) in the ACS group was positively

correlated with MoCA (p < 0.05), which was negative correlation

with MMSE (p < 0.05), and delayed recall (p < 0.001). Regarding

temporal-frequency characteristics, LN (IC_02) in the ACS group

was positively correlated with language fluency (p< 0.05). In terms

of temporal-variability characteristics, FPN_L (IC_06) in the ACS

group was positively correlated with digit symbol substitution (p <

0.05), while SM (IC_05) was positively correlated with immediate

recall (p < 0.05) (as shown in Figure 3).

4 Discussion

We explored the effective alterations in FC within the

brain networks of individuals with unilateral moderate-to-severe

ACS compared to those without detected carotid stenosis. ICA

highlighted the intrinsic sFC differences in ACS. Through ICA,

we identified FC abnormalities in the FPN, DMN, SN, DAN, LN,

SM, and CN as well as VIN in individuals with ACS. Among

these, FPN, DMN, and SN are the three most important brain

networks related to cognitive function. FPN and DMN are involved

in cognitive control and decision-making processes, while SN

plays a role in a wide range of cognitive control tasks (Cai

et al., 2021). Given the complexity and dynamic nature of brain

networks, we further performed dICA based on ICA. The results

showed mixed intergroup dFC connectivity in the FPN, DMN,

SN, DAN, LN, and SM networks in individuals with ACS. Finally,

we also assessed the temporal frequency and variability of these

six networks. We found that ACS showed differences in the

temporal frequency of SN, while significant statistical differences

Frontiers in AgingNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1497874
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnagi.2024.1497874

TABLE 4 Temporal correlations of FC at the level of seven brain networks.

Network Frequency Variability p

SN
√

/ <0.05

SM
√

/ 0.07

LN /
√

0.07

FPN /
√

<0.001

VIN /
√

<0.001

SM /
√

<0.001

DAN /
√

<0.001

This table lists the seven brain networks (SN, SM, LN, FPN, VIN, SM, and DAN), including

temporal variability and frequency. Each row represents the statistical values of a brain

network, reflecting the variations in these features across different circuits.

were observed in the temporal variability of LN, FPN, DAN, VIN,

and SM.

sFC primarily explores the systematic changes in brain

connectivity throughout the lifespan (Deery et al., 2023), mapping

and summarizing large-scale functional network patterns across the

brain (Zhang et al., 2021; Wang et al., 2021). By resting state fMRI

(rs - fMRI) can help us to find the ACS patients brain sFC change

and the correlation between cognitive dysfunction. In our study,

ICA analysis revealed abnormal connectivity changes at multiple

network levels in ACS, particularly with significantly decreased

connectivity in brain networks like the LN (IC_02), FPN_L

(IC_06, IC_12), and SM (IC_05), while increased connectivity

in SN (IC_10) (as shown in Figure 1). Consistent with previous

studies, compared to the control group, ACS had disrupted and

more asymmetric networks of the DAN, FPN, SMN, and DMN.

Specifically, the contralateral insula and dlPFC in the DAN, the

contralateral MFG and bilateral IPL in the FPN, the contralateral

primary somatosensory cortex, the contralateral supplementary

motor cortex in the SMN and the ipsilateral medial prefrontal

cortex in the DMN (Lin et al., 2014, 2016). ACS is associated

with FC abnormalities across DAN and SN (Gao et al., 2019;

Chang et al., 2016). This aligns with the observed impairments in

ACS patients across various cognitive domains, such as language

memory, working memory, executive function, and perception-

related tasks (Norling et al., 2019; Huang et al., 2020; Gao et al.,

2021).

However, sFC lacks specificity. At the whole-brain level, sFC

can reveal differences in intrinsic networks that are generally

present across different populations (Spronk et al., 2021), but

the spatial heterogeneity of intrinsic networks in patients with

various neuropsychiatric disorders and healthy individuals is

relatively small (Zhang et al., 2021; Zhao B. et al., 2022).

