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Advanced aging is associated with robust changes in neural activity. In addition

to the well-established age-related slowing of the peak alpha frequency, there

is a growing body of evidence showing that older age is also associated with

changes in alpha power and beta power. Despite the important progress that

has been made, the interacting effects of age and frequency band have not

been directly tested in sensor and source space while controlling for aperiodic

components. In the current study we address these limitations. We recruited

54 healthy younger and older adults and measured neural oscillations using

a high-density electroencephalogram (EEG) system during resting-state with

eyes closed. After preprocessing the EEG data and controlling for aperiodic

components, we computed alpha and beta power in both sensor and source

space. Permutation two-way ANOVAs between frequency band and age group

were performed across all electrodes and across all dipoles. Our findings

revealed significant interactions in sensorimotor, parietal, and occipital regions.

The pattern driving the interaction varied across regions, with older age

associated with a progressive decrease in alpha power and a progressive

increase in beta power from parietal to sensorimotor regions. Our findings

demonstrate that age-related changes in neural oscillations vary as a function

of brain region and frequency band. We interpret our findings in the context of

clinical and preclinical evidence of age effects on the cholinergic circuit and the

Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit.
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Introduction

Advanced aging is associated with robust changes in neural activity. The modulation of
neural activity during resting states has been fundamental in advancing our understanding
of the neural circuits that subserve age-related changes in cognitive function and motor
performance (Jensen and Mazaheri, 2010; Foxe and Snyder, 2011; Klimesch, 2012;
Bönstrup et al., 2015; Heinrichs-Graham et al., 2018; Rempe et al., 2022). In addition to
the well-established age-related slowing of the peak alpha frequency (Scally et al., 2018;
Capilla et al., 2022; Merkin et al., 2023; Park et al., 2024), there is a growing body of EEG
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and magnetoencephalography (MEG) evidence showing that older
age is also associated with changes in alpha power (Babiloni et al.,
2006; Scally et al., 2018; Jabès et al., 2021; Merkin et al., 2023;
Tröndle et al., 2023; Park et al., 2024) and beta power (Vysata
et al., 2012; Gómez et al., 2013; Heinrichs-Graham et al., 2018;
Rempe et al., 2022). Modulation in the power of alpha oscillations is
most prevalent in posterior sensors at the scalp level (Barry and De
Blasio, 2017) and parietal and occipital regions at the cortical level
(Babiloni et al., 2006), whereas changes in beta power have been
localized to central sensors at the scalp level (Barry and De Blasio,
2017) and sensorimotor regions at the cortical level (Heinrichs-
Graham et al., 2018; Rempe et al., 2022). To date, the majority of
aging studies have focused on either alpha or beta power (Vysata
et al., 2012; Gómez et al., 2013; Barry and De Blasio, 2017; Rempe
et al., 2023), have assessed power at the scalp level (Vysata et al.,
2012; Gómez et al., 2013; Barry and De Blasio, 2017; Scally et al.,
2018; Jabès et al., 2021; Merkin et al., 2023), and have done so
without controlling for aperiodic components (Rempe et al., 2023).
As such, the interacting effects of age and frequency band have not
been directly tested across the whole cortex in source space while
controlling for aperiodic components. The goal in the current study
is to address this gap in the literature.

Electrophysiological signals exhibit a 1/f-like distribution in
frequency space, demonstrating an exponential decrease in power
spectra from lower to higher frequencies. These are referred
to as aperiodic components, which have long been considered
background noise. However, recent evidence suggests that these
aperiodic components reflect physiological processes (Manning
et al., 2009; Gao et al., 2017; Donoghue et al., 2020), that can
be represented by the calculation of offset and exponential slope.
Offset represents a uniform shift in the entire power spectra across
frequencies. An invasive EEG study using electrodes implanted in
the human brain revealed that offset values are positively associated
with neural population spiking in the neocortex (Manning et al.,
2009). This suggests that higher offset values correspond to faster
neural firing rates. Moreover, the exponential slope of the 1/f-like
distribution was found to be correlated with the ratio between
cortical excitatory and inhibitory activity (Gao et al., 2017). This
correlation manifests as a flatter slope when the excitatory activity
is higher relative to inhibitory activity, and a steeper slope when the
reverse is true. Furthermore, these aperiodic components can be
influenced by healthy aging. Several recent studies have found that
older adults exhibit a lower offset and a flatter slope compared to
young adults (Donoghue et al., 2020; Merkin et al., 2023; Tröndle
et al., 2023).

Convergence on how age alters alpha and beta band power
during resting states has yet to be reached. Although decreases
in alpha power and increases in beta power have been reported
with age (Gómez et al., 2013; Barry and De Blasio, 2017), other
studies have reported opposing findings, such as an age-related
increase in alpha power (Doval et al., 2023; Rempe et al., 2023) and
decrease in beta power (Vysata et al., 2012). A decrease in alpha
power and no change in beta power has also been found (Babiloni
et al., 2006; Jabès et al., 2021). The discrepancy in findings may
be related to whether aperiodic components were controlled for
in the analysis. For instance, Merkin et al. (2023) compared age
effects on alpha power with and without adjusting for the aperiodic
components. Significant age-related differences were found only
in alpha power without adjustment. However, when adjusting for

the aperiodic components, significant differences emerged in beta
power after averaging data across all electrodes. Properties of the
aperiodic components may therefore mask age-related changes in
beta power, but it is unclear if this effect is generalizable or is limited
to specific regions of the cortex. The potential effect(s) of age on
regional specific changes in periodic alpha and beta power has yet
to be directly tested in sensor and source space.

