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Introduction: Cerebral small vessel disease (CSVD) is a chronic systemic

degenerative disease a�ecting small blood vessels in the brain, leading to

cognitive impairments. Transcranial direct current stimulation (tDCS), a non-

invasive brain stimulation technique that applies low electrical currents to the

scalp, shows promise in treating cognitive and movement disorders. However,

further clinical evaluation is required to assess the long-term e�ects of tDCS

on neuroplasticity and gait in patients with CSVD. We investigated the e�ects

of long-term, repeated tDCS on local brain perfusion, network connectivity,

cognition, and gait in patients with CSVD and gait disorders (CSVD-GD).

Methods: This prospective, single-blind, multicenter, randomized controlled

study enrolled 66 patients with CSVD-GD, categorized into the tDCS and

Sham groups. Imaging and gait characteristic data were collected over three

periods using magnetic resonance imaging and a gait analyzer, along with

neuropsychological assessments.

Results: Among 156 volunteers with CSVD-GD, 66 participated in this study, with

60 completing the entire process. Compared to the Sham group, the tDCS group

exhibited a more pronounced increase in the cerebral blood flow to the dural

cerebrospinal fluid ratio in regions such as the orbitofrontal cortex and cingulate

gyrus (P < 0.05, FDR corrected), along with significantly greater improvements

in gait speed and stride length. Tolerance to tDCS was good, with no di�erence

in adverse reactions between the groups, except for a scalp burning sensation

reported during the 1st week (24.24% and 6.06% in the tDCS and Sham groups,

respectively; P = 0.003).

Discussion: Long-term tDCS is e�ective and safe for improving neuroplasticity

and gait cognition in patients with CSVD.

KEYWORDS

cerebral small vessel disease, gait disorders, transcranial direct current stimulation,

walking di�culties, cognitive impairment, gait analysis, neurovascular coupling,

magnetic resonance imaging
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1 Introduction

Cerebral small vessel disease (CSVD) is a common form

of cerebrovascular disease that predominantly affects small

arteries and microvessels, leading to cerebral ischemia and

hemorrhage. The clinical manifestations of CSVD include cognitive

impairments, reduced motor function, and emotional disturbances

(Li et al., 2018; Ogama et al., 2021). Changes in gait often

reflect a decline in physical activity capacity and can precede

cognitive decline, serving as critical indicators for identifying and

predicting vascular cognitive impairment and fall risk (Montero-

Odasso et al., 2012; Adam et al., 2023). Patients with CSVD

exhibit significantly increased gait instability and fall risk, which

adversely affect their quality of life and place an additional burden

on caregivers. Accordingly, the pursuit of effective therapeutic

strategies to improve walking ability in patients with CSVD has

emerged as a focal point in clinical research.

In the context of neurological diseases, disorders of postural

control and balance frequently show insufficient responses to

pharmacotherapy, with treatments often only partially alleviating

symptoms or failing to impede disease progression. Consequently,

there is a pressing need for alternative interventions. Recent studies

indicate that transcranial direct current stimulation (tDCS) can

modulate cortical excitability, thereby promoting motor learning

and enhancing motor function, providing a promising avenue for

rehabilitation in patients with CSVD (Ko, 2021; Sudbrack-Oliveira

et al., 2021).

tDCS is a non-invasive technique that applies weak direct

currents to the scalp to regulate the excitability of cortical neurons.

Its underlying mechanism involves altering the membrane

potential of neurons, which influences neural conduction and

plasticity. Numerous studies have shown that tDCS can facilitate

motor learning and improve functional performance, particularly

in patients with neurodegenerative diseases who present both

cognitive and motor challenges (Manor et al., 2021; Sorkpor and

Ahn, 2021; Veldema and Gharabaghi, 2022; Nombela-Cabrera

et al., 2023; Lescrauwaet et al., 2024). However, research on the

effects of tDCS within the CSVD population is still in its early

stages, and specific outcomes have yet to be comprehensively

validated (Niemrungruang et al., 2024).

Long-term tDCS treatment may deliver sustained

improvements in walking ability among patients with CSVD.

Persistent neural stimulation reportedly enhances neuroplasticity

and improves motor function (Alkhasli et al., 2022). Implementing

long-term tDCS interventions for patients with CSVD may reverse

motor function impairments caused by small vessel pathology.

Furthermore, the side effects of tDCS are relatively minimal,

rendering it suitable for prolonged use in older patients, providing

a safe and effective treatment option for those with CSVD (Ko,

2021).

