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Background: Traumatic brain injury (TBI) is associated with increased dementia

risk. This may be driven by underlying biological changes resulting from the

injury. Machine learning algorithms can use structural MRIs to give a predicted

brain age (pBA). When the estimated age is greater than the chronological age

(CA), this is called the brain age gap (BAg). We analyzed this outcome in men

and women with and without TBI.

Objective: To determine whether factors that contribute to BAg, as estimated

using the brainageR algorithm, differ between men and women who are US

military Veterans with and without TBI.

Methods: In an exploratory, hypothesis-generating analysis, we analyzed data

from 85 TBI patients and 22 healthy controls (HCs). High-resolution T1W images

were processed using FreeSurfer 7.0. pBAs were calculated from T1s. Differences

between the two groups were tested using the Mann-Whitney U. Associations

between the BAg and other factors were tested using partial Pearson’s r within

groups, controlling for CA, followed by construction of regression models.

Results: After correcting for multiple comparisons, TBI patients and HCs differed

on PCL score (higher for TBI patients) and cortical thickness (CT) in both

hemispheres (higher for HCs). Among women TBI patients, BAg was correlated

with pBA and hippocampal volume (HV), and among men TBI patients, BAg

was correlated with pBA and CT. Among both men and women HCs, BAg was

correlated only with CA. Four hierarchical regression models were constructed

to predict BAg in each group, which controlled for CA and excluded pBA

for multicollinearity. These models showed that HV predicted BAg among

women with TBI, while CT predicted BAg among men with TBI, while only CA

predicted BAg among HCs.
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Interpretation: These results offer tentative support to the view the factors

associated with BAg among individuals with TBI differ from factors associated

with BAg among HCs, and between men and women. Specifically, BAg among

individuals with TBI is predicted by neuroanatomical factors, while among HCs it

is predicted only by CA. This may reflect features of the algorithm, an underlying

biological process, or both.
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1 Introduction

1.1 Traumatic brain injury

Traumatic brain injury (TBI) is a neurological condition caused
by a sudden externally originating injury, resulting in compromised
brain function, and which is not caused by a neurodegenerative
or neurodevelopmental condition (Roebuck-Spencer and Cernich,
2014). TBI most often results from blunt force trauma to the head,
as in the case of falls, athletic injuries, car wrecks, and assaults
(including sexual assault and intimate partner violence), while
being caused somewhat less often by penetration of object through
the skull, as in the case of firearm related suicide (Brasure et al.,
2012; Mollayeva et al., 2018). TBIs are categorized as either mild,
moderate, or severe. By one common means of classification, mild
TBIs involve either no loss of consciousness (LOC), or LOC lasting
up to 30 min, while moderate TBIs are those that involve a LOC
lasting 30 min–24 h, and severe TBIs involve a LOC lasting > 24 h
(Brasure et al., 2012). Mild TBIs are characterized by concussions
that are not life-threatening and usually temporary, while severe
TBIs may result in unconsciousness, coma, and in the worst cases,
death. Among older adults, suffering from a recent TBI with LOC
is associated with an increased risk of mortality (Dams-O’Connor
et al., 2013). Despite the name, mild TBI, the most common type, is
often associated with significant long-term impairments, including
measurable cognitive impairment in half of the individuals who
suffer this injury, and unemployment in up to a third (McInnes
et al., 2017). Worldwide, an estimated 69 million individuals suffer
from a TBI annually, with more than 1.7 million Americans being
affected each year, contributing to the 5.3 million Americans who
suffer from long-term disabilities after TBIs (Thurman et al., 1999;
Dewan et al., 2019). TBI is also costly, with an estimated 0.5%
(400 billion dollars) of annual global economic output being spent
on associated personal and societal costs (McMillan et al., 2011;
Maas et al., 2017).

1.2 Traumatic brain injury and dementia

There are many factors that increase the risk for dementia,
including lack of social interactions (Kuiper et al., 2015), heart
disease (Wolters et al., 2018), diabetes (Cheng et al., 2012), and
genetic factors [the apolipoprotein E (APOE) ε4 allele] (Chen
et al., 2009; Fernández-Calle et al., 2022). Evidence for a significant

contribution to dementia risk by TBI is accumulating. A 2003 meta-
analysis of 15 case-control studies estimated that individuals who
had a TBI severe enough to result in LOC had an approximately
50% increased risk of dementia (Fleminger et al., 2003), and
a recent meta-analysis including two-million individuals found
that TBI increases the risk of dementia 1.6 times (although
this analysis did not address whether risk varies based on TBI
severity) (Li et al., 2017). Moreover, acquiring a TBI appears to
lower the age of onset of TBI-related neurocognitive syndromes
(Mendez, 2017). The risk of dementia increases with a single
moderate to severe TBI, and also in the case of repeated mild TBIs
(Mendez, 2017).

The neurobiological mechanism linking TBI and dementia
appears to involve physical disruptions in white matter tracts
and neural networks (Mendez, 2017). TBI can cause axonal
injury and induce an inflammatory response in the brain
which may persist chronically (Kang et al., 2007). In turn,
this may initiate a neurodegenerative cascade, resulting in
the development of Alzheimer’s Dementia (AD) or other
forms of dementia (Collins et al., 2020). The risk of white
matter disruption is present even after a mild TBI, and
increases with both the severity and frequency of the injuries
(Mendez, 2017).