In the current study, we assessed 128-channel resting-state
EEG data of cognitively healthy young and older adults. To
analyze periodic alpha and beta power in sensor and source
space, we controlled for aperiodic components using the Fitting
Oscillations and One Over F (FOOOF) algorithm (Donoghue et al.,
2020). The FOOOF algorithm parameterizes aperiodic and periodic
components. To illustrate how the algorithm works, Figure 1A
represents the original power spectrums from 1 to 40 Hz, averaged
across all channels, for the younger (green) and older (orange)
groups. Figure 1B shows the aperiodic spectra, calculated by the
FOOOF algorithm from the original data. We calculated offsets and
exponential slopes based on the aperiodic spectra (Figure 1B). The
periodic spectrum is then shown in Figure 1C, which represents
the power spectral density plot with the aperiodic component
removed. This study used the adjusted power spectra (Figure 1C)
to investigate the age by frequency interaction effects on periodic
power using statistical analysis in sensor space and source space.
We tested the hypothesis that compared to younger adults, older
adults would exhibit lower offsets and flatter slopes as well as lower
alpha power and higher beta power.

Materials and methods

Participants

We used EEG datasets from our previous study (Park et al.,
2024). The subjects were twenty-eight younger adults (22 females,
6 males, 20 ± 1.7 years old) and twenty-six older adults (18
females, 8 males, 65 ± 7.9 years old). No subject reported a history
of neurological disorder or head trauma. All subjects signed an
informed consent form that was approved by the local Institutional
Review Board (IRB) at the University of Florida (IRB201600761).

The sample size was determined through a power analysis
using G∗Power software (version: 3.1.9.7), with an alpha level of
0.05 and a statistical power of 0.95. Based on previous findings,
which revealed a medium effect of age on alpha power adjusted
by aperiodic components (Tröndle et al., 2023), we set the effect
size (partial η2) of 0.06, indicating a medium effect. The minimum
sample size was determined to be 54 subjects.

EEG data acquisition

The ActiveTwo system, including 128 Ag-AgCl active
electrodes and a 256-channel AD box (BioSemi, Amsterdam,
Netherlands), was used to acquire EEG data. This system replaces
the conventional ground electrode with two separate electrodes:
the common mode sense and the driven right leg. These electrodes
form a feedback circuit that leads the subject’s average potential
as close as possible to the reference voltage in the AD box. The
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FIGURE 1

Adjusting power spectra using aperiodic components. It illustrates the changes in power spectra after the adjustment of aperiodic components in
sensor space. All power spectra were log-transformed and averaged across 128 channels and individuals. (A) The power spectra were shown
ranging from 1 to 40 Hz, unadjusted for aperiodic components. The green color represents younger adults, and the orange color represents older
adults. The shaded areas indicate the standard error for power at each frequency. (B) The panel presents power spectra for aperiodic components
for younger and older adults. (C) After controlling for the aperiodic power spectra, we obtained the power spectra shown in the panel. This study
used the adjusted power spectra (C) to calculate alpha and beta power to investigate the interaction effects on periodic power between age and
frequency band.

DC offset indirectly measures impedance tolerance and allowed
us to monitor signal quality from active electrodes. The DC
offsets, which are the averages of the voltages acquired between the
common mode sense and each active electrode, were kept under
40 µV. The resting state EEG (rsEEG) data, sampled at a rate of
2,048 Hz, were collected for 10 min with eyes closed.

EEG data processing

EEG data were processed using customized MATLAB
scripts that leveraged the EEGLAB and Fieldtrip toolboxes. The
preprocessing consisted of five steps. (1) EEG data were down
sampled from 2,048 to 256 Hz. (2) The middle 8 min of EEG
data were extracted. (3) Data were band-pass filtered from 1
and 100 Hz and line noise at 60 and 120 Hz was removed. (4)
Using correlations between channels’ signals, bad channels were
identified if the correlation was below 0.4. The bad channels’
signals were removed and interpolated based on neighboring
channels. (5) The EEG data were re-referenced using the overall
average of all channels. Preprocessing parameters are summarized
in Supplementary Table 1.

Independent component analysis and
artifact removal

The Adaptive Mixture Independent Component Analysis
(AMICA) algorithm was used to decompose independent
components (ICs) from EEG data (Palmer et al., 2011). The
decomposed ICs were classified as either brain signals or
non-brain signals using IC label (Pion-Tonachini et al., 2019).
Non-brain sources included scalp and neck muscle activity, electro-
oculographic activity associated with eye blinking, saccades, and
ocular motor tremor, electrocardiographic signals, and single-
channel noise. ICs were automatically removed based on specific
criteria (Supplementary Table 1). Following this, the EEG data
were re-evaluated using the Artifact Subspace Reconstruction

algorithm to discard “bad” sections of the data based on a large
standard deviation in 0.5 sec windows and large amplitude EEG
data within each channel. To eliminate artifactual epochs from the
EEG data, we divided the data into 6-s epochs ranging from −2 to
4 s and employed the Automatic Epoch Rejection algorithm, using
the thresholds of mu-volts, joint-probability, and kurtosis.

EEG source localization

We employed the exact low resolution brain electromagnetic
tomography (eLORETA; Pascual-Marqui et al., 1994) method to
calculate the cortical distribution of scalp electrical potentials
acquired from all 128 EEG electrodes. eLORETA is a weighted
minimum norm solution (Pascual-Marqui, 2007) which estimates
distributed electronic potentials from cortical dipoles based on an
assumption that every dipole has a minimum energy (Pascual-
Marqui et al., 1994). Prior to conducting the eLORETA analysis,
we created a head model using the boundary element model
(BEM). The BEM head model includes an electrode location map
based on the standard 10-5 system. The electrode location map
was translated onto the BEM template map, which in turn, was
coregistered to the Montreal Neurological Institute (MNI) brain
template. Source space was limited to 20,464 cortical region vertices
which are called dipoles, used as a source model. Based on the head
and source models, we conducted eLORETA and obtained power
spectrums for all dipoles, ranging from 1 to 40 Hz. Power spectrums
in all dipoles were computed based on Welch’s method (Welch,
1967).

Alpha and beta power calculation

For computation of power spectrums in sensor and source
space, 1–40 Hz frequency bands were used to remain consistent
with previous studies (Merkin et al., 2023; Tröndle et al., 2023)
and our prior work (Park et al., 2024). Since fast frequency power
spectrums were not our focus, the knee point, which is observed
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within faster gamma frequencies was not assessed or controlled
for in the current analysis. Based on the sensor and source power
spectrums, we calculated aperiodic and periodic components using
the FOOOF algorithm.

