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Introduction: Identifying older drivers at risk of critical decline in driving safety

performance (DSP) is essential for traffic safety. Regional cerebral gray matter

(GM) volume may serve as a biomarker for such decline, but its predictive value

in real-world driving contexts remains unclear.

Methods: We enrolled 94 cognitively healthy older drivers (45 males, 49 females;

mean age 77.66 ± 3.67 years) who completed a standardized driving assessment

using actual vehicles on a closed-circuit course. DSP was evaluated across

six categories: visual search behavior, speeding, indicator signaling, vehicle

stability, positioning, and steering. Scores were assigned by a certified driving

instructor, with lower scores (<15th percentile) indicating critical DSP decline.

Regional GM volumes were quantified using voxel-based morphometry of MRI

scans. Feature selection and classification were performed using the Random

Forest machine learning algorithm, optimized to identify the most predictive GM

regions.

Results: Out of 114 GM regions, eleven were selected as optimal predictors:

left angular gyrus, frontal operculum, occipital fusiform gyrus, parietal

operculum, postcentral gyrus, planum polare, superior temporal gyrus, and right

hippocampus, orbital part of the inferior frontal gyrus, posterior cingulate gyrus,

and posterior orbital gyrus. These regions are implicated in attention, spatial

cognition, visual processing, and somatosensory integration-functions critical

for safe driving. The Random Forest model demonstrated high accuracy and

specificity, but moderate precision and recall, limiting immediate real-world

application.

Discussion: While regional GM volume shows promise for identifying older

drivers at risk of critical DSP decline, predictive performance remains suboptimal

for practical implementation. Additional factors, such as neuronal connectivity
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assessed by functional MRI, may improve predictive accuracy. Nonetheless, MRI-

based assessment of brain structure can enhance our understanding of the

neural mechanisms underlying driving safety and inform strategies to prevent

traffic accidents among older adults.

KEYWORDS

healthy older drivers, driving safety performance, MRI, regional gray matter volume,
machine learning

Introduction

In countries where the population is aging, the number of traffic
fatalities caused by older drivers is increasing year by year, and
preventive measures against traffic crashes have become a major
social issue. This is especially true in Japan because the proportion
of the population aged 65 or older has reached about 30%, making it
the fastest-growing country in the world, and this trend is expected
to continue until 2060 (Cabinet Office Japan, 2022). Therefore, it is
no exaggeration to say that Japan’s measures for older drivers are
attracting attention from the world. Japan remains in a position to
show fundamental measures that can serve as a valuable example
for the world rather than temporary and superficial measures.

As the number of older drivers grows, so does the prevalence
of drivers with dementia and mild cognitive impairment (MCI),
which may elevate the risk of traffic accidents (Friedland et al., 1988;
Brown and Ott, 2004; Mayhew et al., 2006). Since 2017, Japan has
mandated cognitive function tests for drivers aged 70 and older
when renewing their licenses. However, an official report from the
Japanese government indicates that over half of the older drivers
involved in accidents had normal cognitive function (Japanese
National Police Agency, 2019). This suggests that excluding drivers
with dementia or MCI alone will not fully address the problem,
as older drivers without these conditions also contribute to traffic
accidents (Salthouse, 2000; Abou-Raya and ElMeguid, 2009; Hong
et al., 2015; Nishida, 2015). Therefore, it is essential to develop
measures that address the decline in driving safety performance
(DSP) among older drivers without dementia or MCI (Pavlidis
et al., 2016; Talwar et al., 2019; Renge et al., 2020).

DSP is proposed to consist of six categories: visual search
behavior, speeding, indicator signals, vehicle stability, positioning,
and steering (Park et al., 2022). Our research posits that DSP
is regulated by the brain, necessitating an investigation into the
brain itself to develop fundamental measures against traffic crashes
(Park et al., 2022; Seidler et al., 2010; Sakai et al., 2012; Yamamoto
et al., 2020). Magnetic resonance imaging (MRI) allows for the
measurement of brain volume data, though its use is limited by the
high cost and time required for medical equipment.

Previous research has explored the relationship between brain
structure and DSP. For instance, a study by the Toyota Research
Center found a significant association between questionnaire scores
on DSP and a decrease in the volume of the supplementary
motor area in 39 healthy older drivers (Sakai et al., 2012).
However, this study did not evaluate DSP in actual vehicles
or report on other brain regions. Another study by Keio
University investigated only one DSP category—stopping distance

due to braking at intersections—in 32 elderly individuals without
dementia (Yamamoto et al., 2020). Using machine learning, they
identified significant correlations between this limited DSP and the
volume of four gray matter (GM) regions. However, this study did
not examine other DSP categories or various driving scenarios,
such as lane changes or navigating large curves with poor visibility.

In this study, we enrolled 94 older drivers without dementia
and examined their DSP using actual vehicles on a closed-circuit
course. We evaluated six DSP categories across various driving
locations and employed machine learning to identify older drivers
with risky driving performance, as defined by their DSP scores.
Additionally, we investigated the GM regions involved in this
identification process. By addressing these gaps in the literature,
our study aims to provide a more comprehensive understanding
of the neural basis of DSP in older drivers, potentially contributing
to the fundamental development of effectively preventive measures
against traffic accidents.

While this approach is particularly relevant in Japan due to
the widespread availability of MRI scanners, we recognize that
the accessibility of MRI technology may vary in other countries.
However, the insights gained from this study could inform future
research and policy decisions globally as MRI technology becomes
more accessible.

Materials and methods

Participants

A total of 94 participants (45 men and 49 women; mean
age, 77.66 ± 3. 67 years) without dementia participated in this
study. Participants were recruited from the Chuge area of Kochi
prefecture in Japan, through local newspapers and television. The
gender distribution (45 males, 49 females) closely reflects the
general population of older adults in the study area. We did not
find significant gender-based differences in our analyses, but future
studies with larger sample sizes could further explore potential
gender effects. Each participant received an MRI examination
and mini-mental state examinations (MMSE) at Tano Hospital,
a medical center in the Chugei area. The average MMSE scores
were 28.32 ± 1.62 (range, 24–30; median, 29). A dementia
specialist (K.P.) interviewed all participants and their families,
examined the participants, and ruled out dementia based on MRI
findings, MMSE scores, and neuropsychological tests, including
the Conversational Assessment of Neurocognitive Dysfunction,
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a tool newly developed for dementia diagnosis based on daily
conversations (Oba et al., 2018). All participants were right-handed
and had no cerebrovascular diseases or brain tumors. Massive
white matter hyperintensities (WMHs) were also excluded from
the enrollment, as WMHs have been reported to deteriorate DSPs
(Oba et al., 2022; Park et al., 2013). Participants also received an
evaluation of DSP on actual vehicles running on roads at the Aki
Driving School located in the Chugei area of Kochi. Inclusion
criteria for driving experience and exposure required participants
to drive more than twice per week and cover at least 5 km per week
to various destinations such as work sites, shops, and hospitals.
Professional drivers were excluded from this study.