Clarifying possible links between TBI and dementia is
important, given the high economic, societal, and medical burden
imposed by dementia on patients, families, and healthcare
providers. Dementia is a common disorder affecting more
than 55 million people worldwide (World Health Organization
[WHO], 2021), including 13.7 million Americans (Parker et al.,
2020), with prevalence on the rise (Nichols et al., 2022).
Representing a constellation of diseases and disorders, dementia
is characterized by a progressive decline in cognitive abilities
as well as social and physical functioning (Prince et al., 2013),
with the most common types being AD, dementia with Lewy
Bodies (DLB), and frontotemporal dementia (FTD) (Alzheimer’s
Association, 2014; World Health Organization [WHO], 2021).
The specific cognitive domains in which cognitive decline is
found depend on the type of dementia, with such decline being
more global in AD than in some other forms of dementia
(Smits et al., 2015). Annual worldwide economic and societal
costs associated with dementia are expected to rise from $818
billion–$2 trillion by 2030 (Parker et al., 2020; World Health
Organization [WHO], 2021), representing a 144% increase
since 2015.
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1.3 A machine learning algorithm to
predict brain age

In the current study we used a machine learning algorithm,
brainageR (Cole, 2018), to predict brain age in Veterans with
a history of TBI and identify normative deviations from the
typical timeline of age-related brain changes, which may be driven
by an injury-related acceleration of underlying aging processes
[with the caveat that there is substantial debate as to whether
such algorithms can be used to measure or predict longitudinal
aging processes (Vidal-Pineiro et al., 2021; Korbmacher et al.,
2024c)]. This algorithm has been used to identify such normative
deviations from the expected timeline of age-related brain changes
among individuals with TBI in other studies (Amgalan et al.,
2022; Dennis et al., 2022; Spitz et al., 2022). Here we sought to
build on that work and to determine what underlying factors
may contribute to such deviations from expected patterns of age-
related brain changes. The brainageR algorithm (v2.1) produces
an estimate of predicted brain age (pBA) from a raw T1-weighted
MRI scan using a Gaussian processes regression, implemented in
R, using the kernlab package (Cole, 2018). The model to which
the algorithm compares a given T1 was The brainageR model
for v2.1 was trained on n = 3377 healthy individuals (mean
age = 40.6 years, SD = 21.4, age range 18–92 years) from seven
publicly available datasets to generate an expected trajectory of
normal brain maturation and aging over time, as derived from
the structural properties of the brains in the training set (Franke
et al., 2010; Cole, 2018). Once these trajectories have been created,
the structural properties of brains from an unseen set of test
data can be used to place them along those trajectories. Such
algorithms have demonstrated accuracy, with measures in adults
finding a mean absolute error (MAE) of < 5 years (Cole and
Franke, 2017; Cole et al., 2017), which can be measured with
high test–retest reliability (intraclass correlation coefficient = 0.90–
0.99) (Cole et al., 2017). Although it was once thought that pBAs
generated by such algorithms remain stable across the lifespan in
healthy populations (Franke et al., 2010), it has been shown that the
difference between pBA and chronological age (CA) is negatively
correlated with CA (Cole and Franke, 2017), a phenomenon which
reflects the training sample’s age bias. In longitudinal data, there
is also a tendency for the age bias corrected brain age gap (BAg)
to increases at higher ages (Korbmacher et al., 2024c). Estimates
of pBA show scan-rescan stability over short periods of time, and,
also, show stability across different scanning systems after adjusting
for field strength (Franke and Gaser, 2012), although recent work
suggests that there may be substantial intraindividual variability at
lower field strengths (Korbmacher et al., 2023c). Importantly, age
predictions obtained through this algorithmic MRI-based method
outperform telomere length, another measure of biological age,
for which measurements can be highly variable depending on
the extraction and lab analysis practices utilized (Cunningham
et al., 2013; Sanders and Newman, 2013; Martin-Ruiz et al., 2015;
Franke and Gaser, 2019). It is worth noting, however, that when an
individual’s brain anatomy is considered deviant by the model, that
deviation is reflected in repeated brain age estimates, independent
of pathology (Korbmacher et al., 2023c). Additionally, although
there exist algorithms that may demonstrate even higher accuracy
than brainageR (More et al., 2023; Korbmacher et al., 2024d), for

the current analysis we chose to use brainageR because it has been
used in other studies to examine brain age in the context of TBI
(Amgalan et al., 2022; Dennis et al., 2022; Dennis et al., 2024).
While there is some evidence of model-dependent results in brain
age estimations, a cross-model comparison is beyond the scope
of the current work but should be undertaken in a future study
(More et al., 2023; Korbmacher et al., 2024d). Additional sources
of variability that may impact the accuracy of algorithmic brain age
predictions include feature sets (multimodal vs. unimodal) (Rokicki
et al., 2021; Jirsaraie et al., 2023; Korbmacher et al., 2023a), and
software version (Korbmacher et al., 2024d). All things considered,
it is a tool with substantial potential but which is not without error
and which must be applied with care.