Prior to calculating periodic alpha and beta power, the accuracy
of the model fits resulting from the FOOOF algorithm was tested
using r2 and mean squared error between original and modeled
power spectra. The r2 and error values were over 0.94 and less
than 0.15 for both groups (Supplementary Figure 1), suggesting
that the model fits accurately explained the original power spectra.
Using the periodic power spectrum (Figure 1C), alpha power
within the 8–13 Hz frequency band and beta power within 13.1–
30 Hz frequency band was extracted and averaged for each sensor
for each individual. Aperiodic components, including offset and
exponential slope, were also extracted for each sensor and each
individual. For the source analysis, power spectrums for all 20,464
dipoles were calculated. Similar to the sensor space analysis, the
FOOOF algorithm was used to compute the periodic spectrum
ranging from 1 to 40 Hz for each dipole. Average alpha and beta
power were calculated for each dipole for each individual.

Statistical analysis

Statistical analyses were conducted separately in sensor space
and in source space using the same approach.

To identify brain regions that show significant interaction
effects between group (younger and older) and frequency band
(alpha and beta power), mixed model permutation two-way
ANOVAs were conducted at each electrode and dipole. For regions
with a significant interaction, we extracted and averaged (1) alpha
power, (2) beta power, (3) offset, and (4) slope and conducted
permutation t-tests to explore between group differences in each
of these measures.

Cognizant that interaction effects could be driven by region
specific differences in alpha and/or beta power, permutation t-tests
were conducted at each electrode and dipole within areas showing
an interaction effect to identify where alpha power was different
between groups and where beta power was different between
groups. For each region we extracted and averaged (1) alpha power,
(2) beta power, (3) offset, and (4) slope and conducted permutation
t-tests to explore between group differences.

Finally, a conjunction analysis was conducted within
interaction regions. Electrodes and dipoles where alpha power was
different between groups were given a label of 1. Electrodes and
dipoles where beta power was different between groups were given
a value of 2. The maps were then summed, to isolate (1) areas
of the scalp and cortex where only alpha power differed between
groups (i.e., a value of 1); (2) areas where only beta power differed
between groups (a value of 2); and (3) areas where both alpha and
beta differed between groups (a value of 3). For each region we
extracted and averaged (1) alpha power, (2) beta power, (3) offset,
and (4) slope. Permutation t-tests were then computed to compare
group effects in each sub region. To determine whether aperiodic
components differed across regions/electrodes identified in the
conjunction analysis in source space we calculated Hedges’ gs and
95% confidence intervals for between group contrasts in both offset
and slope.

All sensor and source space ANOVAs and t-tests were
performed using a permutation method with 4,000 shuffles.
Significance level was set at p < 0.05, and all p-values were adjusted
by the FDR correction (Benjamini et al., 2006). All statistical
analyses were conducted using customized MATLAB code.

Results

Electrode space: age by frequency
band interaction

Figure 2A shows mean alpha power topographies for both
groups across 128 electrodes. The left topography shows alpha
power for the younger group with higher power in more posterior
regions, and the right topography shows alpha power for the
older group, again with higher power located more posteriorly,
but attenuated relative to the younger group. Figure 2B shows
topographies for beta power for each group in sensor space.
In contrast to the pattern in alpha power, the older group
shows an increase in beta power, primarily in electrodes over
central areas, with the younger group showing attenuated beta
power across large portions of the scalp. A two-way ANOVA
in sensor space found significant interactions in electrodes
positioned over frontal, central, parietal, and occipital regions
(pFDR < 0.05). Within these interaction regions, a conjunction
analysis was used to identify different age by frequency band
interactions.

Figure 2C represents the results from the conjunction analysis,
showing three different color-coded patterns: blue for significant
differences in alpha power only, green for differences in both
alpha and beta power, and red for differences in beta power only.
Figures 2D–F show the adjusted spectra for younger (green lines)
and older (orange lines) groups within each conjunction region.
Figure 2G shows mean alpha and beta power for each group. Older
adults had significantly lower alpha power compared to younger
adults (pFDR < 0.01, Hedges’ g[confidence intervals] = 0.91[0.35,
1.46]) but no significance difference in beta power (pFDR = 1,
g = −0.21[−0.73, 0.32]). Figure 2H shows significantly lower
alpha power (pFDR < 0.01, g = 0.84[0.29, 1.39]) and higher
beta power (pFDR < 0.01, g = −1.03[−1.58, −0.46]) in older
adults compared to younger adults. Figure 2I shows significantly
higher beta power in older adults compared to younger adults
(pFDR < 0.001, g = −1.12[−1.69, −0.55]), but no difference in alpha
power.

Figures 2J–O show offset and exponential slope data for
younger and older groups. Each square in Figures 2J–L and each
diamond in Figures 2M–O represent an individual subjects’ offset
and slope respectively. The three regions had similar age effects
with older adults showing significantly lower offsets and flatter
slopes compared to younger adults (all pFDRs < 0.001).

Source space: age by frequency band
interaction

Figure 3A shows brain regions where significant interactions
between age group and frequency band (alpha and beta) were

Frontiers in Aging Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1488811
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1488811 February 13, 2025 Time: 18:6 # 5