Measurement of regional brain volumes

T1-weighted MR images were obtained using the 1.5-Tesla
ECHELON Vega system (Hitachi, Tokyo, Japan) with the three-
dimensional gradient echo with an inversion recovery sequence.
The following scanning parameters were used: repetition time,
9.2 ms; echo time, 4.0 ms; inversion time, 1,000 ms; flip angle,
8◦; field of view, 240 mm; matrix size, 0.9375 × 0.9375 mm;
slice thickness, 1.2 mm; and the number of excitations, 1. Each
image was visually assessed for brain diseases and anomalies, head
motion, and artifacts affecting the volumetric measurement. The
images were processed and analyzed using the VBM8 toolbox1 and
other modules implemented in the Statistical Parametric Mapping
(SPM) 8 to estimate regional brain volumes.2

In brief, the images were segmented into GM, WM, and
cerebrospinal fluid space using the maximum a posteriori (MAP)
approach (Whitwell, 2009). The segmented GM and WM images
were then used to estimate the morphological correspondence
between the template image and the participant’s brain using
the high-dimensional nonlinear warping algorithm (Ashburner,
2007). The estimated nonlinear warp was inversely applied to an
atlas defined in the template space to parcellate the target brain
anatomically. The neuronal morphometric atlas was used for the
parcellation according to SPM12, with a modification for WM
lesions which appeared as incorrect GM segments around the
lateral ventricles. The volumes of 114 anatomical regions were
calculated as the sum of the correspondent tissue densities in the
voxels belonging to each region.

Evaluation by DSPs

Actual vehicle-driving experiments were performed on a
closed-circuit course, officially designated for renewing driving
licenses for older drivers by the National Police Agency (The
Driver’s License Skill Test Implementation Standard), in the Aki
Driving School in the Chugei area, Kochi, Japan (Figure 1A). In
the present test, six locations on the driving course were selected
for rating. These locations included changing lines when driving
straight (Figure 1B, P1), changing line when driving straight; P2,

1 http://www.neuro.uni-jena.de/vbm8/VBM8-Manual.pdf

2 https://www.fil.ion.ucl.ac.uk/spm/

intersection with one right turn; P3, straight course; P4, intersection
with one left turn; P5, large curve with poor visibility; P6, another
right turn having a stop sign.

The six locations were selected to represent a variety of
driving scenarios commonly encountered by older drivers. These
include straight driving, turns, intersections, and areas with poor
visibility. All participants followed a predetermined sequence of
driving routes on the closed-circuit course without breaks between
rounds. This approach ensured consistency across evaluations
and comparability with prior studies using the same protocol
(Park et al., 2024). While this fixed order minimizes variability
in assessment conditions, it may introduce potential order effects
or fatigue-related biases. Future studies could explore randomized
route sequences or incorporate breaks between rounds to reduce
these biases while maintaining standardized evaluation procedures.

A Toyota-made four-wheeled 1,400-cc vehicle (COMFORT)
was used. The typical speed of the vehicles on the closed-circuit
course ranges from 20 to 50 km/h, and approximately 20 min
is taken to complete a circuit. An official driving instructor
can accomplish the evaluation after showing participants how to
drive, as a good sample of DSP. No further driving events were
included in the test. In the advanced stage of the test, a qualified
driving instructor drove around the course, demonstrating good
driving performance, with a participant sitting in the seat next
to the instructor. Then, the participant drove with the evaluating
instructor sitting in the passenger’s seat. The official instructor
rated the driving skills of each participant using the previously
described method (Supplementary Table S1) (Park et al., 2024).
They responded to the items using a three-point scale: (1) poorly
done; (2) normally done; and (3) well done. These rating scores
at six locations were then calculated as the “overall evaluation” by
assessing the six categories: DSP1, “visual search behavior (safety
recognition with head movement);” DSP2, “speeding (choice of
vehicle speed);” DSP3, “signaling (timely and appropriate usage of
the indicator);” DSP4, “vehicle stability (acceleration and braking
without knocking and completely pulling up in front of the stop
line);” DSP5, “positioning (vehicle movement along the radius of
the curvature at intersections without large or small turns);” DSP6,
“steering (smooth handling with appropriate starting and ending).”
The six categories of driving safety performance (DSP1-DSP6) were
based on previous research in traffic safety and recommendations
from experienced driving instructors. These categories encompass
key aspects of safe driving behavior that are particularly relevant for
older adults, as previously described (Park et al., 2024).

Larger scores indicated stronger compliance with the Road
Traffic Act. The average value of the summed scores at the six
locations for the two rounds of the course was calculated for the
DSPs. To minimize potential bias, the driving instructor underwent
standardized training in assessment procedures. However, we
acknowledge that some subjectivity may remain. Future studies
could benefit from multiple raters and the calculation of inter-
rater reliability.

Statistical analysis

To account for potential gender differences in brain structure,
independent samples t-tests were conducted to compare
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FIGURE 1

An actual vehicle and a closed-circuit course. (A) A view from inside the vehicle. (B) Map of the driving course with six rating points. P1, changing line
when driving straight; P2, intersection with one right turns; P3, straight course; P4, intersection with one left turn; P5, large curve with poor visibility;
P6, another right turn having a stop sign. The corresponding author owns the copyright of the photography.

normalized brain volumes between male and female participants.
Significant differences in frontal and parietal volumes were
identified (see “Results”), and gender was subsequently included
as a covariate in all machine learning models to ensure robustness
across gender groups.

Machine learning analysis

The machine learning analysis was conducted using the scikit-
learn library in Python, following a systematic process to ensure
rigor and reproducibility. The dataset was initially loaded and
preprocessed by removing specific columns deemed irrelevant for
the analysis. Feature scaling was performed using MinMaxScaler to
normalize the data within the range of 0–1, ensuring that no single
feature dominated the machine learning models (Pedregosa et al.,
2011; de Amorim et al., 2023).

The sample size for this study was 94 participants, which is
larger than previous comparable studies in this field (Sakai et al.,
2012; Yamamoto et al., 2020). However, machine learning models
analyzing neuroimaging data ideally require 100+ participants to
achieve stable feature selection (Vabalas et al., 2019).

To mitigate the potential limitations of our sample size, and to
enhance the robustness of the model evaluation, bootstrapping was
employed. This involved 100 iterations where, in each iteration,
a bootstrap sample of the dataset was created and subsequently
split into training (70%) and testing (30%) sets (Huang and Huang,
2023). This technique allows for a more reliable estimation of model
performance across multiple subsamples of the data.

Additionally, dimensionality reduction in the form of Feature
selection was conducted using LASSO (Least Absolute Shrinkage
and Selection Operator) regression with 5-fold cross-validation
(Tibshirani, 1996) to balance model complexity with the available
sample size. Given the 94 samples in our dataset, we constrained the
LASSO to select between 7 and 17 features. This range was chosen
based on the standard rule of thumb of having approximately 10
samples for each feature, which helps to prevent overfitting while
still capturing important predictors (Friedman et al., 2010). Only
the top features of the highest importance were retained for further
analysis.

To define the critical decline in driving safety performance,
we employed a systematic, data-driven process to determine the
optimal percentile threshold. The 15th percentile threshold was
selected based on the following steps:

1. Iterative threshold testing: We evaluated multiple percentile
thresholds (10, 15, 20, and 25%) to identify the optimal split
for our dataset.

2. Bidirectional analysis: For each threshold, we created binary
groups using both top-X% vs. the rest and bottom-X% vs. the
rest of the data.

3. Model development: We developed Random Forest
models for each grouping, using 5-fold cross-validation
to ensure robustness.

4 . Performance comparison: We compared model performance
across thresholds using multiple metrics:

• Bottom 15%: Accuracy = 0.89, Precision = 0.72, Recall = 0.64,
F1-score = 0.62, AUC = 0.85.

• Other thresholds: Accuracy = 0.82–0.86, Precision = 0.65–0.70,
Recall = 0.58–0.62, F1-score = 0.55–0.60, AUC = 0.78–0.82.

5. Consistency check: We found that the bottom 15% threshold
consistently outperformed other splits across all six Driving
Safety Behavior (DSB) categories.

6. Validation: We used bootstrapping (100 iterations) to validate
the stability of our results, finding consistent performance
(AUC variation: ± 2%) for the 15% threshold.