We hypothesized that the application of tDCS in individuals

with CSVDmay enhance cerebral plasticity by modulating cerebral

Abbreviations: CBF, cerebral blood flow; CSVD, cerebral small vessel disease;

CSVD-GD, CSVD and gait disorders; DC, degree centrality; FDR, false

discovery rate; MRI, magnetic resonance imaging; OFC, orbitofrontal cortex

regions; TUG, TimedUp andGo; tDCS, transcranial direct current stimulation.

blood flow and neurovascular coupling, ultimately improving

cognitive function, motor control, and gait performance, thereby

enhancing walking ability in these patients. Therefore, in

this study, we aimed to explore the cumulative neural effects

of repeated stimulation by conducting multiple, long-term,

prospective observations using multi-parameter magnetic

resonance imaging (MRI) along with assessments of gait and

cognitive-behavioral changes. The goal is to investigate further

the efficacy of neuromodulation techniques in addressing the

complexities of CSVD and enhancing patient quality of life.

2 Materials and methods

2.1 Ethics

This study was approved by the Anhui Medical University

Ethics Committee (ethics number: 83240045), registered under

MR-34-24-022386, and performed in accordance with the

Declaration of Helsinki.

2.2 Study participants

This study included 66 patients with CSVD and gait

disturbances. The inclusion criteria were as follows: (1) gait

disturbances indicated by Timed Up and Go (TUG) test

times >15 s using a semi-quantitative analysis method; (2) the

presence of at least one of the following CSVD imaging features

(Duering et al., 2023): ≥1 lacunar infarctions, a Fazekas score

for periventricular white matter hyperintensity ≥3 or deep

white matter hyperintensity ≥2 (Fazekas et al., 1993), cerebral

microbleeds of≥1, and perivascular spaces (PVS)≥ 11 on one side

of the basal ganglia or centrum semiovale; and (3) the ability to

complete all examinations. The exclusion criteria were as follows:

(1) acute or chronic cerebral hemorrhage, acute cerebral infarction,

brain tumors, a history of cranial trauma or neurosurgery; (2)

non-vascular white-matter hyperintensities caused by conditions

such as multiple sclerosis, toxic encephalopathy, encephalitis, or

infection; (3) other diseases that may cause gait disorders, such as

Alzheimer’s disease, Parkinson’s disease, Lewy body dementia, and

other diseases causing cognitive impairment (Strubel et al., 2001;

He et al., 2024; Lin et al., 2024); (4) severe visual, auditory, or

language impairments; (5) the presence of dental or metal implants;

(6) systemic organ dysfunction or systemic malignancies; and (7) a

history of epilepsy.

Participants were recruited from the Neurology outpatient and

inpatient departments of the First Affiliated Hospital of Anhui

Medical University and the Third Affiliated Hospital. The PASS

11.0 software was used to assess the required sample size. The

sample size was estimated for 80% power and a two-tailed α level of

5% for the CSVD-GD. This study was powered to detect a between-

group difference of at least three points, with an estimated attrition

rate of 10%. Consequently, a target sample size of 56 patients (28

per group) was established; ultimately, 66 patients (33 per group)

were enrolled, approximately 18% higher than the anticipated

sample size. This over-recruitment was implemented primarily to
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enhance the reliability of the study results and to ensure sufficient

statistical power in the data analysis.

2.3 Experimental design

This study is a randomized, single-blind, multicenter

prospective trial. Participants were randomly assigned to either

the tDCS group or the Sham group. The detailed randomization

process can be found in the Supplementary File. Patients

or their family members provided informed consent prior

to any experimental procedures, including the collection of

general medical history, cognitive function assessments, and

imaging examinations.

This study adopted a parallel control design, with active

stimulation of the left dorsolateral prefrontal cortex using tDCS

(2mA continuous for 30min) as the experimental group and

a sham condition (2mA continuous for 30 s followed by no

stimulation for 29.5min) as the control group. Stimulation was

administered three times a week for six consecutive weeks to

observe therapeutic effects and record any adverse reactions during

treatment. The study primarily focused on the cumulative effects of

tDCS, with imaging, gait assessments, and neuropsychological scale

evaluations conducted at baseline, the 4th week, and the 6th week

(study endpoint) following tDCS sessions. The final assessment was

performed 24 h after tDCS to eliminate the immediate effects of

stimulation. Evaluations were performed by trained neurologists

who were blinded to the patient’s conditions.