For example, comorbidities of anxiety and depression involve

FPN, DMN (Li et al., 2020; Zhang et al., 2023). AD and

Parkinson’s disease share cognitive dysfunction-related regions

included cingulate and high frontoparietal cortices (Choi et al.,

2022). As another example, index negative self-related rumination

with DMN hyperconnectivity, which has been observed in people

with depression or at high risk (Whitfield-Gabrieli et al., 2020),

has also been shown impaired large-scale networks including FPN,

DAN, and ventral attention network are related to attention deficits,

both in schizophrenia and major depressive disorder patients (Li

et al., 2024). In addition, the resting state FC is based on the

assumption that FC is time-static throughout the measurement

period, and the actual brain activity is highly dynamic and

conditional dependent. In spite of sFC can reveal the stability and

strength of connectivity within the brain network at a specific time

point, and find the relationship between ACS cognitive impairment

and brain dysfunction, it cannot capture the fluctuating and time-

varying nature of brain activity, and lacks the understanding of the

dynamic changes of brain connectivity.

In contrast, dFC identifies variations in brain activity over

different time points, capturing more detailed neural network

fluctuations and temporal variability (Preti et al., 2017). dFC can

not only provide time-varying information of FC between static

connectivity networks, but also capture reproducible connectivity

states and calculate temporal attributes (Calhoun et al., 2014), that

is, dFC can evaluate FC changes in a short period of time, which

makes it possible to study the different connection patterns that

repeat over a short period of time in brain networks and the

fluctuations in their interactions. dFC emphasizes the temporal

differences in FC patterns of brain intrinsic networks among

patients with different diseases, aiming to explore disease-specific

connectivity patterns. By considering time fluctuations within

different windows to calculate time-varying FC, and selecting

different dFC states to quantify the stability and variability of brain

dynamics (Hindriks et al., 2016). As dFC analysis can extract more

time-varying characteristics of information exchange between

brain regions on a time scale and because these characteristics

are significantly related to many physiological parameters (Zhu

et al., 2021), pathological features (Zhu et al., 2020), this approach

can help detect subtler network changes, even in preclinical

stages (Xue et al., 2021). These dynamic changes reflect the

brain’s short-term adaptive adjustments, transient dysfunctions,

or compensatory mechanisms, offering deeper clinical insights

compared to sFC. Therefore, dFC may provide significant

advantages in understanding brain dysfunctions associated with

ACS. For instance, studies by Hindriks et al. (2016) and Sang et al.

(2023) demonstrate that dFC can capture network connectivity

state fluctuations that sFC might overlook. This capability makes

dFC an effective analytical approach for investigating brain

functional fluctuations and compensatory mechanisms in clinical

conditions such as ACS. Our results indicate mixed patterns of

connectivity enhancement and reduction in cognitive networks

among ACS patients, we further applied dICA to investigate dFC

abnormalities at the network level in ACS patients. Our results

revealed intergroup differences in the dFC of six network regions:

the DAN, LN, FPN, DMN, and SM, SN, and differed significantly

in the FC of LN, FPN, DAN, VIN, and SM in time-variability (p

< 0.01). For example, AD or amnestic mild cognitive impairment

have reduced dFC in the DMN and DAN (Zhao C. et al., 2022).

Major depressive disorder patients have reduced dFC in the DMN

and executive network (Zhu et al., 2020).

The FPN is tightly connected with other parts of the brain

and serves as a crucial hub in cognitive processes (Schmahmann,

2019). The dlPFC, a core component of the FPN, plays a

vital role in executive functions, helping to coordinate and

integrate the functions of other brain regions. It is involved in
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TABLE 5 Temporal Frequency correlations at the three ICs.

ICs Beta T p P (two-sided) Network

IC_02 0.0041 2.55 0.007256 0.014512 LN

IC_03 0.0028 2.27 0.014123 0.028246 NA

IC_13 0.0047 2.47 0.008786 0.017572 SN

This table lists the statistical parameters of the temporal frequency correlation of two brain networks, LN (IC_02) and SN (IC_13), and IC_03. Which including Beta, T, p, and p (two-tailed).

Each row represents a statistic for the ICs temporal frequency correlation.

TABLE 6 Temporal Variability correlations at the seven ICs.

ICs Beta T p P
(two-sided)

IC_02 −0.034 −2.52 0.992181 0.015637 LN

IC_03 −0.031 −2.95 0.997380 0.005241 NA

IC_05 −0.058 −5.19 0.999997 0.000006 SM

IC_10 −0.019 −2.05 0.976838 0.046324 SN

IC_12 −0.045 −3.15 0.998487 0.003027 FPN_L

IC_13 −0.049 −3.74 0.999718 0.000563 SN

IC_17 0.052 2.46 0.009025 0.018050 DAN

This table lists the statistical parameters of the temporal variability correlation of six brain networks, LN (IC_02), SN (IC_10, IC_13), SM (IC_05), FPN_L (IC_12) and DAN (IC_17), and IC_03.