The difference or gap between pBA and CA, called here the
BAg, may be able to serve as a biomarker of altered aging processes
in the brain. This gap may be driven by the presence of anatomical
features such as cortical thickness that are more typical of advanced
age than the individual’s current age. In a large study of 73-year-
olds, for every additional year that an individual’s pBA was older
than their CA, there was a 6% increased risk of death (Cole et al.,
2018). The same study also found associations between pBA and
lower grip strength, lower forced expiratory volume, slower walking
time, and a composite measure of fluid cognition. There can be
many factors contributing to this change in BAg. Being a long-term
meditator (Luders et al., 2016) or a trained musician (Rogenmoser
et al., 2018) appears to reduce pBA, relative to CA, resulting in a
negative BAg. On the other hand, being born extremely preterm
(prior to the 27th week of gestation) (Hedderich et al., 2022), having
schizophrenia (Nenadić et al., 2017), being obese (Kolenic et al.,
2018), or having diabetes (Franke et al., 2013) are associated with
having a pBA that is greater than one’s CA, or a positive BAg. Other
covariates of pBA and/or BAg include waist-to-hip ratio, diabetes,
hypertension, smoking, matrix puzzles solving, and job and health
satisfaction (Korbmacher et al., 2023b).

Algorithmically measured brain age may be able to serve as
a predictor of dementia. People diagnosed with Alzheimer’s have
been shown to have greater apparent BAg in neuroimaging data
(Franke and Gaser, 2012). Also, in people with mild cognitive
impairment (MCI), pBA was a significant predictor of progression
to dementia within 3 years of the MRI to which the algorithm
was applied (Gaser et al., 2013). This may indicate that pBA can
be sensitive to subtle changes in the brain that occur before overt
disease manifestation, although the current sensitivity of pBA using
existing methods is a matter of some debate (Kaufmann et al., 2019;
Korbmacher et al., 2023c; Tetereva and Pat, 2023; Korbmacher
et al., 2024c; Wang et al., 2024). In progressive neurodegenerative
conditions, tools that identify individuals at increased risk of future
disease onset could be particularly useful, both for clinical practice
and for the design of clinical trials (Cole et al., 2019).

TBI appears to produce deviations from the expected pattern of
age-related anatomical brain changes, such that these individuals
tend to display greater BAg (Franke and Gaser, 2012; Cole et al.,
2015). MRI-derived estimates of gray matter and white matter
volume indicate that TBI can produce accelerated atrophy to a
degree which is atypical for normal aging (Cole et al., 2015). There
have, so far, been only a few studies examining the relationship
between TBI and age-related brain changes (Franke and Gaser,
2012; Cole et al., 2015; Amgalan et al., 2022). Given the heightened
risk of dementia for individuals with TBI, and the possibility
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of predicting dementia onset using brain age prediction, it is
important to determine what characteristics may contribute to the
brain age predictions generated by these algorithms in individuals
with TBI.

1.4 Purpose of this study

In the current study, we sought to test a few distinct hypotheses.
Our first hypothesis was that participants with TBI would show a
larger positive BAg, relative to HCs. Then, we sought to whether
the factors associated with the BAg, using a Pearson’s correlation,
would differ between participants with TBI and HCs, with our
hypothesis being that they would. Finally, we sought to construct
a regression model that would most accurately predict the BAg for
each group using the available data, in order to determine whether
the factors predictive of BAg would differ between groups, with our
hypothesis being that they would. In the process of conducting the
analysis, we also tested for sex differences in an exploratory manner.

1.5 Relevance

We hope that this study can add to the growing body of
literature on the relationship between TBI and algorithmically
modeled BAg. We further hope that can help to clarify the
demographic and biological correlates of that relationship. Our
study was conducted among US Veterans, a population that is
especially impacted by TBI.

2 Materials and methods

2.1 Participants

For this study, 23 HCs (11 women), and 94 participants
with mild (n = 61), moderate (n = 17), or severe (n = 16) TBI
(27 women), were recruited. The majority of participants with
TBI were recruited either from the Santa Clara Valley Medical
Center, Rehabilitation Research Center, or the VA Palo Alto
Health Care System (VAPAHCS). Others answered advertisements
posted at Stanford University and communities throughout
Santa Clara County, California. HCs were recruited through
advertisements and among colleagues. All participants underwent
clinical interviews with a neurologist, psychiatrist, or physical
medicine and rehabilitation specialist to gather information about
their TBI history and chronic symptoms after injury. TBI severity
was measured using the Ohio State University Traumatic Brain
Injury Identification Method (OSU TBI-ID). Regarding inclusion
criteria, all participants had to be US Veterans, be capable of safely
undergoing an MRI, and not have another neurological condition
that explain morphological brain changes better than TBI. TBI
patients had to qualify for a TBI diagnosis using the OSU TBI-
ID. All participants provided informed consent according to the
Declaration of Helsinki. The experimental protocol was approved
by the Institutional Review Board of Stanford University and by
the VAPAHCS Scientific Review Board. Nine individuals were
excluded for being > 3 standard deviations from the mean on either
pBA or on one of the structural brain elements being measured.

One individual with brain age > 20 years was not > 3 standard
deviations (SD) from the mean, but upon inspection was found
to have overdrawn cerebrospinal fluid (CSF) masks, including
meninges and frontal sinus. Of these ten exclusions one was HC
and nine were TBI, leaving 85 TBI patients and 22 HCs (see Table 1
for sample characteristics). We chose to use Veterans rather than
Active-Duty Service Members, because we were interested in the
long term chronic effects of TBI on brain anatomy and brain age,
rather than the acute effects. For the same reason, we did not enroll
participants who were recently returned from a war zone.

