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Introduction: The prevalence of cognitive impairment in the population is

growing; however, there is substantial heterogeneity in the rate of decline across

different cognitive domains. Harmonized factor scores measuring memory,

executive function, and language domains have been created in the Framingham

Heart Study (FHS).

Methods: This work identified FHS participants with two or more repeated factor

scores after age 60 and fitted latent class mixed models (LCMM) to cluster

cognitive trajectories within each domain. Non-linear shapes of trajectories

were modeled piecewise linearly, followed by stepwise selections to select

cluster-specific change points.

Results: We identified different latent classes of participants with early cognitive

decline, compared to late decliners, for each domain. Ten-fold cross-validation

yielded stable subgroupings. Our findings show latent-class-related differential

patterns in cognitive aging in the FHS. We also investigated the association

between identified latent classes with existing protein biomarkers of cognitive

aging in a subsample of the study and found elevated levels of CD40L and CD14

were associated with a higher risk of early decline in memory and executive

function domain, respectively.
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Discussion: In summary, our study advances the understanding of cognitive

decline heterogeneity among FHS participants and sets the stage for further

investigations into early intervention strategies and personalized approaches to

mitigate cognitive aging risks.

KEYWORDS

cognitive decline, cognitive trajectories, Framingham Heart Study (FHS), latent class
mixed models (LCMM), clustering

1 Introduction

The number of adults aged 65 and older in the United States is
expected to more than double in the next 40 years (Vincent, 2010).
This demographic transition raises concerns about a significant
rise in cognitive impairment and dementia among this population.
Maintaining good cognitive health stands as a pivotal determinant
of successful aging, self-sufficiency, and well-being (Gorelick et al.,
2017). The objective evaluation of cognitive function involves
the utilization of neuropsychological (NP) assessments, facilitating
the longitudinal tracking of cognitive performance. Modeling of
the longitudinal trajectories of cognitive performance with aging
has been well documented in existing literature (Bangen et al.,
2019; Hu et al., 2019; Liu et al., 2013; Proust-Lima et al., 2013;
Steinerman et al., 2010; van der Willik et al., 2020). Although
it is conventionally acknowledged that advanced age generally
corresponds to a decline in cognitive function (Harada et al., 2013;
Salthouse, 2019), there is a noteworthy degree of heterogeneity in
the rate of cognitive decline observed within cohorts of older adults
of the same age (Wilson et al., 2002). Substantial heterogeneity in
the pace of cognitive decline across different cognitive domains
has been observed as well (Goh et al., 2012; Lövdén et al., 2005;
Small et al., 2011). Variability in cognitive decline within and across
different cognitive domains has been related to different likelihoods
of progression to Alzheimer’s disease (AD) (Cloutier et al., 2015).
While numerous statistical/machine learning techniques have
been utilized to discover risk stratification or disease progression
subgroups based on participants’ demographic and biomarker
profiles and subsequently offering post-hoc summaries of cognitive
trajectories within each subgroup (Dong et al., 2017; Racine et al.,
2016; Young et al., 2018), limited efforts have been directed toward
directly clustering the trajectories of cognitive functions.

The inherent patterns of change in specific cognitive domains
might suggest potential subtypes of AD and other dementias. The
identification of latent classes in cognitive trajectories with aging
thus may provide insights into early disease course modification
before dementia onset or prior to clinical symptoms (Howlett et al.,
2021). In addition, by clustering the cognitive trajectories directly,
individuals can be placed into more homogenous subgroups, which
may also facilitate the recognition of latent groups with an elevated
risk of progressing to AD dementia. Such latent subgroupings could
serve as a preclinical substitute for cognitive outcomes or offer
valuable insights for participant categorization in AD prevention
trials (Ritchie et al., 2016; Watts, 2018). Recently, latent class
analysis has been directly applied to cognitive trajectories, revealing
distinct subgroups of participants, each characterized by a unique
pattern of cognitive function changes (Geifman et al., 2018; Howlett

et al., 2021; Sebastiani et al., 2020; Villeneuve et al., 2019). While
some prior studies have employed extensive neuropsychological
batteries and constructed domain-level composite or factor scores
(Geifman et al., 2018; Sebastiani et al., 2020), many have still
focused on one or two cognitive domains, included smaller sizes,
or relied on just two measurements per individual, which could
oversimplify the modeling of cognitive trajectories by assuming a
linear cognitive decline with age.

Identifying data sets with comprehensive longitudinal cognitive
function assessment and choosing appropriate statistical analyses
have represented the two major challenges in the pattern discovery
of cognitive decline (Sebastiani et al., 2020). Various longitudinal
cohorts have utilized distinct NP test batteries and protocols,
which makes the combination of NP performance data across
cohorts non-trivial. The Framingham Heart Study (FHS) is a
large community-based study with multiple sub-cohorts, which has
comprehensively phenotyped cognitive outcomes through repeated
NP assessments conducted by trained examiners under strict
quality control (Au et al., 2010). Recently, separate harmonized
factor scores that measure memory, executive function and
language domains have been established using structural equation
modeling (Scollard et al., 2023). These scores facilitate the
integration of longitudinal cognitive profiles across multiple FHS
cohorts that had a growing test battery over time.

In this study, we aim to leverage the comprehensive set of
NP tests administered to the FHS cohorts and implement the
newly developed harmonized cognitive factor scores for memory,
executive function, and language domains. Here we describe an
innovative, flexible method for modeling longitudinal cognitive
profiles within the FHS. It accommodates group-specific and
domain-specific changes in cognitive decline rates at different ages,
while clustering participants into latent subgroups based on their
cognitive factor score trajectories. We characterize participants
in each identified subgroup based on their distinct demographic
profiles and examine the correlation between the identified
subgroups and existing aging biomarkers, aiming to provide a more
accurate and comprehensive approach to assessing cognitive aging.