Which including Beta, T, p, and p (two-tailed). Each row represents a statistic for the ICs temporal variability correlation.

working memory, verbal execution, and other cognitive tasks

(Panikratova et al., 2020). Abnormal activation of the dlPFC is

typically associated with cognitive impairments. Additionally, the

Cerebellum_crus1 is involved in cognitive processes related to

language memory (Stoodley and Schmahmann, 2009). Previous

research has demonstrated reduced FC in the dlPFC (Harding

et al., 2015; Avirame et al., 2015) and MFG (Tuo et al., 2021)

in ACS, consistent with our results. This study showed that ACS

is associated with abnormal connectivity in the FPN, with ICs

differences involving brain regions such as the frontal, temporal,

and cerebellar areas. Specifically, reduced FC in the dlPFC.R,

MFG.R, FFG,R, ITG.R, and bilateral cerebellum superior crus Imay

explain the poorer overall cognition, psychomotor speed/executive

function, memory function, and daily living abilities observed in

ACS patients (Gao et al., 2021; Wang et al., 2017). In clinical

settings, many ACS patients exhibit normal or only mild cognitive

impairments. This may be due to compensatory mechanisms, such

as increased dFC in regions including the right MFG, INS.R,

ORBinf.R, SFG.L, IPL.L, and bilateral MCG and SMG. These

enhancements in connectivity may help maintain relatively better

cognitive performance in certain domains for ACS patients (Jia

et al., 2014; Schoonheim et al., 2022).

The functional interaction between the FPN and the DMN

is crucial for the expression of executive functions and working

memory. DMN plays a vital role in the normal activation and

maturation of FPN (Chen et al., 2023). In many neuropsychiatric

disorders that lead to cognitive impairment, DMN is often the

first affected brain network (Zhang and Raichle, 2010). In our

study, we observed that in ACS, the dFC of the SMA.R in the

DMN was reduced, while the dFC of the PCUN.R and FFG.L

was increased. Both increased and decreased FC are closely

related to cognitive dysfunction. The SMA not only plays a role

in motor-related functions but also participates in higher-order

cognitive control mechanisms, coordinating language fluency,

and attention switching (Hertrich et al., 2016). The PCUN is a

central node of the DMN, and its FC abnormalities are associated

with impairments in cognitive abilities such as episodic memory

and working memory (Cavanna and Trimble, 2006). Current

research suggests that ACS patients typically exhibit reduced

FC in the PCUN and SMA (Maimaitiaili et al., 2024; He et al.,

2020), which differs from our findings. We found increased dFC

in the PCUN.R. Some studies suggest that increased PCUN dFC

may serve as a protective factor for cognitive functions related to

memory (Zhao C. et al., 2022). Based on this, we hypothesize that

the heightened dFC in the PCUN and FFG in ACS may represent

a compensatory mechanism, where enhanced connectivity

helps maintain normal memory consolidation, working

memory, and the interaction between emotional processing and

cognitive function.

Our study found that in ACS patients, the reduced dFC in

the SMA may contribute to language impairments. Additionally,

the reduced dFC in the STG.L and MTG.L is noteworthy. The

temporal pole, as one of the auxiliary language areas outside of

Wernicke’s area, supports the retrieval of phonological information,

which is critical for speech output and short-term memory tasks.

This reduction in connectivity is associated with impaired cognitive

performance in speech output and short-term memory tasks (He

et al., 2020). Moreover, the traditional language areas largely

overlap with left-lateralized co-activation regions of the brain,

which are strongly correlated with the execution of language tasks.

Left hemispheric lateralization is significantly positively associated

with impaired language task performance (Peng et al., 2023).

Therefore, the reduced dFC in the lateralized regions such as

the STG.L, MTG.L, and SMA.R may be a potential mechanism
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underlying the poorer language and memory performance in

ACS patients.