2.2 MR image acquisition

MRI imaging data was acquired at VAPAHCS on a GE 3T
Discovery MR750 scanner with an 8-channel head coil (GE
Medical Systems, Milwaukee, WI). Each MRI session lasted
approximately 1 h and included T1 and T2-weighted imaging
(T1W & T2W), diffusion weighted imaging (DWI), resting state
(T2∗), susceptibility weighted imaging (SWI), and fluid attenuation
inversion recovery (FLAIR). Only high-resolution T1W images
were used for the current analyses. The T1W sequence used a
three-dimensional spoiled-gradient recalled acquisition (3D-fast
spoiled gradient echo MRI) in steady state with the parameters:
TR = 7.3 ms; TE = 3.0 ms; flip angle = 11 degrees; 272 axial slices
with the slice thickness = 1.2 mm with 0.6 between slices; field of
view = 250 mm; voxel dimensions: 1.05× 1.05× 0.60 mm.

2.3 Anatomical image preprocessing

High resolution T1W anatomical images were processed using
FreeSurfer 7.0, which includes intensity normalization (Sled et al.,
1998), segmentation (Fischl et al., 2004), inflation of surfaces to
spheres (Fischl et al., 1999a), and spherical registration of spherical
surfaces to a standard template (Fischl et al., 1999b). FreeSurfer
provides cortical thickness and neuroanatomical parcellation of the
cortex and subcortical structures for all subjects (Desikan et al.,
2006). The cortical thickness (Adamson et al., 2020) and volume
of hippocampus (Ertekin et al., 2013) were collected as imaging
markers for brain age prediction after they were normalized for
inter-subject variation in brain size, defined and measured as total
intracranial volume (TICV) (Schwarz et al., 2016).

2.4 Calculation of predicted brain age
from anatomical images

pBAs were calculated from the T1W MR images using
brainageR pre-trained models (Cole, 2018). The software
includes the following steps: (1) The raw T1W MRI images
were preprocessed using SPM12 (Ashburner et al., 2014) for
segmentation into gray matter (GM), white matter (WM) and
corticospinal fluid (CSF) maps, then normalized to Montreal
Neurological Institute (MNI) space with a 4 mm smoothing kernel;
(2) machine learning analysis was conducted using the Pattern
Recognition for Neuroimaging Toolbox (PRoNTo) (Schrouff et al.,
2013) and run on GM and WM separately; (3) model validation was
conducted to ensure independence between training and test sets
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TABLE 1 Demographics and other participant characteristics for patients and HCs.

TBI patients N Minimum Maximum Mean SD

CA (years) 85 20.00 76.81 42.65 13.39

Education (years) 83 11.00 21.00 15.33 2.23

PCL score 64 0.00 70.00 38.44 17.03

Age at injury (years) 75 2.00 60.00 25.89 13.38

Time since injury (years) 75 0.08 64.25 17.09 15.23

pBA (years) 85 17.77 80.77 43.99 15.44

Left CT (mm) 85 1.95 2.41 2.20 0.09

Right CT (mm) 85 1.91 2.41 2.19 0.09

CT (mm) 85 1.93 2.41 2.19 0.09

Left HV (mm3) 85 2,988.75 5,477.01 4,111.81 462.77

R HV (mm3) 85 3,069.09 5,393.64 4,227.74 495.49

HV (mm3) 85 3,071.48 5,435.32 4,169.78 459.01

TICV (mm3) 85 1,156,049.20 1,845,470.68 1,517,952.52 143,646.14

BAg (years) 85 –21.87 32.67 1.34 8.15

M F Other Yes No

Sex 62 23 0 PTSD dx 46 39

1 2 3

TBI severity 57 16 12

Healthy controls N Minimum Maximum Mean SD

CA (years) 22 23.00 54.00 39.05 10.83

Education (years) 22 12.00 26.00 17.00 3.24

PCL score 13 17.00 61.00 26.69 12.01

pBA (years) 22 24.44 57.89 39.76 9.08

Left CT (mm) 22 2.10 2.46 2.28 0.09

Right CT (mm) 22 2.08 2.40 2.25 0.08

CT (mm) 22 2.09 2.43 2.26 0.08

Left HV (mm3) 22 3,655.89 5,091.55 4,235.58 367.88

R HV (mm3) 22 3,677.16 5,665.87 4,348.19 448.28

HV (mm3) 22 3,713.31 5,378.71 4,291.89 393.44

TICV (mm3) 22 1,192,109.01 1,695,683.90 1,435,432.82 139,217.15

BAg (years) 22 –16.62 14.92 0.72 7.09

M F Other Yes No

Sex 11 11 0 PTSD dx 2 11

and to enable an unbiased demonstration of model generalizability;
(4) Principal Components Analysis (PCA) was applied to predict
an age value with the trained model (Karatzoglou et al., 2004).
Values for pBA were obtained from the machine learning analysis
of neuroimaging data for all HCs and TBI patients. See Figure 1 for
examples of T1s from a HC and TBI patient, respectively.