2 Materials and methods

2.1 Study sample

The FHS is a community-based prospective cohort study,
which recruited 5,209 participants as the Original cohort (Gen 1)
in 1948 to investigate the risk of cardiovascular disease (CVD)
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(Dawber and Kannel, 1966). The Offspring cohort (Gen 2),
recruited in 1971, consists of 5,124 participants who have at least
one parent in the Original cohort and some of their spouses
(Feinleib et al., 1975; Kannel et al., 1979). In 1994 the FHS further
recruited 506 multi-ethnic participants as the Omni 1 cohort
to reflect the greater racial and ethnic diversity in the town of
Framingham (Tsao and Vasan, 2015). All cohorts have received
routine examinations for CVD and related risk factors. The Gen
1 participants were invited to take a battery of neuropsychological
(NP) tests between examinations 14 and 15 (1976–1978) (Elias
et al., 1997). The initial NP battery administered to Gen 1
participants was at a core visit, while starting in 1981, NP batteries
were administered during ancillary exams (Elias et al., 1997). The
Gen 2 and Omni 1 cohorts were also invited to undergo NP testing
starting 1999 and 2000, between their regular examinations 7–8
and 2–3, respectively, and repeatedly around every 5 years during
ancillary exams (Au et al., 2010). However, the protocol until
1999 was to only administer the NP battery to those flagged as
potentially cognitively impaired (Scollard et al., 2023), therefore,
the Gen 1 participants who experienced cognitive decline were
expected to have more frequent NP tests. All FHS participants
were invited to take regular follow-up NP tests to help detect
changes in their cognitive functioning but not all chose to attend
the additional visits (Au et al., 2010; Satizabal et al., 2016; Scollard
et al., 2023).

In this study, we included 2,339 FHS participants, 539 from
Gen 1, 1,708 from Gen 2, and 92 from Omni 1, to investigate
subgroups of differential patterns in the longitudinal cognitive
function changes. We included data obtained after the age of
60 years from each participant and excluded participants with only
one NP test visit after age 60, with a prevalent dementia diagnosis
at their baseline visit for this study (first visit at or after age 60), or
those without education data. The resulting total number of time
points to be studied is 7,939 from 2,339 participants. Details of
sample selection can be found in the flow chart in Figure 1. All
participants provided written informed consent at each attended
examination and at each NP testing; FHS exams are reviewed
by the Institutional Review Board at Boston University Medical
Center.

2.2 Overview of the neuropsychological
tests and domain factor scores in the FHS

All participants from the FHS cohorts were invited to undergo
a comprehensive battery of NP tests although not all chose to
attend. The NP tests were carried out by trained psychometricians
following standard administration protocols. This initiative was
undertaken as part of a larger study with the primary objective
of establishing foundational measures of brain structure and
cognition (Au et al., 2010). Detailed information concerning the
NP test batteries employed in the FHS cohorts could be found in
the existing literature (Au et al., 2010; Elias et al., 1997; Satizabal
et al., 2016; Scollard et al., 2023).

Broadly, NP tests included in the battery are representative of
the following four different cognitive domains: verbal and visual
episodic memory, attention and executive function, language, and

visuospatial abilities. Monitoring NP test performance provided
a way of measuring and monitoring cognitive changes. However,
different cohorts in the FHS went through different waves of NP
test batteries. The NP battery in the FHS has grown over time.
The initial battery administered to the Gen 1 cohort included fewer
tests than the batteries the Gen 2, Omni 1 cohorts underwent,
leading to difficulties in combining or comparing across the FHS
cohorts (Scollard et al., 2023). To address this problem, calibrated
and harmonized factor scores for the memory, executive function,
and language domains were developed based on NP test batteries
and items from Mini-Mental State Examination (MMSE) or
Consortium to Establish a Registry for Alzheimer’s Disease, using
data across all FHS NP test visits (Scollard et al., 2023). The NP tests
and MMSE components included in developing each harmonized
domain factor score for the memory, executive function, and
language domains can be found in the developing paper (Scollard
et al., 2023). Due to insufficient NP tests in the visuospatial domain,
no harmonized factor score was composed for this domain. These
calibrated and harmonized domain factor scores (referred to as the
“factor scores” hereafter), quantify cognitive performance on the
same scale across the cohorts, and minimize ceiling effects observed
in raw NP test performance, facilitating pooled analyses across the
FHS cohorts (Scollard et al., 2023).

2.3 Statistical analysis

2.3.1 The piecewise linear latent-class mixed
effect models

For each of the three cognitive domains (memory, executive
function, and language) with available longitudinal factor scores,
we identified distinct trajectory classes using piecewise linear
latent-class mixed effect models (LCMMs). The linear mixed-effect
models (LMM) (Laird and Ware, 1982) is a standard statistical
procedure to model trajectories of changes while allowing for both
within-subject and between-subject variation. The LCMM is a finite
mixture of LMMs, where the responses are assumed to be from a
mixture of Gaussian distributions with group means described by
LMM regression functions (Muthén and Shedden, 1999; Proust and
Jacqmin-Gadda, 2005). As a model-based clustering framework,
an LCMM can classify participants based on the shape of the
trajectories of interest, and has been recently applied to model
the heterogeneities in cognitive decline, dementia, and preclinical
Alzheimer’s Diseases in several longitudinal cohorts (Geifman et al.,
2018; Gonzales et al., 2020; Howlett et al., 2021; Proust-Lima et al.,
2016; Villeneuve et al., 2019) and to study differential progression
patterns in other diseases (Fang et al., 2023).