Park et al. 10.3389/fnagi.2025.1488811

FIGURE 2

Results of two-way ANOVA and conjunction analysis in sensor space. (A) The topographies show alpha power for younger (left panel) and older
(right panel) groups. (B) Topographies indicate beta power for both groups. (C) The conjunction analysis provided three regions that varied based on
their interaction pattern. Blue regions show significant differences in alpha power only, green for the differences in both alpha and beta power, and
red for the differences in beta power only. (D–F) The shaded line plots represent periodic power spectra ranging from 1 to 40 Hz for younger (green)
and older (orange) groups. The lines and shared areas indicate means and standard errors. (G–I) The line plots show interactive patterns between
age and frequency band. Error bars represent standard error. The significant patterns differ between the three regions with older adults showing only
lower alpha power in blue regions, both lower alpha and higher beta power in green regions, and only higher beta power in red regions. (J–O) The
violin plots show offset (squares) and exponential slope (diamonds) for each group. Horizontal lines represent means, and the shaded areas reflect
the distribution of individual points. In all the regions, older adults had lower offsets and flatter slopes compared to younger adults. **pFDR < 0.01;
***pFDR < 0.001.
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observed. Interaction regions, highlighted in yellow, were observed
in sensorimotor and parietal regions. All automated anatomical
labels (AAL) regions which showed an interaction effect along
with their corresponding probabilities are shown in the second
column of Table 1. The highest probabilities were in precuneus,
postcentral gyri, parietal gyri, and middle cingulum cortex.
Figure 3B represents the averaged periodic spectrums, across all
dipoles that showed an interaction, for younger adults (green line)
and older adults (orange line). Figure 3C shows the average values
for each subject for alpha power (circles: left panel) and beta power
(triangles: right panel). The green and orange colors represent
the younger and older groups, respectively. Figure 3D shows the
statistical results from the post-hoc analyses. Significantly lower
alpha power was found in older adults compared to younger adults
(pFDR < 0.01, g = 0.76[0.22, 1.31]). Significantly higher beta power
was found in older adults compared to younger adults (pFDR < 0.01,
g = −0.82[1.37, −0.27]).

Figures 3E, F show values for each subject for each aperiodic
component averaged across the yellow region shown in Figure 3A.
Figure 3E shows that offset values were significantly reduced in
the older group compared to the younger group (pFDR < 0.001,
g = 1.30[0.71, 1.88]). Figure 3F shows that a significantly flatter
slope was evident in older adults compared to the younger group
(pFDR < 0.001, g = 1.15.[0.57, 1.71]).

Source space: between group
differences in alpha power

Mean alpha power is shown across the whole brain for the
younger group (Figure 4A: left) and the older group (Figure 4A:
right). Figure 4B shows Hedges’ g between groups projected across
all dipoles in the brain. Cooler colors indicate lower alpha power in
the older group, and warmer colors represent higher alpha power
in the older group. Figure 4C highlights the alpha region in blue,
where significant differences in alpha power between groups were
observed. Regions with the highest probabilities among the blue
regions (Figure 4C) were precuneus and the superior parietal gyri
(Table 1, third column). Older adults exhibited significantly lower
alpha power for each dipole in the blue region.

Figures 4D–H show alpha and beta power and aperiodic
components extracted from the blue region shown in Figure 4C.
Figure 4D represents the periodic spectrums for younger and older
groups, and Figure 4E shows individual mean alpha and beta values
for each subject averaged across the blue region shown in Figure 4C.
Figure 4F shows that whereas alpha power was significantly lower
compared to younger adults (blue line in Figure 4F; pFDR < 0.01,
g = 0.93[0.37, 1.48]), no significant difference was evident in
beta power in this region (red line in Figure 4F; pFDR = 0.057,
g = −0.52[−1.06, 0.02]).

For aperiodic components, Figure 4G shows offset values for
each subject for the blue region shown in Figure 4C. Compared
to younger adults (orange squares), older adults (green squares)
had significantly higher offset values (pFDR < 0.001, g = 1.26[0.68,
1.83]). Figure 4H shows exponential slope values for each subject.
Compared to the younger group (green diamonds), a significantly
flatter slope was found in the older group (orange diamonds)
(pFDR < 0.001, g = 1.04[0.48, 1.60]).

Source space: between group
differences in beta power

Mean beta power is shown across the whole brain in younger
adults (left in Figure 5A) and older adults (right in Figure 5A).
Figure 5B represents Hedges’ gs between groups projected across
all dipoles. Positive numbers and warmer colors represent higher
power in older adults. Figure 5C shows a binarized cortical
subregion in which older adults had significantly higher beta power
compared to younger adults. These regions of sensorimotor and
parietal cortex were masked based on the cortical regions that
showed interaction effects (see Figure 3A), and FDR corrected
p-values. Highest probability of AAL regions included within this
brain area were postcentral gyri, middle cingulum cortex, and
precuneus (See fourth column in Table 1).

Figures 5D–H show the results of alpha and beta power and
aperiodic components extracted from the red region in Figure 5C.
Figures 5E, F show that beta power was significantly higher in
older adults compared to younger adults (red line in Figure 5F;
pFDR < 0.001, g = −1.20[−1.77, −0.62]). whereas no significant
difference was evident between groups in alpha power (blue line
in Figure 5F; pFDR = 0.03, g = 0.59[0.05, 1.12]),

Figure 5G shows offset values for individual subjects, averaged
from dipoles shown in Figure 5C. Compared to younger
adults, older adults had a significantly lower offset (Figure 5G,
pFDR < 0.001, g = 1.33[0.74, 1.91]), and flatter slope (Figure 5H,
pFDR < 0.001, g = 1.33[0.74, 1.91]).

Source space: conjunction
analysis—periodic components

Figure 6A show regions identified in the conjunction analysis:
(1) alpha only (blue), (2) overlapping alpha & beta (Green), and (3)
beta only (red). Figures 6B–D show periodic power spectrums for
each group in each region. Green lines represent the young group,
and orange lines represent the older group. Figures 6B–D show
that alpha power progressively decreases from parietal (blue) to
sensorimotor regions (red) in both groups, with a more prominent
reduction in younger adults. In contrast, beta power is similar
across regions in the older group, but is decreased in the younger
group from parietal to sensorimotor regions.