2.5 Statistical analyses

In this exploratory hypothesis-generating analysis, we
compared TBI participants and HCs on several biological and
demographic parameters. Mann-Whitney U tests were conducted

to test for pairwise comparisons between TBI patients and HCs
in the following variables: CA, years of education, score on the
Post-traumatic Stress Disorder Checklist for DSM-5 (PCL-5), pBA,
BAg, overall cortical thickness (CT), left hemisphere CT, right
hemisphere CT, overall hippocampal volume (HV), left hemisphere
HV, right hemisphere HV, and total intracranial volume (TICV).
We then separated each group by sex and conducted Pearson’s
correlations within each subgroup in order to identify factors that
were associated with BAg. In accordance with recommendations
from the creator of the brainageR algorithm, we controlled for CA
in these correlations by conducting a partial Pearson’s r with CA
as the controlled for variable (this also normalized the underlying
variables, obviating the need for a nonparametric test). Factors
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FIGURE 1

T1W and segmented gray matter (GM), white matter (WM) and Cerebrospinal fluid (CSF) for a control subject and a TBI patient with the same CA of
27 years old. (A) T1W Image of a Control Subject. (B) T1W Image of a TBI Patient. (C) Segmented GM, WM and CSF of the Control Subject. (D)
Segmented GM, WM and CSF of a TBI Patient.

considered as potential correlates for BAg among TBI patients
included years of education, PCL score, age of injury, time since
injury (years), pBA, overall CT, and overall HV. For HCs, factors

considered included years of education, PCL score, pBA, overall
CT, and overall HV. The factors identified (pBA and HV for
women with TBIs, pBA and CT for men with TBIs, and pBA and
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FIGURE 2

Overview of analysis.

CA for men and women HCs) were then used to construct four
multiple regression models for BAg within each subgroup, and
CA was included as a variable in all models, as advised by James
Cole. All statistical tests were conducted using IBM SPSS Statistics
for Macintosh, Version 29. Anatomical volumes were corrected
for TICV during Freesurfer analysis. An FDR correction was
conducted to control for multiple comparisons during each stage
of the analysis. See Figure 2 for an overview of the analysis.

3 Results

3.1 Between-group comparisons

Summaries of demographic and biological parameters for each
group can be seen in Table 1. The results showed that the groups
differed significantly on the following measures (note that both
uncorrected and FDR corrected p-values are shown): compared to

TBI participants, HCs had more years of education [TBI M: 15.33
(SD: 2.23) vs. HC M: 17.00 (SD: 3.24), p = 0.026, pFDR = 0.056],
greater overall cortical thickness [TBI M: 2.19 (SD: 0.09) vs. HC
M: 2.26 (SD: 0.08), p = 0.002, pFDR = 0.012, in mm], and greater
cortical thickness in both the left [TBI M: 2.20 (SD: 0.09) vs. HC M:
2.28 (SD: 0.09), p = 0.0008, pFDR = 0.009, in mm] and right [TBIM:
2.19 (SD: 0.09) vs. HC M: 2.25 (SD: 0.08), p = 0.003, pFDR = 0.012,
in mm] hemispheres. Compared to HCs, TBI participants had
higher scores on the Post-traumatic Stress Disorder Checklist for
DSM-5 (PCL-5) (Blevins et al., 2015) [TBI M: 38.70 (SD: 17.08)
vs. HC M: 26.69 (SD: 12.01), p = 0.011, pFDR = 0.033], as well
as greater TICV [TBI M: 1,517,952.52 (SD: 143,646.14) vs. HC
M: 1,435,432.82 (SD: 393.44), p = 0.028, pFDR = 0.056, in mm3].
The two groups did not differ significantly regarding pBA, BAg,
or CA, despite participants with TBI being numerically higher on
all three compared to HCs. This differs from some other studies
(Ertekin et al., 2013; Cole et al., 2017), and may be a consequence
of our relatively small HC sample. Results shown in Table 2. All
uncorrected significant comparisons survived an FDR correction
(Benjamini and Hochberg, 1995) (FDR crit. value = 0.05) except for
TICV and education, as described above.

3.2 Correlations with brain age gap

A partial Pearson’s r, controlling for CA, was used to identify
factors correlated with BAg, for the purpose of identifying
candidates for subsequent regression models within each group
(TBI and HCs) with men and women considered separately. Factors
considered as correlates for BAg among TBI patients included years
of education, PCL score, age of injury, time since injury (years),
pBA, overall CT, and overall HV. For HCs, factors considered
included years of education, PCL score, pBA, overall CT, and overall
HV. Results are shown in Table 3. Both uncorrected and FDR
corrected p-values are given in the table, and below.

Among women with TBIs, factors that were significantly
correlated with BAg included: pBA (r = 1.0, p = < 0.001, df = 20,
pFDR = < 0.007), and HV (r = –0.567, p = 0.006, df = 20,
pFDR = 0.021), both of which survived FDR correction. Among
men with TBIs, factors that were significantly correlated with BAg
included: pBA (r = 1.00, p < 0.001, df = 59, pFDR = 0.0007), CT
(r = –0.370, p = 0.003, df = 59, pFDR = 0.011), and HV (r = –0.289,
p = 0.024, df = 59, pFDR = 0.056). Only pBA and CT survived
an FDR correction.

Among women who were HCs, factors that were significantly
correlated with BAg included: pBA (r = 1.00, p = < 0.001,
df = 8, pFDR < 0.005), and CT (r = –0.685, p = 0.029, df = 8,
pFDR = 0.073), with only pBA surviving an FDR correction.
Among men who were HCs, factors that were significantly
correlated with BAg included: pBA (r = 1.00, p < 0.001, df = 8,
pFDR < 0.005), and years of education (r = –0.633, p = 0.049, df = 8,
pFDR = 0.123), with only pBA surviving an FDR correction.