Cognitive decline is a complex process and typically shows
a non-linear trend along age or time in the study, hence
only fitting linear effects with age or time would over-simplify
the model. While LCMMs are a flexible tool for identifying
heterogeneous longitudinal patterns, caution is necessary when
the trajectories are non-linear. One common practice is to
assume a polynomial function of time (Fang et al., 2023;
Proust-Lima et al., 2016). However, the polynomial-time-function
term may also force the mean trajectory profile shapes to not
make practical sense. Additionally, LCMMs typically suffers from
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FIGURE 1

Sample selection flowchart.

computational convergence issues, especially when the number of
model parameters to be estimated is large. To address these two
issues, we proposed a piecewise linear LCMM to allow for group-
specific change points and assume a linear change in outcome over
the time segments with different slopes before and after the change
points. We used a small, predefined change points sets to reduce
the number of parameters to estimate and avoid the computational
convergence issue. These age thresholds were selected based on
clinical knowledge and prior literature suggesting inflection points
in cognitive aging and preclinical Alzheimer’s disease progression
(Salthouse, 2019; Sperling et al., 2011).

2.3.2 Model-building and selection
For each of the three cognitive domains, we followed the same

procedure to build a piecewise linear LCMM. Mathematical details
of the construction of the model can be found in Supplementary
material section S1. Details for model specification of the piecewise
linear LCMMs can be found in Supplementary material section S2.
Briefly, we built models for the longitudinal factor scores with two
sets of predefined change points, one at ages of 65, 75, and 85 years
and another at ages of 70, 80, and 90 years. We included group-
specific fixed effects for age, sex, and education level in all models.
The age terms were broken down to piecewise linear with changes
of slopes before and after the prespecified change points. We
included individual random effects to allow individual trajectories
to vary from the group-specific mean. We fit models for G = 1–4
latent groups, yielding a total of 8 models (G groups times change
points at the two sets of ages). Models with more than 4 groups

often failed to converge or yielded small subgroups with insufficient
samples for downstream characterization and comparison and
unstable parameter estimates, which limited their interpretability.
For each of the 8 complete models, we used a backward selection
algorithm, with details described in Supplementary material section
S3, to remove unneeded change points.

LCMMs are finite mixtures of regression models, and the true
number of components G is not known. We used the Bayesian
Information Criterion (BIC) (Schwarz, 1978) to select the final
best model from among the 8 models. The flexibility introduced
by combining group-specific fixed effects and individual random
effects with the backward selection method ultimately allows for
the selection of group-specific change points for different cognitive
domains.

2.3.3 Sensitivity analysis: 10-fold cross-validation
for model robustness

To evaluate the robustness of the selected change points, the
piecewise linear structure, and the identified number of groups,
we performed a sensitivity analysis using 10-fold cross-validation
for each of the three cognitive function domains. We randomly
partitioned the study participants into 10 subsamples. We used
9 portions as the training data to fit a piecewise linear LCMM
described above, obtained the model with the best BIC; then, the
left over 1 portion was treated as the testing data and the best model
identified in the training data were applied to predict the latent
classes. This training-testing split was repeated for 10 iterations
until each subsample was treated as the testing data once. After the
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10 training-testing model fittings and class predictions, the number
of groups selected for the training data sets, as well as the median
predicted soft classifications (posterior probability of belonging to
the predicted classes) were summarized to determine whether the
models selected by BIC were stable. We summarized the average
adjusted Rand Index (ARI) (Hubert and Arabie, 1985) across the 10
testing sets comparing class membership predicted by the training
model and the original model fitted using the whole dataset to
determine on the robustness of the model fitted.

2.3.4 Association with existing plasma biomarkers
To validate that the latent classes identified using the proposed

piecewise linear LCMM can be applied as an alternative cognitive
outcome, we further investigated the association between the
identified latent classes and previously measured plasma protein
inflammatory biomarkers in a subsample of the Offspring cohort.
At the Offspring cohort routine exam seven, 85 plasma proteins
were measured using the Systems Approach to Biomarker Research
(Ho et al., 2018). A previous study from our group established
associations of several inflammatory protein biomarkers from these
85 with cognitive test performance, brain MRI volumes, and
incident dementia (Fang et al., 2022). Here, we also examine the
association between the inflammatory protein biomarkers and the
identified latent classes in cognitive factor scores across the three
domains using logistic regression models. We identified a sample
of 1,617 Offspring cohort participants who attended the seventh
routine examination, where the protein biomarkers were profiled.
For each cognitive domain, the latent classes were grouped into
a dichotomous response variable representing early fast decline
(coded as 1) vs. steady or late fast decline (coded as 0). The
protein biomarker levels were normalized to mean 0 and standard
deviation 1. We employed a logistic regression model, adjusted
for age at the cognitive test visit closest to exam 7 after age 60,
the time difference between this visit and exam 7 in years, sex,
education level, and APOE ε4 carrier status. A robust standard
error estimate was used to account for familial correlation. We
tested 5 protein biomarkers that showed significant association with
cross-sectional cognitive scores in our previous study (Fang et al.,
2022): monocyte differentiation antigen (CD14), CD5 molecule-
like (CD5L), soluble CD40 ligand (CD40L), soluble receptor for
advanced glycation end products (sRAGE), and myeloperoxidase
(MPO). Additionally, a sensitivity analysis was performed on a
subsample of 906 participants, whose cognitive test closest to exam
7 after age 60 was within 2 years after exam 7, using the same model
and covariates.