The primary outcomewas the cerebral blood flow (CBF)/degree

centrality (DC) ratio changes in brain regions over time. Although

CBF does not directly measure neural activity, it is closely

correlated; fluctuations in neural activity affect CBF and changes

in neural activity correspond to variations in metabolism (i.e.,

resting state activity) (Longden et al., 2017). DC is a graph

theory-based analysis method that assesses the sum of significant

functional connectivity weights between each voxel and all other

voxels in the brain (Xiong et al., 2021). The CBF/DC ratio

quantifies blood supply per unit of connection strength, reflecting

the degree of neurovascular coupling in specific voxels or regions.

Assessing cross-voxel correlations between CBF and DC, as

well as CBF/DC ratios, can provide insights into neurovascular

coupling in patients with CSVD, thereby elucidating the underlying

mechanisms contributing to gait disturbances in this demographic.

The secondary outcomes included changes in stride length and

walking speed over time.

2.4 Transcranial direct current stimulation

Participants were seated comfortably in the laboratory. A pair

of electrode pads containing two 5 × 7 cm electrodes soaked in

saline delivered a current of 2mA. The electrodes (anode and

cathode) were connected to a continuous current stimulation

device (TCT, Nanjing, China). According to the 10–20 EEG

International System (Jasper, 1958), the anode electrode was placed

on the left dorsolateral prefrontal cortex at the location of the

F3 electrode, while the cathode electrode was placed on the right

frontal pole cortex at the Fp2 electrode position, including the

orbitofrontal cortex (BA 10, 11) (Kringelbach, 2005; Moayedi et al.,

2015). Both electrodes were secured with a headband. The two

electrodes were positioned longitudinally along the medial axis

of the target area. The distance at the edges was maintained at

least 6 cm apart to reduce current shunting through the scalp

between the electrodes. The stimulation was gradually increased

during the initial 30 s and then ramped down during the final

30 s. The ramp-up and ramp-down periods were completed within

30 s, after which the device was turned off to serve as a sham

condition. This sham stimulation method has been shown to be

reliable (Gandiga et al., 2006). Participants typically reported initial

sensations of tingling or itching; the stimulation for both groups

lasted 30 min.

2.5 Clinical and neuropsychological
assessments

Demographic information was collected from all participants.

Trained neuropsychological technicians performed tests for

all participants, completing each patient’s assessment within

a day. Global cognitive functions were assessed using the

Montreal Cognitive Assessment (MoCA). Executive functions

were measured using the Trail Making Test-B (TMT-B) and

the Stroop Color-Word Test-C (SCWT-C); visuospatial abilities

were examined using the Clock Drawing Task, and processing

speed was gauged using TMT-A. Raw scores for each test

were standardized using z-transformation based on the mean

and standard deviation of the control group. Each domain

score was calculated by averaging the z-scores from relevant

neuropsychological tests.

2.6 MRI scanning and processing

Scans were performed using the 3.0 T Discovery MR750w

MRI system (GE Healthcare, Chicago, IL, USA), equipped with

a 24-channel head coil. Participants were instructed to lie quietly

with their eyes closed, avoiding head movement, falling asleep, or

engaging in cognitive tasks, such as thinking about their problems.

The scanning sequences included three-dimensional (3D) pseudo-

continuous arterial spin labeling (ASL), 3D brain volume

T1-weighted imaging, T2-weighted fluid-attenuated inversion

recovery, and susceptibility-weighted imaging. ASL is a non-

invasive MRI technique recognized for its excellent reproducibility

in measuring CBF. It is primarily used in research related to

cerebrovascular diseases, dementia, and neuro-oncology (Fujima

et al., 2020). Detailed sequence parameters and preprocessing steps

can be found in the Supplementary File.

2.7 CBF data preprocessing and
computation process

The CBF data preprocessing comprised the following stages:

(1) checking data quality and converting images to NIFTI formats;
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(2) non-linearly registering the cerebral blood flow images to the

positron emission tomography image template provided by the

Montreal Neurological Institute and performing image quality

checks; (3) data normalization through z-score transformation of

CBF values for each voxel by dividing the value by the mean

CBF value of the whole brain; (4) performing Gaussian smoothing

with a full width at half maximum of 6mm; (5) correcting

multiple comparisons using the false discovery rate (FDR) method

and a threshold of P < 0.05; (6) non-linearly transforming the

results to the anatomical automatic labeling (AAL) template, and

presenting the final results using xjview (Beijing, CN) at https://

www.alivelearn.net/xjview/ (accessed on 12 August 2023) and

BrainNet Viewer (Beijing, CN) at http://www.nitrc.org/projects/

bnv/ (accessed on 12 August 2023) software.

2.8 fMRI data preprocessing and
computation process

Data preprocessing was performed using Statistical Parametric

Mapping 12 (SPM12; http://www.fil.ion.ucl.ac.uk/spm) on the

MATLAB platform. The resting-state fMRI data processing

assistant software (DPARSF, http://rfmri.org/dparsf; DPABI

4.3, http://rfmri.org/dpabi) was utilized for data preprocessing.