In this study, we found that ACS patients exhibited reduced

dFC in the PreCG.L and SPG.R within the DAN. The SPG is

involved in top-down attentional orientation, and its dysfunction

is closely associated with memory heterogeneity (Koenigs et al.,

2009). FC analysis, by revealing the dynamic changes in brain

networks over time, offers a unique perspective through dFC.

In this study, we observed significant changes in the temporal

frequency and variability within networks such as the SN, LN,

and FPN in ACS patients. These changes may reflect adaptive

adjustments under cognitive load or environmental stress. For

example, the temporal frequency changes in the SN suggest

dynamic adaptation in the allocation of cognitive resources when

facing external stimuli, while the temporal variability in the LN

and DMN may be related to dynamic changes in memory and

language functions. These findings indicate that the transient

connectivity patterns captured by dFC could serve as biomarkers

for early cognitive impairment, offering new insights for diagnosis

and intervention. Furthermore, dFC also revealed compensatory

adjustments in the DAN and SM in ACS patients. The temporal

variability changes in these networks may reflect transient adaptive

mechanisms in attention allocation and motor control, which are

difficult to detect through sFC analysis. Thus, the dFC findings in

this study not only expand our understanding of brain functional

changes in ACS but also suggest that dFC may have clinical value

in the early identification of potential cognitive decline. Previous

research on MCI has shown that the SPG mediates processes such

as short-term memory, delayed recall, and memory recognition

(Zhong et al., 2022). These findings provide valuable insight into

the relationship between the SPG and ACS, suggesting that the SPG

may serve as a potential target for neuroregulation in ACS patients.

The CN, often overlooked, includes the cerebellum, which not

only plays a role inmotor control but is also crucial for coordinating

emotional and visceral functions, making sensory predictions, and

engaging in higher cognitive functions such as reasoning (Gao et al.,

1996). Damage to the cerebellum has been associated with deficits

in emotional attribution and social skills (Schmahmann, 2019). In

this study, we found increased connectivity within the CN in ACS

patients, which may underlie the neural mechanisms leading to

impaired perception of bodily, functions, balance during walking,

and difficulties in daily activities (Gray et al., 2020).

Most notably, our study captured the temporal characteristics

of FC and revealed time-related FC abnormalities in ACS.

Specifically, the SN showed differences in time-frequency FC, while

the LN, FPN, DAN, VIN, and SM exhibited significant differences

in time variability of FC. These findings suggest that such temporal

FC abnormalities may be potential mechanisms underlying the

impairments in various aspects of cognitive and motor control in

ACS patients.

5 Limitations

Although this study identified dFC abnormalities and dynamic

temporal variability across multiple networks in ACS patients,

shedding light on potential mechanisms underlying cognitive

impairment, several limitations remain. First, this study is a

derivation study and does not include a validation dataset, which

limits the generalizability of the findings. We plan to include

independent datasets in future research to enhance the robustness

of the results. Second, the sample size is relatively small, which

may affect the applicability of the conclusions to larger populations.

Third, we did not perform group comparisons between patients

with left- and right-sided stenosis, which may have underestimated

the effect of laterality on brain function. Fourth, this study focused

solely on patients with unilateral moderate-to-severe stenosis

who had not undergone surgical intervention. As a result, the

findings may not apply to patients with restenosis after carotid

stenting or those with mild or bilateral stenosis. Lastly, this study

employed a cross-sectional design, lacking longitudinal data to

evaluate changes in FC over time. Future studies should incorporate

longitudinal data and further investigate the relationship between

imaging metrics and cognitive function.

6 Conclusions

This study demonstrates that cognitive impairment in ACS

is strongly associated with significant alterations in both intrinsic

sFC and dFC within large-scale brain networks. dICA revealed

temporal frequency changes in the SN, further suggesting that ACS

may influence the temporal characteristics of brain connectivity.

Additionally, significant temporal variability in FC was observed

in several key networks, including the FPN, DAN, SMN, LN, and

VIN. These dynamic changes were closely related to cognitive

decline, particularly in language, memory and executive function.

Our findings emphasize the importance of considering both static

and dynamic connectivity changes in brain network when assessing

the cognitive impacts of ACS. The results indicate that ACS

not only disrupts large-scale brain network connectivity but also

impairs the temporal dynamics of brain network interactions,

which may contribute to the cognitive and motor deficits observed

in ACS patients.
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