Figures 6E–G show the region-specific between group
differences in alpha and beta that contribute to the overall
interaction effect. Blue lines represent alpha power. Red lines
represent beta power. Figure 6E shows that between group
differences were only evident in alpha power in parietal regions
(pFDR = 0.001, g = 0.98[0.42, 1.54]), with the red line following a
horizontal trajectory and no between group difference (pFDR = 1,
g = −0.19[−0.72, 0.33]). Overlapping regions in Figure 6F
showed both a significant decrease in alpha power (pFDR < 0.01,
g = 0.80[0.24, 1.34]) and a significant increase in beta power
(pFDR = 0.001, g = −1.03[−1.58, −0.46]) in the older group
compared to the younger group. Finally, Figure 6G shows the
opposite pattern from Figure 6E, with a significant increase in beta
power in the older compared to the younger group (pFDR < 0.001,
g = −1.29[−1.87, −0.70]), but no between group difference in
alpha power (pFDR = 1, g = 0.43[−0.10, 0.96]).
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FIGURE 3

Age by frequency band interaction region and age-related alterations for alpha and beta power and offset and exponential slope in source space.
(A) The yellow color in the brain represents the regions showing age by frequency band (alpha and beta) interactions. Below panels illustrate results
for younger (green) and older (orange) adults. (B) The shaded line plot presents periodic power spectra ranging from 1 to 40 Hz for younger and
older adults with the shaded areas indicating the standard errors. (C) Two violin plots in the left panel represent alpha power. The green circles
indicate individual alpha power for younger adults, and the orange circles present alpha power for older adults. Horizontal lines indicate group
averages. The right panel shows individual beta power for each group, represented by triangles. (D) The line plot shows post-hoc analysis results on
alpha and beta power between age groups. Blue circles represent average alpha power, showing significantly lower alpha power in older adults.
Conversely, red triangles represent beta power, indicating significantly higher beta power in older adults. (E,F) For aperiodic components, the violin
plots illustrate offsets (squares: E) and exponential slopes (diamonds: F) between age groups, with older adults having significantly lower offsets and
flatter slopes compared to younger adults. **pFDR < 0.01; ***pFDR < 0.001.

Source space: conjunction
analysis—aperiodic components

Figure 7 shows results of aperiodic components for the three
cortical regions identified in the conjunction analysis. Figure 7A
shows sagittal views (right hemisphere) for regions of the cortex
where alpha power differed between groups. Figure 7B shows
regions of the cortex where beta power differed between groups.
Figure 7C shows the conjunction map for alpha only (blue), alpha
and beta (green), and beta only (red) regions.

Figure 7D shows Hedges’ gs values for offset values, marked
by squares, with whiskers indicating 95% confidence intervals.
Values are shown for regions identified in the conjunction analysis
shown in Figure 7C, and are color coded accordingly. All regions
showed a significant, positive, and large effect size (alpha only:
blue, pFDR < 0.001, g = 1.15[0.56, 1.72]; alpha & beta: green,
pFDR < 0.001, g = 1.35[0.76, 1.93]; beta only: red, pFDR < 0.001,
g = 1.28[0.69, 1.85]), indicating lower offsets in older adults
compared to younger adults. Overlapping confidence intervals
suggest that the age effect on offset was similar across regions.
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TABLE 1 AAL regions with significant interactions or between group differences in source space.

Interaction regions Alpha regions Beta regions Overlapping regions

AAL regions Prob. (max = 1) Prob. (max = 1) Prob. (max = 1) Prob. (max = 1)

Frontal Sup L 0.001 – 0.002 –

Frontal Sup R 0.006 – 0.010 –

Frontal Mid R 0.001 – 0.001 –

Supp Motor Area L 0.011 – 0.019 –

Supp Motor Area R 0.015 0.002 0.024 0.005

Cingulum Ant L 0.001 – 0.001 –

Cingulum Ant R 0.000 – 0.000 –

Cingulum Mid L 0.043 0.040 0.067 0.091

Cingulum Mid R 0.045 0.046 0.071 0.111

Precentral L 0.013 – 0.022 –

Precentral R 0.034 0.004 0.055 0.011

Paracentral Lobule L 0.022 0.005 0.036 0.013

Paracentral Lobule R 0.019 0.019 0.031 0.050

Postcentral L 0.041 0.003 0.069 0.008

Postcentral R 0.059 0.045 0.098 0.118

Cingulum Post L 0.014 0.022 0.002 0.005

Cingulum Post R 0.012 0.017 0.002 0.006

Thalamus L 0.008 0.001 0.012 0.002

Thalamus R 0.003 – 0.005 –

Parietal Sup L 0.048 0.059 0.038 0.049

Parietal Sup R 0.038 0.058 0.029 0.065

Precuneus L 0.080 0.120 0.050 0.103

Precuneus R 0.087 0.139 0.037 0.093

Parietal Inf L 0.042 0.020 0.060 0.029

Parietal Inf R 0.027 0.021 0.030 0.022

SupraMarginal L 0.000 – 0.000 –

SupraMarginal R 0.008 0.001 0.013 0.003

Angular L 0.012 0.012 0.004 –

Angular R 0.032 0.052 – –

Cuneus L 0.018 0.029 – –

Cuneus R 0.016 0.026 – –

Calcarine L 0.007 0.011 – –

Calcarine R 0.000 0.001 – –

Occipital Sup L 0.025 0.041 – –

Occipital Sup R 0.019 0.030 – –

Occipital Mid L 0.016 0.025 – –

Occipital Mid R 0.013 0.022 – –

Unknown 0.162 0.131 0.209 0.218

Probabilities of brain regions where significant interactions or age effects on alpha and/or beta power were observed. The first column shows the AAL region label in the human cortex.
Additional columns show the ratios of AAL regions included in the yellow areas shown in Figure 3A (interaction regions), the blue areas shown in Figure 4C (alpha), the red areas shown in
Figure 5C (beta), and the green areas (overlap) shown in Figure 6A. The dash symbols indicate that the AAL regions were not included in the region. AAL, automated anatomical label; L, left
hemisphere; R, right hemisphere; Sup, superior; Ant, anterior; Mid, middle; Post, posterior; Inf, inferior; Prob., probability.