While this threshold is not a standard statistical cutoff, it
provided the most meaningful and stable separation in our
dataset for identifying drivers with potentially critical declines
in performance. This data-driven approach, combined with
the expertise of driving instructors, offers a balance between
statistical rigor and practical relevance in the context of driving
safety assessment.

To address the class imbalance that is present in the dataset
(14 vs. 84 participants), we employed the Synthetic Minority Over-
sampling Technique (SMOTE). This technique oversamples the
minority class in the training data to achieve balanced classes,
which helps to balance the classes and improve the model’s ability
to learn from the underrepresented group (Q. Chen et al., 2022).
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FIGURE 2

Distribution of the total driving safety performance (DSP) scores of the participants. The total DSP score is the sum of scores from DSP1 to DSP6.
This score was used to build the Random Forest model in this study. The red line on the x-axis indicates the 15th percentile threshold, marking the
boundary for the lowest 15% of scores.

TABLE 1 Demographic and brain volume metrics for different DSP score percentiles.

Lower 15% percentile of DSP
score

Upper 85% percentile of DSP
score

All participants

N 14 80 94

Age 77.86 ± 4.61 77.63 ± 3.52 77.66 ± 3.67

MMSE score 28.36 ± 2.13 28.31 ± 1.52 28.32 ± 1.62

Total DSP score 143.57 ± 10.67 191.74 ± 19.73 184.56 ± 25.37

GM volume/ICV 0.4030 ± 0.0267 0.3909 ± 0.0264 0.3928 ± 0.0266

WM volume/ICV 0.3683 ± 0.0229 0.3831 ± 0.0230 0.3808 ± 0.0235

Brain volume/ICV 0.7713 ± 0.0209 0.7740 ± 0.0235 0.7736 ± 0.0230

This table compares demographic data and brain volume metrics between participants in the lower 15th percentile of DSP scores, the upper 85th percentile of DSP scores, and all participants.
MMSE, Mini-Mental State Examination; DSP, Driving Safety Performance; GM, Gray Matter; WM, White Matter; ICV, Intracranial Volume.

To identify the optimal classification algorithm for predicting
critical decline in DSP, we conducted a comprehensive comparison
of nine machine learning algorithms: Logistic Regression,
Decision Tree, Random Forest, Gradient Boosting, k-Nearest
Neighbors, Naive Bayes, Support Vector Machine, Neural
Network, and AdaBoost. All models were evaluated using 10-
fold bootstrapping (n = 280 per classifier), with performance
assessed across multiple metrics including accuracy, precision,
recall, F1-score, and ROC-AUC. To address the class imbalance
in our dataset (14 vs. 84 participants), we applied the Synthetic
Minority Over-sampling Technique (SMOTE) during model
training. Statistical comparisons between model performances
were conducted using ANOVA with post-hoc tests, using Support
Vector Machine as the reference classifier. The Random Forest

classifier was ultimately selected based on its superior performance
across these metrics.

While we acknowledge the limitations of our small sample
size, the use of bootstrapping and cross-validation helps
to maximize the use of our available data and provides a
more robust estimate of model performance. However, we
recognize that these results should be interpreted with caution,
and future studies with larger sample sizes are needed to
confirm our findings.

Ethics statement

This study was conducted under the “Ethics Guideline for
Medical and Health Research Involving Human Subjects” based
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TABLE 2 Gender-based comparison of normalized brain volumes and age among participants.

Parameters Mean (male)* Mean (female)* t-statistic p-value** Cohen’s d

Age 77.67 77.65 0.018 0.986 0.004

Total gray matter volume 0.3885 0.3967 −1.492 0.139 −0.308

Total white matter volume 0.3835 0.3784 1.027 0.307 0.212

Total cerebrospinal fluid volume 0.228 0.2249 0.665 0.507 0.137

Total brain volume 0.7719 0.7751 −0.665 0.507 −0.137

Total frontal volume 0.0953 0.0996 −2.552 0.012 −0.527

Total temporal volume 0.0703 0.0702 0.048 0.962 0.01

Total parietal volume 0.0591 0.0613 −1.863 0.066 −0.385

Total occipital volume 0.0444 0.0449 −0.559 0.577 −0.116

This table presents the mean values, t-statistics, p-values, and Cohen’s d effect sizes for comparisons between male (n = 45) and female (n = 49) participants across various brain volume metrics
normalized by intracranial volume (ICV). *All brain volumes are normalized by intracranial volume. **p-values are two-sided p-value.

TABLE 3 Performance comparison of multiple different classifiers with SMOTE balancing.

Classifier comparison with SMOTE balancing

Classifier Precision Recall F1-score (95% CI) ROC-AUC

AdaBoost 0.5791 ± 0.1081
**

0.599 ± 0.0895 0.5458 ± 0.0825 [0.013, 0.042]
**

0.7631 ± 0.0552
*

Decision Tree 0.547 ± 0.0948 0.6021 ± 0.0826 0.5333 ± 0.0763 [0, 0.029]
*

0.7409 ± 0.0414
*

Gradient Boosting 0.5714 ± 0.1019
*

0.6083 ± 0.0815
∗

0.5489 ± 0.0796 [0.016, 0.045]
**

0.7756 ± 0.0524
**

k-Nearest Neighbors 0.4989 ± 0.1052
**

0.6079 ± 0.1053 0.5174 ± 0.0942 [−0.016, 0.013] 0.7764 ± 0.0504
**

Logistic Regression 0.4417 ± 0.1184
**

0.5826 ± 0.0882 0.466 ± 0.0951 [−0.067, −0.038]
**

0.7185 ± 0.0676
**

Naive Bayes 0.4049 ± 0.1128
**

0.5095 ± 0.0928
**

0.408 ± 0.0819 [−0.125, −0.096]
**

0.6986 ± 0.0621
**

Neural Network 0.5261 ± 0.1178 0.6021 ± 0.0903 0.5222 ± 0.0964 [−0.011, 0.018] 0.7449 ± 0.0649

Random Forest 0.6413 ± 0.1226
∗*

0.5732 ± 0.091
*

0.5579 ± 0.0836 [0.025, 0.054]
∗*

0.8045 ± 0.0507
∗*

Support Vector Machine 0.5437 ± 0.1349
[+]

0.589 ± 0.0869
[+]

0.5186 ± 0.0945 [reference]
[+]

0.753 ± 0.0694
[+]

This table presents the precision, recall, F1-score, and ROC-AUC score of various machine learning models with SMOTE balancing. All models trained using SMOTE to address class imbalance
(14 vs. 84 participants). Results based on 10-fold bootstrapping (n = 280 per classifier). Overall ANOVA: F(8, 2511) = 83.156, p < 0.001, partial η2 = 0.209. Bold values indicate the highest value
within each column (performance metric) in the table. *p < 0.05, **p < 0.01 compared to Support Vector Machine (reference classifier). [+] reference classifier. The 95% confidence intervals
(CI) for F1-scores represent the difference between each classifier and the reference classifier (Support Vector Machine).

on the Declaration of Helsinki. All participants signed a formal
agreement outlining that the experimental data would only be used
for scientific study and that the results would ensure anonymity.
Written informed consent was obtained from all participants. This
study was approved by the institutional review board at Kochi
University of Technology (Application no. C4-3).

Results

Determination of critical decline in
driving safety performance

We analyzed the distribution of DSP scores across six
categories: visual search behavior, speeding, signaling, vehicle

stability, positioning, and steering (Supplementary Figure S1).
A threshold for critical decline in DSP was established at the
15th percentile of total DSP scores (Figure 2). This threshold
was corroborated by official driving instructors based on their
extensive experience in license renewal for older drivers. The use
of this threshold aligns with previous research suggesting that
older drivers may have increased risk in complex driving situations
due to age-associated changes in attention and cognitive decline
(Henderson et al., 2013).