Detailed sequence parameters and preprocessing steps can be

found in the Supplementary File. The time series of each voxel

was extracted, and the Pearson correlation coefficient with all

other voxels in the brain was calculated using a threshold of

0.25 (Garrison et al., 2015). A lower threshold may include

false-positive connections, while a higher threshold may exclude

some meaningful connections. Consequently, the correlation

coefficients were transformed using the Fisher-Z transformation to

improve normality.

2.9 Gait measurement and assessment

Gait assessment included qualitative, semi-quantitative, and

quantitative evaluations. Qualitative analysis involves clinical

assessment, observing gait patterns, and identifying muscle and

joint issues. The semi-quantitative assessment utilizes clinical

scales, such as the TUG test, TUG dual-task (DTUG) test, and

Berg Balance Scale for scoring. Specifically, we recorded step

length, walking speed, and step frequency upon completion of the

TUG test. To ensure comprehensive measurement, we collected

data at different stages of the TUG test, including participants’

performance on straight paths and during turning segments. On

straight paths, we measured participants’ step length and walking

speed to assess their basic gait characteristics in the absence of

obstacles. Similarly, during the turning segments, we recorded step

length and walking speed to evaluate participants’ gait performance

while changing direction. In the DTUG test, participants identified

a series of numbers displayed on a computer screen during which

they were required to walk while simultaneously locating and

verbally articulating the numbers that contained the digit 7. The

time and number of errors were recorded. For quantitative gait

assessment, we used the Intelligent Device for Energy Expenditure

and Activity (IDEEA; MINISUN Co., Manchester, UK), a portable

device known for its high test-retest reliability and validity

in recording and analyzing gait data (Gorelick et al., 2009).

Quantitative measurements using IDEEA parameters included step

length, walking speed, and step frequency.

2.10 Statistical analyses

Statistical analysis was performed using SPSS 25.0 (IBM Corp.,

Armonk, NY, USA). The normality of clinical data, such as

general information, was assessed using the Shapiro–Wilk test, with

parametric data presented as means ± standard deviations (SD)

for normally distributed data and as medians (interquartile ranges)

[M(Q25, Q75)] for non-normally distributed data. Categorical data

are presented as n/%. An independent samples t-test was used

for normally distributed continuous variables, while the Mann–

Whitney test was used for non-normally distributed variables.

Repeated measures analysis of variance (ANOVA) was used to

analyze data across three-time points. Pearson’s chi-square test was

used for categorical data.

The CBF/DC ratio for each voxel was calculated to evaluate

the blood supply amount per unit connection strength and was

converted to z-scores for each participant to increase normality.

Age, sex, education level, and other factors were considered as

covariates. Multiple comparisons were corrected using the FDR

method, with a threshold of P < 0.05.

In regions showing significant differences between the two

groups, CBF/DC ratio data were extracted from regions of interest

and analyzed using Pearson’s correlation analysis based on gait and

neuropsychological scales, The plot was generated using R software

(v.4.2.2) package ggplot2 (v.3.4.2).

3 Results

3.1 Participants

Among the 156 volunteers with CSVD-GD, 66 participated

in this study, with 60 completing the entire process. The 66

participants included 25 females with an average age of 68.44 ±

6.16 years and 41 males with an average age of 68.76 ± 6.04

years. The participant enrollment in both groups is illustrated

in Figure 1. No statistically significant differences were found

between the two groups in terms of general clinical data, gait, and

neuropsychological scale scores, including age, sex, and education

level (P > 0.05, Table 1).

3.2 Primary outcome

Repeated measures ANOVA was conducted for three time

periods (baseline, week 4, and week 6) in both groups, revealing

significant increases in the CBF/DC ratios across four brain clusters

in both groups. Cluster 1 included the left gyrus rectus (REC.L) and

the left anterior cingulate and paracingulate gyri (ACG.L); Cluster

2 included the left orbital mid frontal gyrus (ROBmid.L) and the

left orbital superior frontal gyrus (ROBsup.L); Cluster 3 was mainly
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FIGURE 1

Flowchart depicting the screening process for participant inclusion.

composed of the right orbital superior frontal gyrus (ROBsup.R)

and the right orbital mid frontal gyrus (ROBmid.R). Cluster 4

included the left median cingulate and paracingulate gyri (DCG.L),

right median cingulate and paracingulate gyri (DCG.R), and the

left posterior cingulate gyrus (PCG.L), and the left precuneus

(PAUN.L) (P < 0.05, FDR correction; Figures 2A, B, Table 2). A

significant interaction effect between time and group was observed

in all four clusters [F = 9.175, 28.589, 3.955, and 14.367 (Clusters

1–4); P = 0.001, P < 0.001, P < 0.023, and P < 0.001, respectively;

Figure 2C, Table 3].