Figure 7E shows Hedges’ gs between groups for exponential
slope, represented by diamonds. All three regions showed
significant, positive, and large effect sizes (alpha only: blue,
pFDR < 0.01, g = 0.85[0.30, 1.40]; alpha and beta: green,

pFDR < 0.001, g = 1.33[0.74, 1.91]; beta only: red pFDR < 0.001,
g = 1.19[0.61, 1.76]), revealing flatter slopes in the older group
compared to the younger group. Overlapping confidence intervals
suggest that the age effect on slope was similar across regions.
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FIGURE 4

Between-group differences in alpha power, offsets, and exponential slopes in source space. (A) Two brain plots shows alpha power for younger (left
panel) and older (right panel) across whole brain regions. (B) The brain plot exhibits magnitude of differences in alpha power between age groups
across whole brain regions using Hedges’ g effect sizes. The warmer color indicates higher alpha power in older adults, whereas the cooler color
represents lower alpha power in older adults compared to younger adults. (C) The blue colors are the regions where significant differences in alpha
power between age groups were observed within interaction regions in Figure 3A. (D–H) Similar to Figures 3B–F, the plots represent the results of
the blue regions (C) by averaging data across these regions. (D) Periodic power spectra ranging from 1 to 40 Hz for younger (green line) and older
(orange line) adults extracted from the blue cortical region shown in panel (C). (E) Violin plots show alpha power (left panel) and beta power (right
panel) for each group extracted from the blue cortical region shown in panel (C). (F) Older adults had lower alpha power compared to younger
adults. (G,H) Two violin plots represent aperiodic components with older adults exhibiting lower offsets (G) and flatter slopes (H) compared to
younger adults. **pFDR < 0.01; ***pFDR < 0.001.

Discussion

Separate studies have shown that older age is associated with
changes in alpha and beta power (Polich, 1997; Vysata et al., 2012;
Gómez et al., 2013; Barry and De Blasio, 2017; Cho et al., 2024).
Although previous evidence points to an interaction between age
and frequency band that varies across brain regions, this has not
been directly tested. In the current study we address this challenge
using source space analyses while also adjusting for aperiodic
components (Donoghue et al., 2020). We report two novel findings.
First, we found strong evidence of an age effect on aperiodic
components, such that older adults had a lower offset and a flatter
slope irrespective of brain region. Second, age by frequency band

interactions were found in sensorimotor, parietal, and occipital
regions. The pattern driving the interaction varied across regions.
We found a progressive decrease in group differences in alpha
power from parietal to sensorimotor regions. Beta power followed
the opposite pattern, where there was a progressive increase
in group differences from parietal to sensorimotor regions. We
interpret our findings in the context of clinical and preclinical
evidence of age effects on the cholinergic system and the Cortico-
Basal Ganglia-Thalamo-Cortical (CBGTC) circuit.

EEG signals contain unique background power spectra that can
be influenced by factors including age and neurologic diseases (Pani
et al., 2022). With healthy aging, previous studies have reported a
downward shift in the background power spectra in older adults
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FIGURE 5

Between-group differences in beta power, offsets, and exponential slopes in source space. (A) Beta power in younger (left panel) and older (right
panel) groups. (B) Hedges’ g values projected across the brain, with largest between group effects evident in the sensorimotor region. (C) The red
color in the brain represents a binarized region where significant between group differences were found for beta power. (D) Periodic power spectra
ranging from 1 to 40 Hz for younger (green line) and older (orange line) adults extracted from the red cortical region shown in panel (C). (E) Violin
plots show alpha power (left panel) and beta power (right panel) for each group extracted from the red cortical region shown in panel (C). (F) Older
adults had higher beta power but not alpha power compared to younger adults. For aperiodic components in this region, older adults showed lower
offsets (G) and flatter slopes (H) compared to younger adults. ***pFDR < 0.001.

(Donoghue et al., 2020; Merkin et al., 2023; Tröndle et al., 2023).
This shift results in a lower offset and a flatter slope, potentially
reflecting lower cortical neuronal spiking and decreased inhibitory
activity. Our observations are consistent with this finding. We
extend the literature by showing lower offsets and flatter slopes in
older adults across large portions of the scalp and cortex. Offset
and slope data follow unimodal distributions in each age group
as shown in Supplementary Figure 2. Aperiodic components can
attenuate age-related differences in alpha power but unmask age-
related differences in beta power (Merkin et al., 2023).

Aperiodic components are distinct from periodic components
in that they are not altered by acute changes in neural activity,
such as during visual processing or performing a motor task.
Instead, changes in aperiodic components appear to be influenced
by much slower moving processes such as neurological diseases
(Pani et al., 2022) and age-related degeneration (Donoghue
et al., 2020; Merkin et al., 2023; Tröndle et al., 2023). This
raises the question as to whether the periodic and aperiodic

components represent distinct neural processes. Several lines of
evidence suggest that this is indeed the case. Wan et al. (2019)
investigated resting state alpha reactivity in healthy older adults,
which measures the change in alpha power when transitioning
from an eyes-closed to an eyes-open condition. Figure 3A in
their paper shows the unadjusted power spectrum averaged
across subjects. The periodic alpha reduction with eyes open
is displayed above the aperiodic power spectrum. In contrast,
the aperiodic power spectrum does not change. Given that
periodic power changes could be region specific and that aperiodic
components could alter how the raw data are interpreted, it
was important to assess and control for aperiodic components
separately within distinct brain regions. Aperiodic components
are known to originate from cortical neuronal spiking (Manning
et al., 2009) and a ratio between excitatory and inhibitory activity
in the neocortex (Gao et al., 2017), whereas the generation of
periodic alpha and beta power is associated with the cholinergic
circuit (Eggermann et al., 2014) and the CBGTC circuit (Reis
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FIGURE 6

Conjunction analysis in interaction regions. The conjunction analysis was performed in source space within the interaction regions. (A) The analysis
resulted in three distinct regions that are represented by different colors depending on their corresponding interaction patterns. (B–D) The shaded
line plots show mean adjusted power spectral density plots for each region. (E) As expected, in the blue alpha only region there was a significant
between group difference in alpha but not beta power. (F) In green, significant decreases in alpha power and increases in beta power were evident
in the older group, and (G) the data in the red region was characterized by a significant increase in beta power. Overall, the age effect on alpha
power progressively increased from parietal to sensorimotor regions, while the effect on beta power progressively decreased. **pFDR < 0.01;
***pFDR < 0.001.

et al., 2019) respectively. Given the broadband effect of age on
aperiodic components and the region-specific effect of age on
periodic components, our findings point toward distinct neural
circuits underlying alpha and beta power, with between group
differences emerging in opposite directions within these frequency
bands.