Participant characteristics

Participants were divided into two groups based on the 15th
percentile threshold of total DSP scores: the lower DSP group
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TABLE 4 Performance comparison of multiple different classifiers without SMOTE balancing.

Classifier comparison without SMOTE balancing

Classifier Precision Recall F1-score (95% CI) ROC-AUC

AdaBoost 0.589 ± 0.1231
**

0.4521 ± 0.1162
**

0.4743 ± 0.1084 [0.0525, 0.0909]
**

0.7536 ± 0.0544
**

Decision Tree 0.5291 ± 0.1086 0.4828 ± 0.1018
∗*

0.4693 ± 0.0948 [0.0474, 0.0859]
**

0.7321 ± 0.0422

Gradient Boosting 0.6002 ± 0.1098
**

0.4828 ± 0.1025
∗*

0.4981 ± 0.0938 [0.0762, 0.1147]
**

0.7629 ± 0.0506
**

k-Nearest Neighbors 0.6238 ± 0.1185
**

0.4775 ± 0.1158
**

0.5045 ± 0.1066 [0.0826, 0.1211]
**

0.7805 ± 0.0538
**

Logistic Regression 0.4733 ± 0.1627
**

0.3552 ± 0.1478
*

0.3722 ± 0.1424 [−0.0497, −0.0112]
*

0.7197 ± 0.0685

Naive Bayes 0.4505 ± 0.1415
**

0.3345 ± 0.1194
**

0.3459 ± 0.1152 [−0.076, −0.0375]
**

0.7102 ± 0.0639
**

Neural Network 0.5169 ± 0.1391 0.4389 ± 0.1409
**

0.4402 ± 0.1324 [0.0183, 0.0568]
**

0.7306 ± 0.0696

Random Forest 0.6994 ± 0.1298
∗*

0.4595 ± 0.1016
**

0.5195 ± 0.0987 [0.0977, 0.1361]
∗*

0.7958 ± 0.0511
∗*

Support Vector Machine 0.5166 ± 0.162
[+]

0.3816 ± 0.1424
[+]

0.4027 ± 0.1396 [reference]
[+]

0.7281 ± 0.0803
[+]

This table present the precision, recall, F1-score, and ROC-AUC score of various machine learning models without the SMOTE balancing. All models trained using SMOTE to address class
imbalance (14 vs. 84 participants). Results based on 10-fold bootstrapping (n = 280 per classifier). Overall ANOVA: F(8, 2,511) = 83.156, p < 0.001, partial η2 = 0.209. Bold values indicate
the highest value within each column (performance metric) in the table. *p < 0.05, **p < 0.01 compared to Support Vector Machine (reference classifier). [+] reference classifier. The 95%
confidence intervals (CI) for F1-scores represent the difference between each classifier and the reference classifier (Support Vector Machine).

(scores below the 15th percentile) and the higher DSP group (scores
above the 15th percentile). The demographic and brain volume
metrics for both groups are summarized in Table 1. There were
no significant differences between the groups in terms of age
(p = 0.915), MMSE scores (p = 0.174), gray matter volume ratio
(p = 0.713), white matter volume ratio (p = 0.654), or total brain
volume to intracranial volume ratio (p = 0.702).

Gender-based analysis of normalized brain volumes revealed
(Table 2) a significant difference between male and female
participants in total frontal volume (p = 0.012) and a marginally
significant difference in total parietal volume (p = 0.066). No
significant gender differences were observed in other global or
regional brain measurements. To account for these differences,
gender was included as a covariate in subsequent analyses
examining the relationship between brain structure and driving
performance.

Comparison of machine learning models
for DSP prediction

A systematic comparison of nine machine learning algorithms
revealed significant differences in F1-scores [F(8, 2,511) = 83.156,
p < 0.001, partial η2 = 0.209]. As shown in Tables 3, 4, the Random
Forest classifier achieved superior overall performance with the
highest F1-score [0.558 ± 0.084, 95% CI (0.025, 0.054)] and ROC-
AUC (0.805 ± 0.051) compared to other algorithms. This was
followed by Gradient Boosting (F1 = 0.549 ± 0.080) and AdaBoost
(F1 = 0.546 ± 0.083). The Random Forest model demonstrated
particularly strong precision (0.641 ± 0.123) and specificity (0.94),
though with moderate recall/sensitivity (0.573 ± 0.091).

Despite implementing SMOTE to address class imbalance,
precision and recall values remained moderate across all models.
However, adding SMOTE increases the performance of the
model compared to without using SMOTE. This limitation can
be attributed to several factors: (1) sample size constraints
relative to the number of predictors, (2) persistent challenges in
classifying the minority class despite oversampling, (3) complex
non-linear relationships between brain volumetric data and
driving performance, and (4) inherent variability in real-world
driving assessments.

To optimize model robustness given these constraints,
we implemented multiple improvement strategies including
bootstrapping (100 iterations), dimensionality reduction
via LASSO regression with cross-validation, and algorithm-
specific hyperparameter tuning. These measures collectively
improved model stability while maintaining the balance between
precision and recall.

Prediction performances using Random
Forest

The Random Forest model was evaluated with different
numbers of features selected by the LASSO method. Table 5
presents the values of accuracy, precision, recall/sensitivity, and
F1 scores for count of features ranging from 7 to 17. The best
predictive performance was achieved using 12 features, including
sex, with the following mean metrics: accuracy (0.89), precision
(0.72), recall/sensitivity (0.64), F1 score (0.62), ROC-AUC (0.85),
specificity (0.94), and cross-validation score (0.95). These results
indicate a strong overall performance of the model in identifying
drivers with critically declined DSP, with particularly high accuracy
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and specificity. However, the relatively lower recall/sensitivity
suggests that the model may have some difficulty in identifying all
cases of critically declined DSP.

Statistical analysis of brain-behavior
relationships

Eleven GM regions were selected by Random Forest with
LASSO. According to projecting views, Figure 3 shows the left
angular gyrus and the left post central gyrus in the superior view;
the left occipital fusiform gyrus, the right hippocampus, and the
right posterior orbital gyrus in the inferior view; the left angular
gyrus and the left inferior occipital gyrus in the posterior view;
the left angular gyrus, the left frontal operculum, the left occipital
fusiform gyrus, the left parietal operculum, the left postcentral
gyrus, the left planum polare, and the left superior temporal gyrus
in the left view; the right orbital part of the inferior frontal gyrus in
the right view.

These regions are involved in various cognitive functions
crucial for driving, including attention, spatial cognition, visual
processing, memory, and decision-making. The identification of
these specific regions aligns with previous research highlighting the
importance of visual processing and cognitive functions in driving
performance (Depestele et al., 2020; Kline et al., 1992).

Bootstrap analysis (Table 6) revealed two brain regions with
high selection stability: left postcentral gyrus (70.75%) and right
posterior orbital gyrus (54.38%). Inter-group t-tests (Table 7)
identified three regions with statistically significant volume
differences between critical decline and non-decline groups:
right posterior orbital gyrus (p = 0.0012), right hippocampus
(p = 0.0162), and left postcentral gyrus (p = 0.0414).