2.3.5 Analysis software
All analyses were carried out using the statistical software R

version 4.0.2. The piecewise linear LCMMs were fitted with the
hlme function from package lcmm version 1.9.3. The backward
selection algorithm was written and implemented in R. ARIs were
calculated using the adjustedRandIndex function from the mclust
package version 5.4.10. Associations between protein biomarkers
and the latent classes were fitted using the glm function from the
stats package together with the sandwich package version 3.1-0 and
the lmtest package version 0.9-40 for the robust standard error
estimation. All figures from the model were created using ggplot2
package version 3.3.6.

3 Results

3.1 Latent classes identified from
clustering the trajectories of three
cognitive domain factor scores

3.1.1 Latent classes identified from the memory
factor score trajectories

Overall participant demographics are summarized in Table 1.
Our piecewise linear LCMM model identified 4 latent subgroups
based on the memory domain factor score trajectories. Figure 2
illustrates the predicted mean profile for each subgroup superposed
on the actual trajectory of individuals within the corresponding
subgroup. Each of the four identified latent subgroups exhibited
distinct patterns, characterized by changes in rates of decline in the
memory domain factor scores around the age of 70 (class 3, early
decline group), 80 (class 2 late decline group), and 90 (class 1, latest
decline group) years. In contrast, participants in class 4 (earliest
decline group) demonstrated a steep decline starting around the age
of 60, which is the baseline of the study.

Table 2 provides a summary of the participant demographics
for each identified latent class. Average baseline ages are similar for
classes 1 and 3 (age 69 and 68, respectively), whereas the average
age at the first exam was earlier for the earliest decline group
class 4 (age 64) and later for class 2 (75 years). Cognitive status
as measured by the MMSE was similar among all participants at
the baseline exam. However, the proportions of APOE ε4 carriers,
and of incident dementia and MCI in the two early decline groups
(classes 3 and 4) were greater over the entire follow up period
compared to the later decline groups. Participants from class 4,
the earliest decline latent group identified, also shows on average
the shortest time in years between each NP tests during the full
follow-up, which is expected due to the protocol that participants
experiencing cognitive impairment were tested more frequently.

Among the two later decline groups (classes 1 and 2), class 2
identified participants with generally older age at baseline, paired
with a higher proportion of participants experiencing dementia or
MCI onset during follow-up. The mean predicted decline rate for
class 2 is similar to those observed for class 3 but occurred at a
later age. The late decline group class 2 contains participants with
the oldest baseline age and the lowest proportion of participants
attended college (54%), which is an indication that it grouped more
Original cohort participants. On the other hand, class 1, the largest
group, included participants whose memory domain cognitive
function remained relatively stable until the age of 90. This group
is also characterized by the lowest proportion of APOE ε4 carriers,
dementia or MCI onset, and the longest time between each NP visit.

3.1.2 Latent classes identified from the executive
function factor score trajectories

Our modeling identified two latent classes based on the factor
score trajectories from the executive function domain. Predicted
mean trajectories for each latent subgroup identified overlaid on
the observed actual individual trajectories in the executive function
domain are visualized in Figure 3. Participant demographics for
each latent subgroup are summarized in Table 2.

Class 1 (n = 2,302) was characterized by a relatively consistent
decline in overall executive function performance, marked by subtle
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TABLE 1 Participant demographics for all participants.

Demographic All participants (N = 2,339)

Basic demographics Female, n (%) 1,321 (56.5)

APOE ε4 carrier, n (%) 388 (16.6)

Attended college, n (%) 1,487 (63.6)

Number of NP visits, median (IQR) 3 (2)

Median years apart between tests, mean (SD) 5 (4)

Have NP tests after dementia, n (%) 247 (10.6)

Baseline characteristics Age, mean (SD) 69 (8)

MMSE, median (IQR) 29 (2)

BMI, mean (SD) 28 (5)

SBP, mean (SD) 132 (19)

DBP, mean (SD) 73 (10)

Hypertension Rx, n (%) 1,006 (43.0)

Total cholesterol, mean (SD) 196 (36)

Blood glucose, mean (SD) 105 (30)

Diabetes Rx, n (%) 172 (7.4)

Smoking, n (%) 183 (77.8)

Incident cognitive outcomes Incident MCI, n (%) 597 (25.5)

Incident MCI but not dementia, n (%) 225 (9.6)

Incident dementia, n (%) 372 (15.9)

Survival information Age at last exam visit, mean (SD) 79 (8)

Years between last exam visit and last contact, mean (SD) 4 (4)

Alive till the end of 2019, n (%) 1,347 (57.6)

All incident cognitive events were counted from baseline to the end of 2019. APOE, Apolipoprotein E; NP, Neuropsychological; IQR, Inter quartile range; SD, Standard deviation; MMSE,
Mini-Mental State Examination; BMI, Body mass index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; MCI, Mild cognitive impairment.

alterations in the rate of decline around ages of 65 and 85 years.
In contrast, the much smaller class 2 (n = 36) had a rapid decline
from the baseline age of 60 years. The average age of the earlier,
rapid decline class 2 at baseline was 3 years younger than the later,
slower decline class 1 group. The two classes had similar baseline
MMSE scores, and other baseline characteristics of the participants
between these two groups are also similar. However, the earlier,
faster decline group (class 2) had a higher proportion of APOE
ε4 carriers and greater proportion of incidence of dementia and
MCI during follow-up. Additionally, participants identified within
the early decline latent subgroup experienced more deaths during
follow up, with 36% surviving to the end of 2019 (end of the
follow up), compared to 58% of the slower decline group. Similar
to observed in the memory domain, the group with older baseline
age also included a lower overall education level.