Lower alpha power in older adults in
occipital and parietal but not
sensorimotor regions

Our finding of an age-related reduction in alpha power in
occipital and parietal regions aligns with previous studies (Polich,
1997; Babiloni et al., 2006; Rossini et al., 2007; Vysata et al.,

2012; Gómez et al., 2013; Barry and De Blasio, 2017; Scally et al.,
2018; Jabès et al., 2021; Doval et al., 2023; Merkin et al., 2023;
Tröndle et al., 2023; Cho et al., 2024). In sensor space in posterior
regions, an age-related decrease in alpha power has been found
using between group (Barry and De Blasio, 2017; Tröndle et al.,
2023) and correlation (Polich, 1997; Gómez et al., 2013) analyses.
Evidence from source space analyses shows similar patterns of age-
related reductions in alpha power in parietal and occipital regions
(Babiloni et al., 2006; Cho et al., 2024), and this pattern holds after
correction for aperiodic components in most (Tröndle et al., 2023;
Park et al., 2024), but not all studies (Merkin et al., 2023).

Our results differed from the Merkin et al. (2023) finding for
several potential reasons. First, removing aperiodic components
may reduce the age effects on alpha power, as the alpha power
in older adults shifted downward prior to the adjustment. This
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FIGURE 7

Similarity of age effects on offsets and exponential slopes across the conjunction map. (A–C) The left-side brain plots represent the regions where
distinct patterns of age effects were observed. For example, (A) the blue regions show significant age effects on alpha power, (B) whereas the red
regions exhibit significant age effects on beta power. (C) The conjunction map contains significant age effects on only alpha power in blue regions,
both alpha and beta power in green regions, and only beta power in blue regions. (D,E) Two forest plots show the effects of age on aperiodic
components and heterogeneity for aperiodic components between the three regions. (D) The forest plot exhibits Hedges’ gs for offset values
between age groups, with squares representing Hedges’ g and whiskers indicating 95% confidence intervals (CIs). Each color corresponds to areas
(C). In the three areas, significant, positive, and large effect sizes were observed, with older adults showing lower offsets compared to younger
adults. Overlapping CIs suggest similar age effects on offsets across the regions. (E) Similarly, another forest plot shows Hedges’ g for exponential
slopes (diamonds), with significant, positive, and large effect sizes. It suggests that older adults had flatter slopes compared to younger adults.
Overlapping CIs also indicates similar age effects on slopes across the regions.

idea is supported by Tröndle et al. (2023), who demonstrated that
the effect size (Cohen’s d) of age decreased from approximately
0.6 to 0.4 following the aperiodic correction. Previous studies also
suggest that aperiodic components might overestimate the age
effects on alpha power (Donoghue et al., 2020; Merkin et al., 2023;
Tröndle et al., 2023). Second, participant heterogeneity could be a
factor, as Merkin et al. (2023) combined datasets from six studies,
using two different EEG systems. Tröndle et al. (2023) also merged
two independent datasets and found no significant age effects on
alpha power. However, when running statistics for each data set
separately, effects did emerge in one data set but not the other
(Tröndle et al., 2023). Combining datasets may therefore introduce
heterogeneity. Third, Merkin et al. (2023) calculated power at the
peak alpha frequency, whereas we averaged power from 8 to 13 Hz.
Despite these differences, what is clear from the evolving literature
is that age effects on aperiodic components appear to be robust
and consistent across different studies. Indeed, relative to periodic
power, aperiodic processes maybe more sensitive to aging, and less
sensitive to differences in methodology between studies.

Animal studies have provided important insight into the
potential causal links between cholinergic function in the
basal forebrain and posterior alpha oscillations (Gallagher and
Colombo, 1995; Ricceri et al., 2004; Eggermann et al., 2014).
Anatomical tracing studies have shown that cholinergic projections

of the basal forebrain are connected to cortical interneurons
(Sokhadze et al., 2022) via the thalamus (Woolf and Butcher,
1986; Hallanger et al., 1987; Steriade et al., 1987; Jourdain
et al., 1989; Sokhadze et al., 2019), a key structure thought to
underlie the generation of posterior alpha oscillations (Hughes and
Crunelli, 2005; Lõrincz et al., 2009; Nestvogel and McCormick,
2022). Indeed, impaired cholinergic input to the basal forebrain
decreases alpha power (Gallagher and Colombo, 1995; Ricceri
et al., 2004) and inhibiting visual thalamus eliminates posterior
alpha oscillations in visual cortex (Nestvogel and McCormick,
2022). Cholinergic projections degenerate with aging, showing
atrophy (Ballinger et al., 2016; Choi et al., 2022) and lower
cardiorespiratory fitness is associated with reduced resting state
functional connectivity between the nucleus basalis of Meynert
and right middle frontal gyrus in older adults (Won et al., 2023).
A recent human study using EEG, functional and diffusion MRI,
revealed that an accumulation of leukoaraiosis, which reduces
connectivity between the basal forebrain and neocortex, was
associated with an attenuated change in posterior alpha power
when transitioning from an eyes open to an eyes closed state,
referred as to alpha reactivity (Wan et al., 2019). Reduced alpha
reactivity in posterior regions is a hallmark symptom of Lewy Body
dementia (Schumacher et al., 2020) which is an age-related neural
disease that has been associated with deficits in the cholinergic
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circuit. Hence, in addition to an age-effect on peak alpha frequency,
there is growing evidence that alpha power over posterior regions of
occipital and parietal cortex has the potential to serve as an indirect
readout of cholinergic system function.