Discussion

Brain functions are generally known to be localized according
to anatomical structures such as GM regions. Increasing evidence
suggests that not only local specialization but also neural
connectivity between these regions—organized as large-scale
functional networks—regulates higher brain functions and thereby
complex human behaviors such as driving a car (Ju, 2023; Thomas
Yeo et al., 2011). Because 1.5 Tesla MRI is widely available in
Japan and is popularly used in brain health checkups for early
detection of unruptured cerebral aneurysms, it is not so difficult to
obtain regional GM volumetric data using conventional 1.5 Tesla
MRI. On the other hand, neural connectivity can be measured as
functional data only when using 3 Tesla MRI which is used in
research institutes or medical centers and is not widely available. In
this study, we explored the prediction of risky driving performance
using regional GM volume with 1.5 Tesla MRI, intending to
implement near future this approach in driver’s license renewal
for older drivers throughout Japan. Based on our literature review,
only two manuscripts except for ours have already described
the relationship between regional GM volume data and driving
behavior assessment (Sakai et al., 2012; Yamamoto et al., 2020).

Our findings align with established sexual dimorphism in brain
structure, particularly in frontal and parietal regions (Ruigrok et al.,
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FIGURE 3

Regional gray matter areas involved in driving safety performance (DSP) as selected by LASSO, providing the best Random Forest model with the
highest evaluation results. The identified regions are: (1) left angular gyrus, (2) left frontal operculum, (3) left occipital fusiform gyrus, (4) left parietal
operculum, (5) left postcentral gyrus, (6) left planum polare, (7) left superior temporal gyrus, (8) right hippocampus, (9) right orbital part of the inferior
frontal gyrus, (10) right posterior cingulate gyrus, and (11) right posterior orbital gyrus.

TABLE 6 LASSO coefficients of the selected brain regions for the model
with best performance.

Brain region LASSO
coefficient

Selection
frequency (%)

Left angular gyrus −0.12136 23.25

Left frontal operculum 0.12688 2.625

Left occipital fusiform gyrus −0.17472 32

Left parietal operculum 0.41 10.125

Left postcentral gyrus 0.42 70.75

Left planum polare 0.18064 8.625

Left superior temporal gyrus −0.312 12.5

Right hippocampus 0.1584 18

Right orbital part of the
inferior frontal gyrus

−0.35048 41.375

Right posterior cingulate
gyrus

0.25512 13.628

Right posterior orbital gyrus. 0.30072 54.375

This table presents the LASSO coefficient and selection frequency of the selected features.

2014). The inclusion of gender as a covariate ensures that our
model accounts for these anatomical differences, strengthening
the generalizability of our results across genders. The preserved
relationship between gray matter volume and DSP after controlling
for gender suggests that structural brain markers of driving
performance are robust to sex-based variation.

Furthermore, this study reports the first time that machine
learning methods have been used to assess six categories of DSP
in a real vehicle on a closed-circuit course comprehensively enough
to assess driver’s license renewal. The results further highlight the
utility of brain structural data, such as regional GM volume, in
assessing DSP in older drivers.

Model performance analysis

In this study, we systematically compared nine machine
learning algorithms to identify the optimal classifier for
predicting critical DSP decline. Random Forest achieved
superior performance compared to other models such as Support
Vector Machine (Yamamoto et al., 2020), with an F1-score
of 0.558 ± 0.084 and ROC-AUC of 0.805 ± 0.051. Random
Forest achieved superior performance using twelve features, with
accuracy (0.89 ± 0.10), precision (0.72 ± 0.31), recall (0.64 ± 0.30),
F1-score (0.62 ± 0.24), ROC-AUC (0.85 ± 0.13), and specificity
(0.94 ± 0.12). Bootstrapping with 100 iterations and dimensionality
reduction via LASSO regression helped mitigate overfitting risks
while improving model stability.

Statistical analysis revealed significant predictors such as the
left postcentral gyrus (p = 0.0414, Cohen’s d = −0.60) and right
posterior orbital gyrus (p = 0.0012, d = −0.80), which were selected
with high frequency during bootstrap iterations (70.8 and 54.4%,
respectively). Supplementary predictors such as the hippocampus
(18%) and occipital fusiform gyrus (32%) showed moderate effect
sizes but contributed meaningfully to overall model performance.
These findings suggest that driving performance relies on both core
neural substrates and distributed networks.

The predictive performance indicates that the precision and
recall/sensitivity remain relatively low for practical use such as
the assessment of driver’s license renewal for older people while
accuracy, ROC-AOC, specificity, and cross-validation reached
satisfactory levels. To address this, we plan to examine leukoaraiosis
(LA), ischemic lesions in cerebral white matter, which can also be
measured by 1.5 Tesla MRI, before exploring functional data from
3 Tesla MRI. LA has been frequently diagnosed among the elderly
and has already been significantly associated with traffic crashes and
wrong entries on highways (Park et al., 2013; Park and Nakagawa,
2023). Furthermore, a recent study has shown that parietal and
occipital LA degrade the DSP of older drivers operating actual
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TABLE 7 Inter-group difference test on the selected features.

Brain region t-test mean
difference

t-test 95% CI of
difference

t-statistic p-value Cohen’s d

Left angular gyrus 0.0963 [−0.3298, 0.5223] 0.4487 0.6547 0.1300

Left frontal operculum −0.0230 [−0.0978, 0.0518] −0.6104 0.5431 −0.1768

Left occipital fusiform gyrus 0.1103 [−0.0309, 0.2515] 1.5516 0.1242 0.4495

Left parietal operculum −0.0409 [−0.1509, 0.0691] −0.7376 0.4626 −0.2137

Left postcentral gyrus −0.4411 [−0.8645, −0.0176] −2.0688 0.0414 −0.5993

Left planum polare −0.0290 [−0.1311, 0.0731] −0.5636 0.5744 −0.1633

Left superior temporal gyrus −0.0035 [−0.2765, 0.2695] −0.0253 0.9799 −0.0073

Right hippocampus −0.1993 [−0.3608, −0.0377] −2.4502 0.0162 −0.7098

Right orbital part of the inferior
frontal gyrus

−0.0498 [−0.1303, 0.0307] −1.2294 0.2220 −0.3562

Right posterior cingulate gyrus −0.1012 [−0.2564, 0.0539] −1.2961 0.1982 −0.3755

Right posterior orbital gyrus. −0.1576 [−0.2466, −0.0687] −3.6543 0.0012 −0.8033

This table presents mean differences, t-test score, p-value, and Cohen’s d value of the features that are selected by the LASSO feature selection.

vehicles on a closed-circuit course under the same conditions as
the present study (Oba et al., 2022). Investigating LA is expected to
improve prediction performance because LA is regarded to disrupt
neural networks within cerebral white matter (Michely et al., 2018)
and may be associated to the degradation of DSP (Oba et al., 2022).

In this study, 11 GM regions were selected using the
Random Forest method. The functional roles of these regions
are plausible for involvement in DSP as follows: the angular
gyrus is involved in attention and spatial cognition (Studer
et al., 2014), which are critical for navigating complex driving
environments, maintaining awareness of surrounding vehicles,
and processing spatial information for lane changes and turns;
the frontal operculum play a role in visual emotion detection
(Kumar et al., 2009) and visuo-motor performance (Quirmbach
and Limanowski, 2022), which may be important for error
detection and performance adjustment during driving; the occipital
fusiform gyrus is responsible for higher processing of visual
information (Uono et al., 2017), which may be important for
error detection and performance adjustment during driving;
the parietal operculum act as an integration center within a
multimodal network (Fornia et al., 2024), which may be important
for error detection and performance adjustment during driving;
the postcentral gyrus involved in somatosensory processing
(DiGuiseppi and Tadi, 2024), necessary for the tactile feedback
required during driving, such as feeling the steering wheel and
pedals; the planum polare is associated with complex auditory
information processing (Griffiths and Warren, 2002), important
for hearing and responding to traffic sounds and auditory cues;
the superior temporal gyrus involved in sound recognition and
speech processing (Yi et al., 2019), enabling drivers to understand
spoken instructions and communicate effectively; the hippocampus
plays a role in memory and emotion (Immordino-Yang and
Singh, 2013), crucial for recalling routes and managing stress
while driving; the orbital part of the inferior frontal gyrus is
a part of the language processing network (Du et al., 2020),
important for reading road signs and understanding verbal
instructions; the posterior cingulate gyrus involved in encoding
and retrieval of episodic memories (Natu et al., 2019), helping

drivers recall specific driving experiences and apply learned
behaviors; the posterior orbital gyrus associated with integrating
emotions and memories related to sensory experiences (Kim
et al., 2017), which may influence decision-making during
driving.