Multiple comparisons indicated that, in the tDCS group,

CBF/DC values in Clusters 1, 2, and 4 significantly increased at

baseline in Week 4 and Week 6 (P < 0.001). In Cluster 3, CBF/DC

values were significantly higher atWeeks 4 and 6 than at baseline (P

= 0.022 and P = 0.004, respectively), but not between the 4th and

6th weeks (P= 0.828). In the Sham group, there were no significant

differences in CBF/DC values in the four regions across the three

time points (P > 0.05; Figure 2C, Table 3).

3.3 Secondary outcomes

The tDCS group exhibited significant improvements in step

length and walking speed compared to the Sham group, with a

significant time× group interaction (F = 6.67 and 46.56; P= 0.003

and P < 0.001, respectively; Figure 2D, Table 3), and in processing

abilities (SCWT-C and TMT-B tests), with a significant time ×

group interaction (F = 4.02 and 11.57; P = 0.025 and P < 0.001,

respectively; Figure 2D, Table 3).

3.4 Correlation analysis of regions of
interest

The CBF/DC ratio in the Cluster 1 region was correlated

positively with walking speed and negatively correlated with

SCWT-C, TMT-B, and DTUG scores (Figures 3A–D). In the

Cluster 2 region, the CBF/DC ratio was correlated positively with

walking BBS scores and negatively correlated with SCWT-C, TMT-

B, and DTUG scores (Figures 3E–H). In the Cluster 3 region, the

CBF/DC ratio was positively correlated with walking speed and

negatively correlated with SCWT-C, TMT-B, and DTUG scores

(Figures 3I–L). In the Cluster 4 region, the CBF/DC ratio was

positively correlated with BBS scores and step length and negatively

correlated with SCWT-C and DTUG scores (Figures 3M–P).

3.5 Adverse e�ects and safety

The incidence of adverse reactions was similar in the

two groups (Table 4). No severe adverse reactions, such as

hospitalization, suicide attempts, or seizures, were reported.
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TABLE 1 Patient characteristics.

tDCS group (N = 33) Sham group (N = 33) P-value

Age, years 68.24± 8.16 67.43± 10.54 0.768b

Male sex, n (%) 22 (20.5) 19 (20.5) 0.447a

Education, years 9.36± 3.77 7.91± 3.88 0.197b

BMI, kg/m2 23.35± 2.80 22.95± 3.40 0.658b

Current smoking, n (%) 13 (11.5) 10 (1.5) 0.438a

Hypertension, n (%) 14 (10.4) 12 (9.6) 0.614a

Diabetes mellitus, n (%) 6 (5.5) 5 (5.5) 0.741a

Hyperlipemia, n (%) 16 (17) 18 (17) 0.622a

Total CSVD load (score) 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 0.190c

Global cognition

MoCA (score) 22 (18, 26) 22 (18, 25) 0.506c

Executive

TMT-B (s) 176.52± 86.37 174.39± 96.48 0.936b

SCWT-C (s) 47.40± 25.66 47.12± 26.34 0.971b

Visuospatial

CDT (score) 3 (1, 3) 2 (2, 3) 0.883c

Processing speed

TMT-A (s) 115.17± 60.15 110.85± 66.27 0.814b

Gait

TUG (s) 16.82± 0.25 16.82± 0.25 0.698b

DTUG (s) 17.82± 0.28 19.87± 3.32 0.914b

BBS (s) 37.92± 0.87 37.91± 2.75 0.673b

Step length (m) 0.48± 0.08 0.49± 0.08 0.773b

Gait speed (m/s) 0.80± 0.15 0.84± 0.12 0.339b

Cadence (spm) 99.95± 11.77 99.13± 11.81 0.809b

aChi-squared test.
bTwo-sample t-test.
cMann–Whitney test.

tDCS, transcranial direct current stimulation; BMI, Body Mass Index; CSVD, cerebral small vessel disease; MoCA, Montreal Cognitive Assessment; TMT, Trail Making Test; SCWT, Stroop

Color-Word Test; CDT, Clock Drawing Test; TUG, Timed Up and Go Test; DTUG, dual-task Timed Up and Go test; BBS, Berg Balance Scale.