Higher beta power in older adults in
sensorimotor and parietal but not
occipital regions

Relative to the younger group, beta power was increased in
the older group in parietal and sensorimotor cortex. Prior studies
have reported an age related increase in beta power (Barry and De
Blasio, 2017; Heinrichs-Graham et al., 2018; Rempe et al., 2023;
Cho et al., 2024), a decrease in beta power (Vysata et al., 2012),
or no age-related change (Babiloni et al., 2006; Jabès et al., 2021).
While the majority of studies converge on an age-related increase
in beta power in parietal and sensorimotor regions, heterogeneity
in the data is clear and may be attributed to factors other than
age. For instance, factors such as education (Harmony et al., 1990),
sex (van Putten et al., 2018), cognitive reserve (Balart-Sánchez
et al., 2021), and fitness level (Lardon and Polich, 1996) may also
influence beta power independently of age, but are rarely controlled
for. Future studies that explore aging effects would be strengthened
by considering and/or controlling for these other factors. Another
potential source of heterogeneity may come from how beta power is
calculated and whether or not aperiodic components are controlled
for. Absolute measures of beta power do not consider aperiodic
changes such that shifts in the slope and offset of the power spectra
are conflated into the interpretation of the periodic component. In
contrast, relative power can help control for aperiodic components
by normalizing the entire power spectra across frequencies. Indeed,
consistent with our finding, studies that calculated relative beta
power in sensorimotor cortex have reported an age-related increase
(Vysata et al., 2012; Gómez et al., 2013; Jabès et al., 2021; Rempe
et al., 2022, 2023; Doval et al., 2023). Hence, calculating relative
power or isolating aperiodic components should also be considered
to accurately assess periodic beta power.

Age-related increases in sensorimotor beta power are associated
with age-related movement slowing (Heinrichs-Graham et al.,
2016, 2018). Heinrichs-Graham et al. (2016) used MEG to
demonstrate that absolute levels of beta were higher in older adults
at rest, and that slower movement times were associated with a
larger decrease in power that must occur in order for older adults
to reach an absolute movement threshold. Additional evidence in
support of this association comes from studies in healthy adults,
which showed that individuals with slower motor performance
exhibited higher sensorimotor beta power during rest (Gilbertson
et al., 2005; Rassi et al., 2023). Moreover, patients with Parkinson’s
disease (PD), a condition characterized by slower movement, have
reported increased sensorimotor beta power (Pollok et al., 2012;
Gimenez-Aparisi et al., 2023; Karekal et al., 2023). An increase in
sensorimotor beta power may be attributed to neurodegeneration
in the CBGTC circuit (Simonyan, 2019; Barone and Rossiter, 2021;
Navarro-López et al., 2021), a key regulator of beta oscillations
in sensorimotor cortex (Bhatt et al., 2016; Sherman et al., 2016;
Chikermane et al., 2024). Causality in human studies has not
been established, but animal and modeling studies have shown

that dysfunction in the CBGTC circuit exacerbates PD symptoms
(Galvan et al., 2015; McGregor and Nelson, 2019; Navarro-López
et al., 2021), and is associated with increases in sensorimotor
beta power (Reis et al., 2019). The reverse is also true such that
deep brain stimulation targeting the subthalamic nucleus, a key
part of CBGTC circuit, alleviates PD-related motor symptoms and
attenuates sensorimotor beta power (Abbasi et al., 2018; Luoma
et al., 2018). Hence, one interpretation of our finding is that even in
healthy aging, deficits in structure or function of the CBGTC circuit
(Corregidor-Sánchez et al., 2020) may underlie the emergence of
increased sensorimotor beta power. Longitudinal studies that assess
both degeneration in the CBGTC circuit and beta power will be
necessary to move the field toward a causal understanding of this
relationship.

The current study used a cross sectional between group
design. However, given that age-related increases in beta power
appear to be progressive over time (Polich, 1997; Vysata et al.,
2012; Gómez et al., 2013; Rempe et al., 2022, 2023), longitudinal
lifespan studies that assess EEG measures in combination with
measures of CBGTC circuit structure and function remain critical.
Furthermore, our sample included more females than males.
A previous study reported that female adults tend to show higher
broadband power relative to males (Cave and Barry, 2021), which
may have contributed to the effects of age on alpha and beta power
in the current study. However, since the Cave and Barry study did
not control for aperiodic components, the sex effect on periodic
components remains unclear. Nevertheless, our findings may not
generalize well to males, and we encourage future appropriately
powered studies to explore the interacting effects of age and sex
on periodic alpha and beta power. In addition, the lack of clinical
and demographic information related to fitness levels, education,
cognition, and motor skills is a limitation of this study, as these
factors are known to influence age-related changes in alpha and
beta power (Heinrichs-Graham et al., 2018; Gramkow et al., 2020;
Cesnaite et al., 2023). Given conflicting previous findings on the
associations between age and alpha power and the within group
variability within each group in the current study (see Figures 3C,
4E, 5E), we note that despite strong group-differences, alpha power
may not be the most reliable biomarker of age. Indeed, factors
such as physical activity (Lardon and Polich, 1996), cardiovascular
health (Vecchio et al., 2012), or cognitive/neural reserve (Balart-
Sánchez et al., 2021) may influence neural activity, making a single
biomarker for aging challenging. Future studies will be necessary
to determine the value of alpha power, alone or in combination
with other measures, as a reliable biomarker for age. We also
note that the focus on alpha and beta power in the current
study prevented new information on age effects on theta and
gamma power. Given the different roles between cortical alpha/beta
(feedback or top-down process) and gamma power (feedforward or
bottom-up) (Mejias et al., 2016; Michalareas et al., 2016), testing the
interaction effect between age and these frequencies power may be
an interesting topic to better understand age-related degeneration
in cortical neural signals.

Taken together, this study bridges a literature gap by examining
aperiodic and periodic components in sensor and source space
and adjusting for aperiodic components. We note two important
observations. First, older adults had a lower offset and flatter slope
across large portions of sensor and source space. Second, age and
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frequency band interactions were seen in sensorimotor, parietal,
and occipital regions, with unique patterns driving the interaction
across regions. Age-related alterations in alpha power progressively
decreased, and the alteration in beta power progressively increased
from parietal to sensorimotor regions.
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