Taken together, these regions map onto multiple large-
scale brain networks—including the somatosensory-motor,
default mode, and frontoparietal control networks—highlighting
that safe driving performance in older adults depends on
the integrity and coordination of distributed neural systems
(Thomas Yeo et al., 2011).

Furthermore, the statistical analyses revealed convergent
evidence for the importance of specific brain regions in
predicting driving performance. Particularly notable is the left
postcentral gyrus, which demonstrated both high selection stability
(70.75%) and statistically significant volume differences between
performance groups (p = 0.0414, d = −0.5993). Similarly, the
right posterior orbital gyrus showed high selection consistency
(54.38%) and the strongest inter-group difference (p = 0.0012,
d = −0.8033), suggesting its critical role in maintaining driving
safety performance. The consistent identification of these regions
across different statistical approaches strengthens confidence in
their relevance to driving performance in older adults.

The involvement of these diverse brain regions underscores the
complexity of driving as a cognitive task, requiring the integration
of multiple sensory modalities, attention, memory, and decision-
making processes. Thus, the findings suggest that driving involves
neural connectivity within the brain and may indicate the feasibility
of our research approach in implementation with brain structural
data through 1.5 Tesla MRI. Furthermore, understanding the roles
of these regions in driving performance could have implications for
assessing fitness to drive and developing targeted interventions to
improve driving skills.

A research team from Keio University previously reported
four GM regions after machine learning analysis: the left upper
part of the precentral sulcus, the left intermediate sulcus, the
right orbital part of the inferior frontal gyrus, and the right
superior frontal sulcus (Yamamoto et al., 2020). They used
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the Support Vector Machine method and focused on braking
operations at intersections. The only common region between their
results and ours is the right orbital part of the inferior frontal
gyrus, suggesting its important role in the DSP of older drivers
beyond its known function in the language processing network.
However, the other ten GM regions that we reported in this
study did not match those reported by them. Our study adopted
different conditions, including the Random Forest method, six
categories of DSP including braking operations, and evaluations at
various locations including intersections on a closed-circuit course.
Therefore, caution must be required when identifying the brain
regions involved in DSP, as even slight differences in experimental
conditions may have a significant effect on DSP.

The results of this study should be interpreted with caution
due to several limitations. First, the number of participants may
be relatively small. However, to the best of our knowledge, the
only comparable study is conducted by a research team at Keio
University and Toyota. These studies had even smaller sample
sizes, such as the Toyota study with 39 older participants (Sakai
et al., 2012) and the Keio University study with 32 participants
(Yamamoto et al., 2020). While our sample size of 94 participants
is larger than previous studies in this field, it remains a limitation
for generalizability, particularly for machine learning models
that require larger datasets for stable feature selection (Sarica
et al., 2017; Vabalas et al., 2019). While VBM provides robust
volumetric estimates, longitudinal stability of measurements in
aging populations requires further study. Potential drift in MRI
scanner stability over time was mitigated through regular phantom
calibration. The relatively low precision and recall metrics observed
in our Random Forest model are likely influenced by this limitation.
Although bootstrapping and dimensionality reduction helped
mitigate overfitting risks, future studies should aim to include
larger samples to validate our findings further. Increasing sample
sizes would enhance statistical power and allow for more reliable
identification of brain regions with smaller effect sizes.

Secondly, this study was conducted on a closed-circuit course
under the supervision of an instructor, which may affect DSPs
compared to free driving on general roads. A true DSP must
be evaluated in privately owned cars on normal roads without
instructors. We acknowledge that the closed-circuit environment
may not fully reflect real-world driving conditions. However,
this controlled setting allows for standardized assessment and
minimizes risks to participants. Future research could explore ways
to incorporate more realistic driving scenarios while maintaining
safety. Third, all participants were over 70 years old, limiting the
generalizability of the findings. We recognize that our study is
limited by the lack of comparison data from different age groups
and regions. Future research should aim to include a broader
range of participants to enhance the generalizability of the findings.
The relationship between brain structure and driving performance
may be universal across all ages. To validate the results, we plan
to evaluate DSPs through MRI measurements for middle-aged
and young drivers.

While our study focused on gray matter volume, we recognize
the importance of other factors such as functional connectivity.
Future studies should aim to incorporate multiple neuroimaging
modalities to provide a more comprehensive understanding of the
neural basis of driving safety in older adults. Moreover, future
studies could benefit from using regression models to examine the

continuous relationship between gray matter volume and driving
safety performance. This approach would allow for a more nuanced
understanding of the association and could help identify potential
thresholds for intervention. Additionally, exploring alternative
statistical methods could provide deeper insights into the complex
relationship between brain structure and driving performance,
potentially revealing non-linear associations or interaction effects
that our current methodology may have overlooked.

Conclusion

In conclusion, while structural brain metrics show promise
for predicting driving safety in older adults, further refinement of
methods and expansion to other neuroimaging markers are needed
before practical implementation. This study provides a foundation
for continued work toward developing brain-based screening tools
to promote safe driving and mobility in aging populations.

Data availability statement

The data supporting the findings of this study are available from
the corresponding author upon reasonable request. Researchers
interested in accessing the data must submit a formal request
to the corresponding author, which will be reviewed by the
host institution for ethical and privacy considerations. Only
de-identified (blinded) data, with all personally identifying
information removed, will be made available to qualified
researchers.

Ethics statement

The studies involving humans were approved by the
Institutional review board at Kochi University of Technology
(Application no. C4-3). The studies were conducted in accordance
with the local legislation and institutional requirements.
The participants provided their written informed consent to
participate in this study.

Author contributions

HP: Data curation, Formal Analysis, Methodology, Software,
Validation, Visualization, Writing – original draft, Writing – review
& editing. KP: Conceptualization, Funding acquisition, Project
administration, Supervision, Writing – original draft, Writing –
review & editing. FY: Methodology, Writing – review & editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This study was
conducted under the auspices of a research fund of “The General
Insurance Association of Japan” and partially supported by JSPS
KAKENHI (Grant Nos. 26285147, 20H00267, and 23K17330).

Frontiers in Aging Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1462951
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1462951 May 22, 2025 Time: 17:34 # 12

Putra et al. 10.3389/fnagi.2025.1462951

Acknowledgments

We thank Dr. Yoriko Murata for the MRI diagnoses and Ms.
Miyu Kawai for her contributions to the data collection. We also
thank Dr. Oba for providing the conversational assessment of
cognitive dysfunction. Additionally, we acknowledge the use of
Perplexity AI (Pro version, utilizing GPT-4 Omni and Claude 3.5
Sonnet models, Perplexity.ai) for English language revision and
editorial suggestions during manuscript preparation.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.2025.
1462951/full#supplementary-material

References

Abou-Raya, S., and ElMeguid, L. A. (2009). Road traffic accidents and the elderly.
Geriatr. Gerontol. Int. 9, 290–297. doi: 10.1111/j.1447-0594.2009.00535.x

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage
38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Brown, L., and Ott, B. (2004). Driving and dementia: A review of the literature.
J. Geriatr. Psychiatry Neurol. 17, 232–240. doi: 10.1177/0891988704269825

Cabinet Office Japan (2022). Annual Report on the Ageing Society. Available online
at: https://www8.cao.go.jp/kourei/english/annualreport/2022/pdf/2022.pdf (accessed
Januray 7, 2024).