It is worth noting that in all 4 groups above a perfect partial
correlation was observed between pBA and BAg after controlling
for CA, suggesting collinearity between the two variables. This
being the case, caution will be used in incorporating these variables
into subsequent regression models.
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TABLE 2 Nonparametric pairwise comparisons using the Mann-Whitney U.

Factor TBI patients M
(SD)

HCs M (SD) Test statistic p uncorr. pFDR

Education (years) 15.33 (2.23) 17.00 (3.24) 634.00 0.026 0.056

n = 83 n = 22

PCL-5 (points) 38.44 (17.03) 26.69 (3.33) 229.50 0.011* 0.033

n = 64 n = 13

Cortical thickness (mm) 2.19 (0.09) 2.26 (0.08) 527.00 0.002* 0.012

n = 85 n = 22

LH cortical thickness (mm) 2.20 (0.09) 2.28 (0.09) 499.00 <0.001* 0.009

n = 85 n = 22

RH corticol thickness (mm) 2.19 (0.09 2.25 (0.08) 554.50 0.003* 0.012

n = 85 n = 22

TICV (in mm3) 1,517,952.52
(143,646.14)

1,435,432.82
(139,217.15)

650.00 0.028 0.056

n = 85 n = 22

Only significant differences are shown. Comparisons that survived an FDR correction are marked with a *.

TABLE 3 Factors correlated with BAg among TBI patients and HCs, while
controlling for CA.

Pearson’s r p uncorrr. pFDR

Women TBI patients

pBA 1.0 <0.001* <0.007

HV –0.567 0.006* 0.021

Men TBI patients

pBA 1.0 <0.001* <0.0007

CT –0.370 0.003* 0.011

HV –0.289 0.024 0.056

Women HCs

pBA 1.0 <0.001* <0.005

CT –0.685 0.029 0.073

Men HCs

pBA 1.0 <0.001* <0.005

Years education –0.633 0.049 0.123

Only significant results shown. All tests 2-tailed. Results that survive an FDR correction are
marked with a *.

Separately, a Spearman’s rho was used to test for a relationship
between TBI severity among men and women with TBIs. Results
were nonsignificant for both populations.

3.3 Regression models to predict brain
age gap

Four regression models were constructed, one each for women
with TBIs, men with TBIs, women who were HCs, and men who
were HCs. All four made use of variables identified during the
previously reported partial correlations.

For women with TBIs (Table 4), a linear regression model was
constructed to predict BAg using the predictors: CA (included

as a control), pBA, and HV (all identified during the earlier
Pearson’s correlations). By examining collinearity statistics (i.e.,
Durbin Watson, tolerance, variance inflation factor (VIF), and
collinearity index) it was determined that pBA was creating
excessive collinearity, and so it was removed from the model.
The subsequent model (Model 1) included as predictors: CA and
HV, and was judged to be free of collinearity. Other statistical
assumptions were also checked and judged to have been adequately
met. The overall regression model was statistically significant,
F(2, 20) = 4.79, p = 0.020, pFDR = 0.023, and accounted for
approximately 32.4% of the variance in BAg (R2 = 0.324, adjusted
R2 = 0.256). The regression coefficient for HV was significant,
B = –0.009, SE = 0.003, β = –0.566, t(20) = –3.08, p = 0.006,
pFDR = 0.018, indicating that higher HV was associated with
a lower BAg. In contrast, CA, included as a control, was not a
significant predictor of BAg, B = –0.045, SE = 0.089, β = –0.094,
t(20) = –0.508, p = 0.617, pFDR = 0.617 (Figure 3).

For men with TBIs (Table 5), a linear regression model was
constructed to predict BAg using CA, pBA, and cortical thickness.
By examining collinearity statistics it was determined that pBA was
creating excessive collinearity, and was removed. The subsequent
model (Model 2) included as predictors CA (as a control) and
CT, and was judged to be free of collinearity. Other assumptions
were also checked and judged to have been adequately met. The
overall model was statistically significant, F(2, 59) = 4.76, p = 0.012,
pFDR = 0.023, and accounted for approximately 13.9% of the
variance in BAg (R2 = 0.139, adjusted R2 = 0.110). CT was a
significant predictor of BAg, B = –42.324, SE = 13.857, β = –0.442,
t(59) = –3.05, p = 0.003, pFDR = 0.018, suggesting that greater CT
was associated with a lower BAg. CA was also a significant predictor
(uncorrected), B = –0.190, SE = 0.093, β = –0.295, t(59) = –2.04,
p = 0.046, pFDR = 0.0552, although it did not survive an FDR
correction (Figure 4).

For women HCs (Table 6), a model was constructed to predict
BAg using CA and pBA. By examining collinearity statistics it was
determined that pBA was creating excessive collinearity, and was
removed, leaving only CA. This model (Model 3) was statistically
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TABLE 4 Predicting BAg among women TBI patients using HV while controlling for CA.

R R2 Adj. R2 SE

0.569 0.324 0.256 5.177

ANOVA SS df MS F p uncorr. pFDR

Regr. 256.06 2 128.303 4.788 0.020* 0.023

Res. 535.934 20 26.797

Total 792.540 22

Coefficients Unst. St.