3.1.3 Latent classes identified from the language
factor score trajectories

Our modeling identified three latent subgroups when clustering
based on the language domain factor score trajectories. Figure 4
visually represents the predicted mean trajectories and observed
trajectories for each identified latent subgroup in the language
domain, while participant demographics for each subgroup are
summarized in Table 2.

Participants identified within the latent class 1 (n = 2,196)
exhibit a consistent decline throughout the entire follow-up with

small increases in decline rate around the ages of 70 and 90. Class 3
(n = 50) exhibited an early steep decline starting at the beginning of
the observed age range (age 60 years) followed by a steeper decline
after age 80 years. The participants in class 2 (n = 92) had no decline
until age 80, and then an increased decline rate after age 90 years.

Baseline characteristics of participants in the three latent groups
differed. The late decline group (class 2) had the lowest proportion
of APOE ε4 carriers (14%) and the early decline group (class 3) had
the highest proportion (22%), but these differences between classes
were smaller than for the memory and executive function domains.
Consistent with findings in other two domains, the early decline
group has the highest proportion of participants who developed
dementia or MCI during follow-up. However, the late decline group
(class 2) had a higher rate of incident MCI and dementia than
the consistent decline group. Different from observations from the
memory and executive function domain, where higher proportions
of attended college appears more in groups with younger baseline
age, the late fast decline group in the language domain identified
higher proportions of participants who attend college but with the
oldest baseline age as compared to the other groups.

3.1.4 10-fold cross-validation
We employed a 10-fold cross-validation approach to assess

the robustness of the identified subgroups within each cognitive
domain. Results of the 10-fold cross-validation for the memory,
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FIGURE 2

Predicted mean trajectories superposed on observed trajectories for each latent subgroup identified in the memory domain. The gray shaded
trajectories are the true observations, whereas the colored lines are the mean predicted trajectories from each subclass.

executive function, and language domains are detailed in
Supplementary Tables S1–S3, separately.

In the memory domain, 6 out of 10 rounds of fitting the training
data resulted in a 4-group solution, consistent with the findings
from fitting the entire dataset. In these 6 rounds, when applying
the model obtained from the training data to the testing data, the
predicted cluster membership closely aligned with the whole-data
model, with ARIs close to 1. In the remaining 4 rounds, where
fitting the training data did not select a 4-component model, the
best model favored 3 subgroups. Across all 10 rounds, the median
posterior probability for all observations exceeded 0.74, indicating
a robust and definite classification.

In the executive function domain, the 2-component piecewise
linear LCMM model identified when fitting the entire dataset
demonstrated high robustness. Among the 10 cross-validation
rounds, 9 yielded a 2-component model when fitting the training
data. In 8 out of these 9 rounds, the predicted class memberships
showed ARIs close to 1 when comparing the class labels obtained
by applying training data model to the testing data and the
class labels predicted from the whole-data model. The median
posterior probabilities were consistently close to 1 across all rounds,
suggesting a definitive classification. The single round where fitting
training data did not select a 2-component model did not prefer
other models either; however, computational issues prevent the
convergence even with a one-component piecewise linear LMM.

In the language domain, the latent classes identified when
fitting the full dataset also proved to be robust. All 10 cross-
validation rounds result in 3-component models when fitting the

training data. Among these rounds, 8 models obtained from the
training data predict the testing data class labels similar to the
full-data model with ARIs above 0.86 and an average close to
0.9. In addition, the median posterior probabilities are also close
to 0.9, indicating high confidence in the classification. For the
remaining 2 rounds, although the best model selected when fitting
the training data are 3-group solutions, they differed from the 3-
group model obtained when fitting the entire dataset. The ARI
between classifications on the testing data are only around 0.3,
indicating poor alignment and the median posterior probabilities
also drop from around 0.9 to approximately 0.7.

3.1.5 Comparison of latent classes across
cognitive domains

For each of the three cognitive domains we investigated, the
proposed piecewise linear functions identified two overarching
patterns of cognitive decline among the FHS participants. For each
cognitive domain, one or two latent subgroups were characterized
by an early rapid decline (class 2 and 3 in the memory domain, class
2 in the executive function domain, and class 3 in the language
domain), while the other classes exhibited either steady decline
or late-onset rapid decline (classes 1 and 4 in memory, class 1 in
executive function, and classes 1 and 2 in language).

Table 3 presents crosstabulations of the identified latent
subgroups across three cognitive domains. In all three comparisons,
the majority of the late decline groups comprised the same
participants across the domains. In contrast, the early decliners in
each domain are not consistently the same participants. Specifically,
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TABLE 2 Demographic for subgroups identified in all three domains.