4 Discussion

4.1 Main findings

In this study, we investigated the clinical effects and

safety of tDCS on brain perfusion, functional connectivity, gait

characteristics, and cognitive executive function in patients with

gait disorders associated with CSVD. Notably, the results were

consistent with our hypothesis. The 6-week tDCS treatment

improved whole-brain network connectivity in patients with

CSVD. The CBF/DC ratio increased in four clusters, including

the orbitofrontal cortex regions (OFC), comprising the REC.L,

ROBmid.L, ROBsup.L, ROBsup.R, and ROBmid.R. Moreover,

increased CBF/DC ratios were observed in the cingulate gyrus

clusters, consisting of the left ACG.L, DCG.L, DCG.R, PCG.L, and

PAUN.L. No significant adverse reactions were reported during the

treatment period.

With advancements in neuroimaging, the role of the

orbitofrontal cortex in cognition, risk decision-making, and

emotional regulation has gained increasing support (Wallis, 2007;

Zhuang et al., 2021; Hogeveen et al., 2022). The orbitofrontal region

plays a crucial role in individual decision-making and performs

normally in cognitive tests, supporting the mainstream view of

OFC functionality (Knudsen and Wallis, 2022). Although previous

studies have shown limited connections between the OFC and

motor functions compared to other frontal lobe regions, limited

studies have focused on its role in regulating body movements and

posture balance (Padoa-Schioppa and Assad, 2006; Kennerley et al.,

2009). This limited connection is consistent with its anatomical

structure, which exhibits stronger connections with autonomic

control regions than with muscle-skeletal control regions (Cavada

et al., 2000). However, with the concept of cognitive mapping,

the OFC has been recognized for its complex and crucial role.

While it was initially believed that neural instantiation of cognitive
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FIGURE 2

Spatial distribution maps of CBF/DC changes in the tDCS and Sham groups across three-time points. (A) Spatial distribution maps of average CBF/DC

at baseline and the fourth and sixth weeks for both groups, with DC and CBF values normalized to z-scores and averaged within each group. The DC

values were calculated for connectivity using a threshold of 0.25. (B) Brain regions showing di�erences in CBF/DC values between the tDCS and

Sham groups. (C) Changes in CBF/DC values in four distinct clusters. (D) Changes in secondary outcome measures. Uppercase letters represent the

time point di�erences shown in the letter labeling method (within-group comparison), and the asterisks indicate significant di�erences compared to

the control group (within-group). CBF, cerebral blood flow; DC, degree centrality; tDCS, transcranial direct current stimulation; SCWT, Stroop

Color-Word Test; TMT, Trail Making Test.

maps mainly occurs in the hippocampus, neuroimaging findings

indicate that when individuals utilize cognitive maps, the OFC

is the only cortical region activated, suggesting its significant

role (Wikenheiser and Schoenbaum, 2016). Therefore, any

sufficiently complex task, including physical activities such as

movement, should benefit from cognitive mapping (Zhuang
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TABLE 2 Coordinates of brain regions in the tDCS and Sham groups for positive and negative CBF/DC ratios.

Group Brain regions Cluster size (voxel) MNI coordinate F-values

tDCS and Sham groups X Y Z

Cluster 1 REC.L 153 −4 44 −22 4.40

ACG.L 120

Cluster 2 ROBmid.L 98 −24 48 −14 4.49

ROBsup.L 44

Cluster 3 ROBsup.R 172 26 60 −12 4.66

ROBmid.R 126

Cluster 4 DCG.L 323 0 −42 28 5.05

DCG.R 276

PCG.L 202

PAUN.L 129

tDCS, transcranial direct current stimulation. REC.L, the left gyrus rectus; ACG.L, left anterior cingulate and paracingulate gyri; ROBmid.L, left orbital mid frontal gyrus; ROBsup.L, left orbital

superior frontal gyrus; ROBsup.R, right orbital superior frontal gyrus; ROBmid.R, right orbital mid frontal gyrus; DCG.L, left median cingulate and paracingulate gyri; DCG.R, right median

cingulate and paracingulate gyri; PCG.L, left posterior cingulate gyrus; PAUN.L, left precuneus; CBF/DC, cerebral blood flow/degree centrality ratio; MNI, Montreal Neurological Institute.