B SE Beta t p uncorr. pFDR

Constant 42.722 13.160 3.246 0.004

CA –0.045 0.089 –0.094 –0.508 0.617 0.617

HV –0.009 0.003 –0.566 –3.076 0.006* 0.018

Significant results that survive an FDR correction are marked with a *.

FIGURE 3

Regression model predicting BAg among women with TBI using HV, while controlling for CA.

significant, F(1, 9) = 7.54, p = 0.023, pFDR = 0.023, explaining
approximately 45.6% of the variance in BAg (R2 = 0.456, adjusted
R2 = 0.395). CA was a significant negative predictor of BAg,
B = –0.404, SE = 0.147, β = –0.675, t(9) = –2.75, p = 0.023,
pFDR = 0.035, indicating that higher CA was associated with a
lower BAg (Figure 5).

For men HCs (Table 7), a model was constructed to predict
BAg using CA and pBA. By examining collinearity statistics it was
determined that pBA was creating excessive collinearity, and was
removed, leaving only CA. This model (Model 4) was statistically
significant, F(1, 9) = 8.68, p = 0.016, pFDR = 0.023, explaining
approximately 49.1% of the variance in BAg (R2 = 0.491, adjusted
R2 = 0.434). CA was a significant negative predictor of BAg,
B = –0.417, SE = 0.141, β = –0.701, t(9) = –2.95, p = 0.016,

pFDR = 0.032, indicating that higher CA was associated with a
lower BAg (Figure 6).

We note here that all models survived an FDR correction, but
that there is assumed to be some inflation of the model fit metrics
resulting from the inclusion of CA as a control. We also note
the predictor coefficients were subjected to FDR correction across
models, not merely within models. For all FDR corrections the
significance criterion was set at 0.05.

3.4 Transparency, rigor, and
reproducibility summary

Sample began with 94 TBI patients and 23 healthy controls.
Nine individuals were excluded for being > 3 standard deviations
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TABLE 5 Predicting BAg among men TBI patients using CT while controlling for CA.

R R2 Adj. R2 SE

0.373 0.139 0.110 8.287

ANOVA SS df MS F p uncorr. pFDR

Regr. 653.253 2 326.626 4.756 0.012* 0.023

Res. 4052.108 59 68.680

Total 4705.361 61

Coefficients Unst. St.

B SE Beta t p uncorr. pFDR

Constant 101.706 32.784 3.102 0.003

CA –0.190 0.093 –0.295 –2.040 0.046 0.0552

CT –42.324 13.857 –0.442 –3.054 0.003* 0.018

Significant results that survive an FDR correction are marked with a *.

FIGURE 4

Regression model predicting BAg among men with TBI using CT, while controlling for CA.

TABLE 6 Predicting BAg among women HCs using CA as a predictor.

R R2 Adj. R2 SE

0.675 0.456 0.395 4.87

ANOVA SS df MS F p uncorr. pFDR

Regr. 178.505 1 178.505 7.537 0.023* 0.023

Res. 213.161 9 23.685

Total 391.666 10

Coefficients Unst. St.

B SE Beta t p uncorr. pFDR

Constant 20.093 6.147 3.269 0.010

CA –0.404 0.147 –0.675 –2.745 0.023* 0.035

Significant results that survive an FDR correction are marked with a *.
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FIGURE 5

Regression model predicting BAg among women HCs using CA.

TABLE 7 Predicting BAg among men HCs using CA as a predictor.

R R2 Adj. R2 SE

0.701 0.491 0.434 5.141

ANOVA SS df MS F p uncorr. pFDR

Regr. 229.355 1 229.355 8.679 0.016* 0.023

Res. 237.844 9 26.427

Total 467.199 10

Coefficients Unst. St.

B SE Beta t p uncorr. pFDR

Constant 13.371 5.533 2.417 0.039

CA –0.417 0.141 –0.701 –2.946 0.016* 0.032

Significant results that survive an FDR correction are marked with a *.

from the mean on either pBA or on one of the structural brain
elements being measured. One individual with brain age > 20 years
was not > 3 SD from the mean, but upon inspection was found to
have overdrawn CSF masks, including meninges and frontal sinus.
Of these ten exclusions one was HC and nine were TBI, leaving
85 TBI patients and 22 HCs. Hypotheses were not preregistered
because this study was considered to be exploratory in nature,
and we intend that it will provide the basis for future replication
attempts. We had a power of 52.5% to detect differences between
the means of the two groups using the Mann-Whitney U, assuming
a moderate effect size of d = 0.5. When performing the correlations,
we had a power of 99.95% to detect a moderate correlation (= 0.5)
within the TBI group, and a power of 73.11% to detect an equivalent
correlation within the healthy control group. Linear regression
models conducted amongst TBI patients were powered at the 89.1%
level to detect a moderate effect size, while among healthy controls

the models were powered at the 30.4% level. Limitations of this
exploratory study, such as the small number of healthy controls, are
noted in the text. All power calculations conducted with G∗Power.
Because of the relatively low power available for Mann-Whitney U
above, a weakness of our own study, we recommend that future
attempts at replication include at least n = 70 in each group, which
will give power > 80% for effect size d = 0.5.