Memory domain predicted latent classes Executive function
domain predicted

latent classes

Language domain predicted
latent classes

Demographic Class 1
(n = 2,080)

Class 2
(n = 182)

Class 3
(n = 54)

Class 4
(n = 22)

Class 1
(n = 2,302)

Class 2
(n = 36)

Class 1
(n = 2,196)

Class 2
(n = 92)

Class 3
(n = 50)

Basic demographics Female, n (%) 1,154 (56) 119 (65) 34 (63) 13 (59) 1,302 (57) 18 (50) 1,254 (57) 39 (42) 27 (54)

APOE ε4 carrier, n (%) 338 (16) 18 (10) 20 (37) 12 (55) 374 (16) 14 (39) 364 (17) 13 (14) 11 (22)

Attended college, n (%) 1,335 (64) 98 (54) 37 (69) 16 (73) 1,455 (63) 31 (86) 1,388 (63) 71 (77) 27 (54)

Number of NP visits, median (IQR) 3 (2) 4 (2.8) 4 (2) 3 (2) 3 (2) 3 (2) 3 (2) 3 (3) 4 (2)

Median years apart between tests, mean (SD) 5 (4) 3.5 (4) 3.8 (4) 3.2 (2.5) 5 (4) 5 (3.6) 5 (4) 5 (5) 3 (4.4)

Have NP tests after dementia, n (%) 99 (5) 100 (55) 35 (65) 13 (59) 225 (10) 22 (61) 194 (9) 22 (24) 31 (62)

Age, mean (SD) 69 (8) 75 (6) 68 (5) 64 (3) 69 (8) 66 (4) 69 (8) 71 (8) 69 (7)

MMSE, median (IQR) 29 (2) 29 (2) 29 (2) 29 (1) 29 (2) 29 (2) 29 (2) 29 (1.5) 29.5 (1.8)

BMI, mean (SD) 28 (5) 27 (5) 27 (5) 29 (5) 28 (5) 28 (5) 28 (5) 27 (4) 27 (5)

SBP, mean (SD) 131 (19) 138 (21) 130 (20) 128 (18) 132 (19) 135 (21) 132 (19) 133 (19) 135 (24)

DBP, mean (SD) 73 (10) 73 (10) 73 (9) 74 (10) 73 (10) 74 (10) 73 (10) 74 (11) 74 (10)

Hypertension Rx, n (%) 900 (43) 74 (41) 23 (43) 9 (41) 989 (43) 17 (47) 949 (43) 38 (41) 19 (38)

Total cholesterol, mean (SD) 196 (36) 203 (40) 187 (28) 193 (38) 196 (36) 199 (35) 196 (36) 195 (41) 199 (32)

Blood glucose, mean (SD) 105 (29) 105 (37) 104 (29) 110 (27) 105 (30) 107 (29) 105 (29) 99 (21) 120 (62)

Diabetes Rx, n (%) 157 (8) 8 (4) 4 (7) 3 (14) 166 (7) 6 (17) 159 (7) 7 (8) 6 (12)

Smoking, n (%) 159 (8) 13 (7) 8 (15) 3 (14) 178 (8) 5 (14) 173 (8) 7 (8) 3 (6)

Incident cognitive outcomes Incident MCI, n (%) 399 (20) 132 (73) 47 (87) 19 (87) 568 (25) 29 (81) 521 (24) 39 (42) 37 (74)

Incident MCI but not dementia, n (%) 197 (10) 16 (9) 7 (13) 5 (23) 220 (10) 5 (14) 212 (10) 11 (12) 2 (4)

Incident dementia, n (%) 202 (10) 116 (64) 40 (74) 14 (64) 348 (15) 24 (67) 309 (14) 28 (30) 35 (70)

Survival information Age at last exam visit, mean (SD) 79 (8) 87 (4) 80 (4) 73 (4) 79 (8) 76 (5) 79 (8) 82 (9) 80 (7)

Years between last exam visit and last contact,
mean (SD)

4 (4) 2 (3) 2 (2) 4 (3) 4 (4) 3 (3) 4 (4) 4 (3) 2 (2)

Alive till the end of 2019, n (%) 1,267 (61) 50 (28) 22 (41) 8 (36) 1,334 (58) 13 (36) 1,290 (59) 43 (47) 14 (28)

All incident cognitive events were counted from baseline to the end of 2019. APOE, Apolipoprotein E; NP, Neuropsychological; IQR, Inter quartile range; SD, Standard deviation; MMSE, Mini-Mental State Examination; BMI, Body mass index; SBP, Systolic blood pressure;
DBP, Diastolic blood pressure; MCI, Mild cognitive impairment.
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FIGURE 3

Predicted mean trajectories superposed on observed trajectories for each latent subgroup identified in the executive function domain. The gray
shaded trajectories are the true observations, whereas the colored lines are the mean predicted trajectories from each subclass.

FIGURE 4

Predicted mean trajectories superposed on observed trajectories for each latent subgroup identified in the language domain. The gray shaded
trajectories are the true observations, whereas the colored lines are the mean predicted trajectories from each subclass.
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about 61% of the early decliners in executive function domain
also exhibited early signs of fast decline in their memory domain,
and 44% of the early decliners in language cognitive function also
similarly showed early signs of decline in their memory domain.
However, only 10 participants demonstrated early decline in both
executive function (28%) and language (20%).

3.2 Association of clinical outcomes with
the latent classes

3.2.1 Association of early vs. late decline with
incident MCI and dementia

Table 4 summarizes the distribution of individuals across
early decline groups (0, 1, 2, or all 3 domains) and compares
this with the clinical diagnoses of MCI and dementia during
follow up through 2019. A total of 2,221 participants (about
95% from the study sample) were not clustered into the early
decline group for any domain. Of these participants, 77% did
not develop MCI or dementia. Among the 81 participants who
were identified as early decliners for one cognitive domain, 70%
developed either MCI (19%) or dementia (51%) during follow-
up. For the 27 participants clustered into early decline groups
for 2 domains, 82% developed dementia, and 7% developed MCI
without dementia. Only 9 participants across all domains were
clustered into early decline groups for all three domains, and
all these individuals were diagnosed with dementia during follow
up.