Chen, Q., Zhang, Z.-L., Huang, W.-P., Wu, J., and Luo, X.-G. (2022). PF-SMOTE:
A novel parameter-free SMOTE for imbalanced datasets. Neurocomputing 498, 75–88.
doi: 10.1016/j.neucom.2022.05.017

de Amorim, L. B. V., Cavalcanti, G. D. C., and Cruz, R. M. O. (2023). The
choice of scaling technique matters for classification performance. Appl. Soft Comput.
133:109924. doi: 10.1016/j.asoc.2022.109924

Depestele, S., Ross, V., Verstraelen, S., Brijs, K., Brijs, T., Dun, K. V., et al. (2020).
The impact of cognitive functioning on driving performance of older persons in
comparison to younger age groups: A systematic review. Transport. Res. Part F 73,
433–452. doi: 10.1016/j.trf.2020.07.009

DiGuiseppi, J., and Tadi, P. (2024). Neuroanatomy, Postcentral Gyrus. Treasure
Island, FL: StatPearls Publishing.

Du, J., Rolls, E., Cheng, W., Li, Y., Gong, W., Qiu, J., et al. (2020). Functional
connectivity of the orbitofrontal cortex, anterior cingulate cortex, and inferior frontal
gyrus in humans. Cortex 123, 185–199. doi: 10.1016/j.cortex.2019.10.012

Fornia, L., Leonetti, A., Puglisi, G., Rossi, M., Viganò, L., Della Santa, B., et al. (2024).
The parietal architecture binding cognition to sensorimotor integration: A multimodal
causal study. Brain 147, 297–310. doi: 10.1093/brain/awad316

Friedland, R., Koss, E., Kumar, A., Gaine, S., Metzler, D., Haxby, J., et al. (1988).
Motor vehicle crashes in dementia of the Alzheimer type. Ann. Neurol. 24, 782–786.
doi: 10.1002/ana.410240613

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22. doi: 10.1163/
ej.9789004178922.i-328.7

Griffiths, T., and Warren, J. (2002). The planum temporale as a computational hub.
Trends Neurosci. 25, 348–353. doi: 10.1016/s0166-2236(02)02191-4

Henderson, S., Gagnon, S., Collin, C., Tabone, R., and Stinchcombe, A. (2013). Near
peripheral motion contrast threshold predicts older drivers’ simulator performance.
Accid. Anal. Prev. 50, 103–109. doi: 10.1016/j.aap.2012.03.035

Hong, K., Lee, K., and Jang, S. (2015). Incidence and related factors of traffic
accidents among the older population in a rapidly aging society. Arch. Gerontol.
Geriatr. 60, 471–477. doi: 10.1016/j.archger.2015.01.015

Huang, A., and Huang, S. (2023). Increasing transparency in machine learning
through bootstrap simulation and shapely additive explanations. PLoS One
18:e0281922. doi: 10.1371/journal.pone.0281922

Immordino-Yang, M., and Singh, V. (2013). Hippocampal contributions to the
processing of social emotions. Hum. Brain Mapp. 34, 945–955. doi: 10.1002/hbm.
21485

Japanese National Police Agency (2019). Occurrence of Traffic Accidents in
2019. Available online at: https://www.npa.go.jp/publications/statistics/koutsuu/
H29zennjiko.pdf

Ju, U. (2023). Task and resting-state functional connectivity predict driving
violations. Brain Sci. 13:1236. doi: 10.3390/brainsci13091236

Kim, E.-J., Ogar, J., and Gorno-Tempini, M. (2017). “The orbitofrontal cortex and
the insula,” in The Human Frontal Lobes: Functions and Disorders, 3rd Edn, eds B. L.
Miller and J. L. Cummings (New York, NY: The Guilford Press), 42–54.

Kline, D., Kline, T., Fozard, J., Kosnik, W., Schieber, F., and Sekuler, R. (1992).
Vision, aging, and driving: The problems of older drivers. J. Gerontol. 47, 27–34.
doi: 10.1093/geronj/47.1.p27

Kumar, P., Waiter, G., Ahearn, T., Milders, M., Reid, I., and Steele, J. (2009). Frontal
operculum temporal difference signals and social motor response learning. Hum.
Brain Mapp. 30, 1421–1430. doi: 10.1002/hbm.20611

Mayhew, D., Simpson, H., and Ferguson, S. (2006). Collisions involving senior
drivers: High-risk conditions and locations. Traffic Inj. Prev. 7, 117–124. doi: 10.1080/
15389580600636724

Michely, J., Volz, L., Hoffstaedter, F., Tittgemeyer, M., Eickhoff, S., Fink, G., et al.
(2018). Network connectivity of motor control in the ageing brain. Neuroimage Clin.
18, 443–455. doi: 10.1016/j.nicl.2018.02.001

Natu, V., Lin, J., Burks, A., Arora, A., Rugg, M., and Lega, B. (2019). Stimulation
of the posterior cingulate cortex impairs episodic memory encoding. J. Neurosci. 39,
7173–7182. doi: 10.1523/JNEUROSCI.0698-19.2019

Nishida, Y. (2015). Analyzing accidents and developing elderly driver-targeted
measures based on accident and violation records. IATSS Res. 39, 26–35. doi: 10.1016/
j.iatssr.2015.05.001

Oba, H., Park, K., Yamashita, F., and Sato, S. (2022). Parietal and occipital
leukoaraiosis due to cerebral ischaemic lesions decrease the driving safety performance
of healthy older adults. Sci. Rep. 12:21436. doi: 10.1038/s41598-022-25899-4

Oba, H., Sato, S., Kazui, H., Nitta, Y., Nashitani, T., and Kamiyama, A. (2018).
Conversational assessment of cognitive dysfunction among residents living in long-
term care facilities. Int. Psychogeriatr. 30, 87–94. doi: 10.1017/S1041610217001740

Park, K., and Nakagawa, Y. (2023). Leukoaraiosis predicts wrong-way entry and near
one on highways for healthy drivers. J. Neurol. Disord 11:537.

Park, K., Nakagawa, Y., Kumagai, Y., and Nagahara, M. (2013). Leukoaraiosis, a
common brain magnetic resonance imaging finding, as a predictor of traffic crashes.
PLoS One 8:e57255. doi: 10.1371/journal.pone.0057255

Park, K., Putra, H. A., Yoshida, S., Yamashita, F., and Kawaguchi, A. (2024).
Uniformly positive or negative correlation of cerebral gray matter regions with driving
safety behaviors of healthy older drivers. Sci. Rep. 14:206. doi: 10.1038/s41598-023-
50895-7