4 Discussion

In the current study, we sought to use the brainageR algorithm
to examine whether TBI patients showed evidence of larger positive
BAg relative to HCs who had never experienced a TBI, and, to
determine whether factors associated with the BAg differed between
participants with TBI and those who had never had one, and,
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FIGURE 6

Regression model predicting BAg among men HCs using CA.

finally, to determine whether the factors that predicted the BAg
would also differ between the two groups, as well as between
subgroups. In so doing, we sought to determine not only whether
the two groups differed in regards to their BAg, but also whether
the underlying pattern of changes that were associated with that
outcome differed between them.

First, contrary to our hypothesis that individuals with TBI
would show either larger pBAs or BAgs relative to HCs, our TBI
participants did not significantly differ from HCs with regard to
either pBA or BAg (Table 2). This lack of difference between groups
in pBA and BAg should be interpreted carefully. First, as noted
above, our sample had relatively low power to detect this difference.
Also, there is some evidence that algorithmically measured BAg
is not especially sensitive to aging (Vidal-Pineiro et al., 2021;
Korbmacher et al., 2024c), and it appears to be affected by a
variety of other factors (Korbmacher et al., 2023b), which were not
controlled for in this comparison. However, our TBI participants
did exhibit significantly reduced cortical thickness, both overall and
in each hemisphere, relative to HCs (Thambisetty et al., 2010). The
lack of a difference in pBA and BAg between the TBI and HC groups
was surprising given the literature indicating that TBI tends to be
associated with greater BAg, relative to individuals without TBIs
(Dennis et al., 2022).

Second, we predicted that the factors associated with BAg, as
revealed by a partial Pearson’s r controlling for CA, would differ
between persons with TBI and HCs, and such differences were
apparent (Table 3). We found that BAg significantly associated with
pBA among all participants, however, BAg was only associated with
HV among women with TBIs, and was only associated with CT
among men with TBIs.

Third, we sought to test whether the factors that were associated
with BAg and which were predictive of its magnitude in linear
regression models would differ between patients with TBIs and HC,
and such differences were apparent. These regression models were

constructed using these factors to predict BAg in each population,
with CA included as a covariate. pBA was excluded from this stage
of analysis because of problems with multicollinearity. In these
models, among women with TBIs, higher HV was associated with
a lower BAg, while among men with TBIs greater CT and was
associated with a lower BAg. Among both men and women HCs,
higher CA predicted a smaller BAg. The adjusted R2 for these
models ranged from 0.110 (CT among men with TBI) to 0.434
(CA among men HCs).

The interpretation of these is challenging. The analysis
produced by the brainageR algorithm does not provide any
neuroanatomical specificity with regard to which features are used
in generating the pBA. There are algorithmic brain age prediction
models which attempt to deliver explainable predictions, but with
brainageR it is the case that no feature importance rankings or any
other explainable factors used in the analytic process are obtainable
(at least not with the version we used), making it a black box.
Additionally, there are technical challenges to making explicit the
processes by which the Gaussian process regressions produce their
output (Franke and Gaser, 2019). A tentative potential explanation
for the differences seen here between participants with TBI and
HCs is that while the anatomical brain changes that occur during
normal aging might be characterized as global and diffuse, those
which occur in individuals with a TBI might be more focused on
specific structures affected by their injury. There is evidence from
several large scale studies that brain regions near the ventricles
might be more sensitive to aging (Fujita et al., 2023; Korbmacher
et al., 2024a), also found when looking at age-associations and brain
age (Leonardsen et al., 2022; Korbmacher et al., 2023a; Korbmacher
et al., 2024b), a finding that may run against the suggestion above
that are more global and diffuse in HC brains compared to those
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of TBI patients, but which may support the contribution of HV to
greater BAg among women with TBIs described here.

Next, we hypothesized that the ability to predict BAg using
multiple regression models constructed from the previously
identified factors would differ between persons with TBI and HCs;
and our hypothesis was supported.

In summary, we found that in our sample the factors which
predicted BAg differed between TBI patients and HCs, as well as
between men and women with TBIs. For women with TBIs, BAg
was most strongly predicted by HV, while for men with TBIs, it
was most strongly predicted by CT. For both men and women in
the HC group, BAg was best predicted by CA. We speculate that
sustaining a TBI alters the underlying network of causal factors
which contribute to age-related neuroanatomical brain changes,
such that age-related brain changes are more driven by the injury,
while among HCs the determinants of age-related brain changes
appear less related to discrete anatomical features of the brain, but
may instead exert their impacts in more subtle ways. However,
clarifying the nature of this relationship will require larger sample
sizes and more sophisticated age prediction algorithms.

Limitations to our study included a relatively small number of
HCs, relative to the number of TBI patients. This may impose limits
on the statistical conclusions that can be drawn. Future studies
of this sort should include larger well-matched HC samples (at
least 70 per sample, as mentioned above). Future undertakings of
this kind of work should also include more women in the patient
group. Another limitation was that we did not have access to
detailed medical histories, and thus could not evaluate the role that
other health factors may have played in age-related brain change
differences (or the lack thereof) between TBI participants and HCs.
Additionally, there was a lack of other biomarkers for correlations,
such as genetic or proteomic measures, which have been correlated
with prediction of AD (Bai et al., 2021). Lastly, neuroimaging was
based upon one time point, so it is difficult to state that these
findings are the result of a progressive process. We emphasize here
the exploratory nature of the current analysis, which is intended
to generate hypotheses for testing in a future analysis on a larger
dataset.
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