3.2.2 Association with existing plasma
inflammatory protein biomarkers

In the Offspring cohort subsample of this study, we investigated
the association between a set of 5 protein biomarkers that were
significantly associated with NP performance in our previous study
(Ho et al., 2018) and the dichotomized latent classes (early rapid
decline vs. late or steady decline) for each of the three cognitive
domains adjusting for age, sex, education level, and APOE ε4
carrier status. Tables 5, 6 summarize the estimated odds ratios,
standard errors, and p-values for the associations between the 5
protein biomarkers and the subclass membership for the memory
domain and the executive function domain, respectively. Results
for the language domain are summarized in Supplementary Table
S4.

For the memory domain, higher CD40L was nominally
associated with higher odds of being clustered into the early
decline group (estimated odds ratio 1.42). This trend persisted
but was not significant in the smaller sensitivity analyses
sample with ages closer to those at exam 7. For the executive
function domain, while no signal was observed from the
main analysis sample, higher CD14 exhibited a nominally
significant positive association in the subsample closer in age
to exam 7, indicating higher odds of being clustered into
the early decline group as compared to the late decline
group (estimated odds ratio as 1.57). In addition, although
not significant, higher CD40L showed a trend of association
with lower odds (estimated odds ratio 0.56, p-value = 0.06)
of being classified as early decliners in the executive function

TABLE 3 Predicted class membership across memory, executive
function, and language domains: a) memory domain vs. executive
function domain; b) memory domain vs. language domain; c) executive
function domain vs. language domain.

(a) Executive function domain
predicted latent classes

Class 1 Class 2

Memory domain
predicted latent classes

Class 1 2,068 12

Class 2 180 2

Class 3 43 11

Class 4 11 11

(b) Language domain predicted
latent classes

Class 1 Class 2 Class 3

Memory domain
predicted latent classes

Class 1 1,988 69 13

Class 2 150 17 15

Class 3 35 2 17

Class 4 13 4 5

(c) Language domain predicted
latent classes

Executive function
domain predicted latent
classes

Class 1 Class 2 Class 3

Class 1 2,176 86 40

Class 2 20 6 10

domain. No other significant associations were identified except
for CD14 and CD40L.

4 Discussion

In this study, we described a flexible way of modeling the
heterogeneity in cognitive decline among FHS participants from
multiple cohorts. By utilizing the newly developed cognitive
domain factor scores in the FHS, we combined participants
across different FHS cohorts, ensuring a large sample size. The
proposed method leverages the LCMM to cluster participants
into more homogeneous groups based on their longitudinal
profiles of cognitive factor scores. The piecewise linear component,
together with change point selection, provides flexibility to account
for group-specific and domain-specific non-linearity in cognitive
decline. The identified subgroups are stable and robust, illustrated
by 10-fold cross-validation.

Each identified subgroup exhibited distinct patterns of
cognitive decline across memory, executive function, and language
domains, characterized by unique participant demographics,
including baseline age, education level, and APOE ε4 carrier status.
Specifically, higher education level is enriched in the subgroup of
participants with a late decline in their language domain cognitive
functions. This aligns with the existing findings that education
has positive effects on cognitive function and individuals with
higher educational attainment are likely to experience less cognitive
decline as they age (Lövdén et al., 2020; Zahodne et al., 2015).

While most literature studying heterogeneity in cognitive aging
discovered subgroups with different rates of cognitive function

Frontiers in Aging Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1471154
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1471154 June 20, 2025 Time: 18:38 # 11

Fang et al. 10.3389/fnagi.2025.1471154

TABLE 4 The number of domains for which an individual was clustered into an early decline group vs. clinical diagnosis of MCI or dementia.

No MCI or dementia
onset (%)

Incident MCI but no
dementia (%)

Incident
dementia (%)

Number of domains an individual got clustered
into the early decline latent classes

0 1,714 (77) 208 (10) 299 (13)

1 24 (30) 15 (19) 42 (51)

2 3 (11) 2 (7) 22 (82)

3 0 (0) 0 (0) 9 (100)

Early decline latent classes are groups featuring faster decline prior to age of 75 years. These latent classes include: Memory domain class 2 and class 3, executive function domain class 2, and
language domain class 3.

TABLE 5 Association of the protein biomarkers with the piecewise linear
LCMM identified subclasses as early decline vs. late decline in
the memory domain.

Biomarker Odds ratio Standard error p-value

Main analysis sample (n = 1,617)

CD14 0.97 0.16 0.84

CD5L 0.96 0.11 0.72

CD40L 1.42 0.16 0.03

sRAGE 0.85 0.13 0.19

MPO 0.99 0.14 0.97

Sensitivity analysis sample (n = 907)

CD14 1.19 0.19 0.39

CD5L 0.94 0.13 0.66

CD40L 1.40 0.20 0.08

sRAGE 0.82 0.15 0.18

MPO 0.95 0.17 0.78

decline (Howlett et al., 2021), ages of dementia or AD onset
(Villeneuve et al., 2019), or studies of which cognitive domains
are disproportionately affected, it is challenging to bring all aspect
together. Our study is distinguished from the literature by its
identification of subgroups with different time points at which
rapid cognitive decline began. Moreover, different participants
were identified for early or late decline subgroups across different
cognitive domains, highlighting the heterogeneity of the process
of cognitive decline. Importantly, the cognitive trajectory classes
capture information about decline that is related to, but not the
same as, the clinical diagnoses: despite the absence of a perfect
alignment between the identified early or late decline groups and
the diagnoses of dementia and MCI, higher incident dementia and
incident MCI rates were observed when the number of domains
in which an individual was clustered into the early decline group
increased.