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1462951
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1462951/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2025.1462951/full#supplementary-material
https://doi.org/10.1111/j.1447-0594.2009.00535.x
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1177/0891988704269825
https://www8.cao.go.jp/kourei/english/annualreport/2022/pdf/2022.pdf
https://doi.org/10.1016/j.neucom.2022.05.017
https://doi.org/10.1016/j.asoc.2022.109924
https://doi.org/10.1016/j.trf.2020.07.009
https://doi.org/10.1016/j.cortex.2019.10.012
https://doi.org/10.1093/brain/awad316
https://doi.org/10.1002/ana.410240613
https://doi.org/10.1163/ej.9789004178922.i-328.7
https://doi.org/10.1163/ej.9789004178922.i-328.7
https://doi.org/10.1016/s0166-2236(02)02191-4
https://doi.org/10.1016/j.aap.2012.03.035
https://doi.org/10.1016/j.archger.2015.01.015
https://doi.org/10.1371/journal.pone.0281922
https://doi.org/10.1002/hbm.21485
https://doi.org/10.1002/hbm.21485
https://www.npa.go.jp/publications/statistics/koutsuu/H29zennjiko.pdf
https://www.npa.go.jp/publications/statistics/koutsuu/H29zennjiko.pdf
https://doi.org/10.3390/brainsci13091236
https://doi.org/10.1093/geronj/47.1.p27
https://doi.org/10.1002/hbm.20611
https://doi.org/10.1080/15389580600636724
https://doi.org/10.1080/15389580600636724
https://doi.org/10.1016/j.nicl.2018.02.001
https://doi.org/10.1523/JNEUROSCI.0698-19.2019
https://doi.org/10.1016/j.iatssr.2015.05.001
https://doi.org/10.1016/j.iatssr.2015.05.001
https://doi.org/10.1038/s41598-022-25899-4
https://doi.org/10.1017/S1041610217001740
https://doi.org/10.1371/journal.pone.0057255
https://doi.org/10.1038/s41598-023-50895-7
https://doi.org/10.1038/s41598-023-50895-7
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1462951 May 22, 2025 Time: 17:34 # 13

Putra et al. 10.3389/fnagi.2025.1462951

Park, K., Renge, K., Nakagawa, Y., Yamashita, F., Tada, M., and Kumagai, Y. (2022).
Aging brains degrade driving safety performances of the healthy elderly. Front. Aging
Neurosci. 13:783717. doi: 10.3389/fnagi.2021.783717

Pavlidis, I., Dcosta, M., Taamneh, S., Manser, M., Ferris, T., Wunderlich, R., et al.
(2016). Dissecting driver behaviors under cognitive, emotional, sensorimotor, and
mixed stressors. Sci. Rep. 6:25651. doi: 10.1038/srep25651

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Quirmbach, F., and Limanowski, J. (2022). A crucial role of the frontal operculum
in task-set dependent visuomotor performance monitoring. eNeuro 9:ENEURO.0524-
21.2021. doi: 10.1523/ENEURO.0524-21.2021.

Renge, K., Park, K., Tada, M., Kimura, T., and Imai, Y. (2020). Mild functional
decline and driving performance of older drivers without a diagnosed dementia:
Study of leukoaraiosis and cognitive function. Transport. Res. Part F 75, 160–172.
doi: 10.1016/j.trf.2020.09.016

Ruigrok, A., Salimi-Khorshidi, G., Lai, M., Baron-Cohen, S., Lombardo, M., Tait, R.,
et al. (2014). A meta-analysis of sex differences in human brain structure. Neurosci.
Biobehav. Rev. 39, 34–50. doi: 10.1016/j.neubiorev.2013.12.004

Sakai, H., Takahara, M., Honjo, N., Doi, S., Sadato, N., and Uchiyama, Y. (2012).
Regional frontal gray matter volume associated with executive function capacity as
a risk factor for vehicle crashes in normal aging adults. PLoS One 7:e45920. doi:
10.1371/journal.pone.0045920

Salthouse, T. (2000). Aging and measures of processing speed. Biol. Psychol. 54,
35–54. doi: 10.1016/s0301-0511(00)00052-1

Sarica, A., Cerasa, A., and Quattrone, A. (2017). Random forest algorithm for the
classification of neuroimaging data in Alzheimer’s Disease: A systematic review. Front.
Aging Neurosci. 9:329. doi: 10.3389/fnagi.2017.00329

Seidler, R., Bernard, J., Burutolu, T., Fling, B., Gordon, M., Gwin, J., et al. (2010).
Motor control and aging: Links to age-related brain structural, functional, and

biochemical effects. Neurosci. Biobehav. Rev. 34, 721–733. doi: 10.1016/j.neubiorev.
2009.10.005

Studer, B., Cen, D., and Walsh, V. (2014). The angular gyrus and visuospatial
attention in decision-making under risk. Neuroimage 103, 75–80. doi: 10.1016/j.
neuroimage.2014.09.003

Talwar, A., Mielenz, T., Hill, L., Andrews, H., Li, G., Molnar, L., et al. (2019).
Relationship between physical activity and motor vehicle crashes among older
adult drivers. J. Prim Care Commun. Health 10:2150132719859997. doi: 10.1177/
2150132719859997

Thomas Yeo, B., Krienen, F., Sepulcre, J., Sabuncu, M., Lashkari, D., Hollinshead,
M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/jn.00338.2011

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
B 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

Uono, S., Sato, W., Kochiyama, T., Kubota, Y., Sawada, R., Yoshimura, S., et al.
(2017). Time course of gamma-band oscillation associated with face processing in the
inferior occipital gyrus and fusiform gyrus: A combined fMRI and MEG study. Hum.
Brain Mapp. 38, 2067–2079. doi: 10.1002/hbm.23505

Vabalas, A., Gowen, E., Poliakoff, E., and Casson, A. (2019). Machine learning
algorithm validation with a limited sample size. PLoS One 14:e0224365. doi: 10.1371/
journal.pone.0224365

Whitwell, J. (2009). Voxel-based morphometry: An automated technique for
assessing structural changes in the brain. J. Neurosci. 29, 9661–9664. doi: 10.1523/
JNEUROSCI.2160-09.2009

Yamamoto, Y., Yamagata, B., Hirano, J., Ueda, R., Yoshitake, H., Negishi, K., et al.
(2020). Regional gray matter volume identifies high risk of unsafe driving in healthy
older people. Front. Aging Neurosci. 12:592979. doi: 10.3389/fnagi.2020.592979

Yi, H., Leonard, M., and Chang, E. (2019). The encoding of speech sounds in the
superior temporal gyrus. Neuron 102, 1096–1110. doi: 10.1016/j.neuron.2019.04.023

Frontiers in Aging Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1462951
https://doi.org/10.3389/fnagi.2021.783717
https://doi.org/10.1038/srep25651
https://doi.org/10.1523/ENEURO.0524-21.2021.
https://doi.org/10.1016/j.trf.2020.09.016
https://doi.org/10.1016/j.neubiorev.2013.12.004
https://doi.org/10.1371/journal.pone.0045920
https://doi.org/10.1371/journal.pone.0045920
https://doi.org/10.1016/s0301-0511(00)00052-1
https://doi.org/10.3389/fnagi.2017.00329
https://doi.org/10.1016/j.neubiorev.2009.10.005
https://doi.org/10.1016/j.neubiorev.2009.10.005
https://doi.org/10.1016/j.neuroimage.2014.09.003
https://doi.org/10.1016/j.neuroimage.2014.09.003
https://doi.org/10.1177/2150132719859997
https://doi.org/10.1177/2150132719859997
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1002/hbm.23505
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1523/JNEUROSCI.2160-09.2009
https://doi.org/10.1523/JNEUROSCI.2160-09.2009
https://doi.org/10.3389/fnagi.2020.592979
https://doi.org/10.1016/j.neuron.2019.04.023
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Cerebral gray matter volume identifies healthy older drivers with a critical decline in driving safety performance using actual vehicles on a closed-circuit course
	Introduction
	Materials and methods
	Participants
	Measurement of regional brain volumes
	Evaluation by DSPs
	Statistical analysis
	Machine learning analysis
	Ethics statement

	Results
	Determination of critical decline in driving safety performance
	Participant characteristics
	Comparison of machine learning models for DSP prediction
	Prediction performances using Random Forest
	Statistical analysis of brain-behavior relationships

	Discussion
	Model performance analysis

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