TABLE 3 Primary and secondary outcomes.

tDCS group vs. Sham group Mean (SD)

tDCS group (n = 31) Sham group (n = 29) 95% CI P-value

Primary outcomes

Di�erence block CBF/DC value at week 6

Cluster 1 0.43 (0.06) 0.38 (0.08) 0.05 (0.01–0.09) 0.009

Cluster 2 0.52 (0.08) 0.38 (0.08) 0.14 (0.09–0.18) <0.001

Cluster 3 0.43 (0.06) 0.36 (0.08) 0.07 (0.02–0.11) 0.003

Cluster 4 0.45 (0.08) 0.39 (0.07) 0.06 (0.02–0.10) 0.009

Secondary outcomes

Gait and cognitive scales changed at week 6

Step length (m) 0.55 (0.07) 0.49 (0.08) 0.07 (0.02 to 0.11) 0.003

Gait speed (m/s) 1.05 (0.11) 0.83 (0.12) 0.22 (0.15 to 0.28) <0.001

SCWT-C (s) 32.34 (13.32) 45.10 (27.52) −12.763 (−25.17 to−0.359) 0.044

TMT-B (s) 129.00 (52.65) 175.21 (93.27) −46.22 (−89.77 to−2.67) 0.038

tDCS, transcranial direct current stimulation; SCWT, Stroop Color-Word Test; TMT, Trail Making Test; CBF/DC, cerebral blood flow/degree centrality ratio; SD, standard deviation; CI,

confidence interval.

et al., 2021). The execution of complex movements requires

advanced cognitive functions to provide feedback on various

sensory transmissions and environmental controls (Scherder

et al., 2007; Annweiler et al., 2013; Collyer et al., 2022). Current

research has confirmed a significant correlation between cognitive

levels and gait characteristics, with cognitive improvement

contributing to enhanced gait features (Scherder et al., 2007;

Annweiler et al., 2013; Cohen et al., 2016). Notably, this correlation

is consistent with our finding of increased CBF/DC values in the

bilateral OFC regions following treatment with tDCS, leading

to significant improvements in gait characteristics and executive

processing abilities.

As previously mentioned, we observed increased CBF/DC

values in the left cingulate gyrus and DCG.R regions. The

cingulate gyrus is a cortical part of the limbic system, with the

ACG being part of the attention network and projecting to the

spinal cord. It closely interacts with the lateral PFC, thalamus,

pre-motor, and supplementary motor areas, regulating attention

or executive function, complex motor control, motivation,

error monitoring, and working memory by influencing sensory

feedback or response selection (Brockett et al., 2020; Bubb

et al., 2021). Enhancing neurovascular coupling in this area

contributes to improved executive and motor functions.

Notably, visual perception enables a unified understanding

of external stimuli. The initial input information is broken

down into features, such as shape, color, and motion, which

are processed in different brain regions and then integrated to

form a unified cognitive representation of the object, governing
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FIGURE 3

Correlation analysis of ROIs. (A–D) The CBF/DC ratio in the Cluster 1 region was correlated with gait characteristics and neuropsychological scales.

(E–H) The CBF/DC ratio in the Cluster 2 region was correlated with gait characteristics and neuropsychological scales. (I–L) The CBF/DC ratio in the

Cluster 3 region was correlated with gait characteristics and neuropsychological scales. (M–P) The CBF/DC ratio in the Cluster 4 region was

correlated with gait characteristics and neuropsychological scales. BBS, Berg Balance Scale; CBF, cerebral blood flow; DC, degree centrality; DTUG,

dual-task Timed Up and Go test; ROIs, regions of interest; SCWT, Stroop Color-Word Test; TMT, Trail Making Test. The warm colors represent the

tDCS group, while the cool colors represent the sham group.

the regulation of postural movement. The PAUN region plays

a crucial intermediary role in this process. Furthermore, the

ACG is associated with various high-level cognitive functions,

such as episodic memory, self-relevant information processing,

coordinating motor behavior, and guiding attention toward

relevant information. It is also part of the default mode

network, contributing to external supervision and visual-

spatial attention (Li et al., 2019; Dadario and Sughrue, 2023;

Jitsuishi and Yamaguchi, 2023). The increased CBF/DC values

in the PAUN region observed in our study following tDCS

suggest enhanced patient attention, thereby improving postural

movement regulation.
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TABLE 4 Frequency of adverse e�ects.