Understanding the long preclinical phase of AD is crucial for
early intervention opportunities (Sperling et al., 2011). Linking
heterogeneity in the extended preclinical phase with existing
physical or biological markers of AD or related dementia may
advance the knowledge of multiple pathways of cognitive aging.
Our proposed flexible model, which results in the subgrouping of
individuals based on their cognitive function trajectories, could
provide a potential proxy measure for the onset of cognitive
decline. Particularly, the early decline group identified through

TABLE 6 Association of the protein biomarkers with the piecewise linear
LCMM identified subclasses as early decline vs. late decline in the
executive function domain.

Biomarker Odds ratio Standard error p-value

Main analysis sample (n = 1,617)

CD14 1.38 0.18 0.08

CD5L 0.87 0.12 0.27

CD40L 0.68 0.22 0.09

sRAGE 0.86 0.20 0.44

MPO 0.93 0.12 0.57

Sensitivity analysis sample (n = 907)

CD14 1.57 0.22 0.04

CD5L 0.89 0.15 0.44

CD40L 0.56 0.30 0.06

sRAGE 0.82 0.25 0.41

MPO 0.95 0.14 0.71

this model may function as a significant risk factor for preclinical
AD or related dementia. Aiming to demonstrate the broader
utility of these subgroupings, we also established connections
with existing peripheral inflammatory biomarkers of cognitive
aging. Our previous study observed cross-sectional correlations
between higher levels of peripheral CD14, CD40L, and MPO;
lower levels of peripheral sRAGE with lower scores in the WAIS-
IV Similarities subtest, which was commonly used to measure
cognitive performance in the executive function domain (Ho
et al., 2018); and CD5L associated with brain volume biomarkers.
In our current analysis, with the addition of longitudinal data
and cognitive domain scores that harmonize information from
separate tests, we have identified nominally significant additional
associations: elevated levels of CD14 are associated with a higher
risk of early cognitive decline in the executive function and CD40L
are associated with higher risk for early decline in the memory
domain, respectively.

Our study benefits from the large amount of longitudinal
data the community-based FHS cohorts provide, and their
comprehensive neuropsychological assessments together with the
calibrated and harmonized domain global cognitive function
scores. However, there are several limitations as well. First, the
FHS participants are predominantly white. Therefore, our results
may not be generalizable to wider populations. However, although
accounting for a small proportion of study samples, our study
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includes participants from the multiethnic Omni 1 cohort. In
addition, the modeling framework we chose, LCMM, typically
suffers from computational convergence issues, especially when the
number of model parameters to be estimated is large. Therefore,
the determination of time points at which the rate of decline
changes is pre-specified based on expert opinions and hence
not identified among the data, which may affect the model’s
generalizability as well. Moreover, while LCMM is designed to
handle missing data under the assumption of missing at random,
it does not explicitly account for dropout related to worsening
cognitive function. However, the trajectories observed in our data
show significant declines in cognitive scores over time, suggesting
that this issue is not universal. Last, the modeling framework our
study exploited is not prognostic but instead only exploratory.
We investigated the heterogeneity in the longitudinal cognitive
function profiles first, then summarized participants’ demographics
and investigated the associations with existing biomarkers in a
post-hoc manner. Therefore, in this post-hoc association analysis,
the small sample size in the early decline groups, especially for
the executive function domain, may lead to higher variability in
effect size estimate and hence reduce the estimate stability and
hinder the power of detecting significant association. Additionally,
although we have selected the closest cognitive test time points
included in the modeling of trajectory subgroups to the biomarker
acquisition exam, the time differences between these two instances
could be large and hence introduce additional variability. Due to the
exploratory nature of our study, we did not apply multiple testing
corrections to our association analyses with the five proteins, and
reported nominally significant (p < 0.05) associations. Additional
studies will be needed to confirm the reported associations and
further validate our findings.

Recently, Li et al. (2022) proposed regularized finite mixture
regression models to perform clustering for the identification of
heterogeneity among the samples and enabled variable selections
for the regression model components simultaneously, hence, the
source of the heterogeneity can be identified. An interesting future
direction of exploration could be to extend the regularized finite
mixture regression model to incorporate both fixed effects and
random effects for better handling longitudinal data and identifying
sources of heterogeneity. This could also help build a prognostic
model so that the groups characterized by unique cognitive decline
patterns can be predicted using the selected corresponding features
like participants demographics, APOE genotype, cardiovascular
risk factors, and other existing AD or dementia biomarkers.
Another future direction includes developing a framework for
changepoint detection while clustering the time-course profiles
in the meantime so that the computational burden from the
traditional LCMM can be lifted and the change points can be
identified from a data-driven approach.

In summary, our study offers a comprehensive exploration
of cognitive decline heterogeneity among FHS participants,
employing a flexible, robust, and reproducible model that clusters
individuals based on longitudinal cognitive factor scores. Our
study identifies class-related differential patterns in cognitive
aging in the FHS, creates a proxy classification of cognitive
decline subtypes among the FHS participants which are available
for the wider scientific community to use in other projects.
Overall, our study advances the understanding of cognitive decline
heterogeneity and sets the stage for further investigations into early

intervention strategies and personalized approaches to mitigate
cognitive aging risks.
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