Adverse e�ect tDCS group (N = 33) Sham group (N = 33) P-value

Week 1

Headache, n (%) 3 (2.5) 2 (2.5) >0.99a

Neck pain, n (%) 2 (2.0) 2 (2.0) >0.99a

Burning sensation, n (%) 8 (5.0) 2 (5.0) 0.039a

Scalp pain, n (%) 4 (3.5) 3 (3.5) >0.99a

Tinnitus, n (%) 3 (2.0) 1 (2.0) 0.613a

Skin redness, n (%) 5 (3.5) 2 (3.5) 0.427a

Sleepiness, n (%) 4 (3.5) 3 (3.5) >0.99a

Trouble concentrating, n (%) 3 (2.5) 2 (2.5) >0.99a

Week 4

Headache, n (%) 3 (2.5) 2 (2.5) >0.99a

Neck pain, n (%) 3 (2.0) 1 (2.0) 0.613a

Burning sensation, n (%) 3 (2.5) 2 (2.5) >0.99a

Scalp pain, n (%) 2 (1.5) 1 (1.5) >0.99a

Tinnitus, n (%) 3 (2.5) 2 (2.5) >0.99a

Skin redness, n (%) 4 (3.5) 3 (3.5) >0.99a

Sleepiness, n (%) 2 (2.0) 2 (2.0) >0.99a

Trouble concentrating, n (%) 3 (2.5) 2 (2.5) >0.99a

Week 6

Headache, n (%) 1 (1.0) 1 (1.0) >0.99a

Neck pain, n (%) 2 (1.5) 1 (1.5) >0.99a

Burning sensation, n (%) 2 (1.5) 1 (1.5) >0.99a

Scalp pain, n (%) 1 (1.0) 1 (1.0) >0.99a

Tinnitus, n (%) 0 (0.5) 1 (0.5) >0.99a

Skin redness, n (%) 2 (1.5) 1 (1.5) >0.99a

Sleepiness, n (%) 2 (1.5) 1 (1.5) >0.99a

Trouble concentrating, n (%) 2 (1.5) 1 (1.5) >0.99a

aFisher exact test.

tDCS, transcranial direct current stimulation.

4.2 Secondary outcomes

In the tDCS group, we observed significant improvements

in CBF and functional connectivity. However, deep nuclei, such

as the thalamus and caudate nucleus, exhibited no significant

differences compared to the Sham group. We speculate that long-

term tDCS increases CBF flow and induces concurrent changes

in synaptic plasticity, which may contribute to improved CSVD-

GD motor performance through increased CBF involved in motor

regulation and synaptic plasticity changes in the basal ganglia.

Furthermore, tDCS may enhance synaptic transmission through

long-term stimulation, affecting communication between neurons.

Treatment with tDCS significantly improved gait

characteristics and cognitive executive function in patients

with CSVD despite no significant changes in overall cognitive

levels (MoCA scores). These improvements were evidenced by

noticeable increases in stride length and walking speed, as well as

decreased scores in tasks such as TMT and SCWT. These changes

in gait parameters may be related to tDCS-induced modulation

of various brain regions involved in coordinating walking

movements, including the fronto-temporal-striatal network and

the basal ganglia (Nishida et al., 2024).

4.3 Clinical and research implications

Effective treatment methods for patients with CSVD-GD are

currently lacking, and existing research results are inconsistent

(Yang et al., 2021; Veldema and Gharabaghi, 2022; Shibata et al.,

2023). Our study highlights the clinical significance of tDCS,

demonstrating that long-term, repeated tDCS therapy significantly

improves gait and cognitive function in patients with CSVD-GD.

These findings provide a simple, reliable, and non-invasive physical

therapy option for neurodegenerative diseases.

After the tDCS intervention, we analyzed changes in multiple

MRI parameters and cognitive behavioral scale scores in patients
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with CSVD-GD. We identified early characteristic changes, such

as increased neurovascular coupling in the orbitofrontal cortex,

cingulate gyrus, and the PAUN, along with improvements in

executive function and gait. These findings provide a theoretical

basis for early interventions. The findings emphasize the potential

of tDCS as a non-invasive intervention, highlighting its role in early

intervention strategies and suggesting directions for future research

and clinical applications. No serious adverse events were reported

in our study, and the safety profile further supports the clinical

applicability of tDCS, consistent with earlier findings (Ko, 2021),

reinforcing tDCS as a safe and effective intervention for various

neurological disorders.

4.4 Limitations

This study has some limitations. First, the results are based

on a small sample size; therefore, future research should include

a larger sample sizes. Second, this study did not incorporate

more comprehensive reports based on whole-brain voxel-based

morphometry and blood biomarkers.

In conclusion, the present study demonstrated the effects

of tDCS by monitoring changes in neural connectivity and

CBF coupling using MRI. With extended observation periods

and proper risk assessment, tDCS can serve as an additional

intervention for treating CSVD-GD. In the future, we aim to

delve deeper into the effects of tDCS on CSVD-GD over longer

durations, different regions, and varying stimulation intensities.

Future research requires larger sample sizes and comprehensive

analyses of changes in multimodal imaging of patients with CSVD-

GD to validate these findings further.
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