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Background: Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by progressive, irreversible brain damage. Current diagnostic

procedures for AD are both costly and highly invasive for patients. Age-related

cataract (ARC), a common ocular condition in elderly populations, correlates

with a 1.43-fold increased risk of developing AD. This study sought to establish

a novel model for early detection of mild cognitive impairment (MCI) in patients

with ARC.

Methods: The study prospectively collected 170 monocular data as training

dataset and 65 monocular data from another independent medical center as test

dataset. Demographic data and comprehensive ophthalmic examination results

were collected. The least absolute shrinkage and selection operator (LASSO)

method and multivariate logistic regression analysis were performed using

R software for dimensionality reduction and variable selection. A nomogram

was constructed, and its discriminative ability was evaluated using receiver

operating characteristic (ROC) curve, area under the ROC curve (AUC) with

95% confidence interval (CI), as well as sensitivity and specificity. Internal

validation was performed using 1,000-resample bootstrap analysis, while model

calibration was assessed through calibration curves and Brier scores. Decision

curve analysis (DCA) was performed to evaluate clinical utility. A baseline

model incorporating demographic variables was developed for comparison

with the nomogram. Additionally, an external dataset from an independent

medical center was employed as a test set to further validate the nomogram’s

predictive performance. An online calculator was created using the “DynNom”

and “rsconnect” functions.

Results: Through LASSO regression and multivariate logistic regression analyses,

six variables were identified and incorporated into the nomogram: age (OR:

1.097; 95%CI: 1.041–1.161; p < 0.001), years of education (OR: 0.333; 95%CI:

0.140–0.749; p = 0.010), diastolic blood pressure (OR: 0.949; 95%CI: 0.907–

0.990; p = 0.019), short posterior ciliary artery flow rate (OR: 1.063; 95%CI:

1.008–1.132; p = 0.038), vertical cup-to-disc ratio (OR: 11.927; 95%CI: 1.059–

155.308; p = 0.049), and peripapillary retinal nerve fiber layer thickness (inferior;

OR: 0.979; 95%CI: 0.964–0.993; p = 0.005). The nomogram demonstrated

strong discriminatory power for the diagnosis of MCI, with the area under the
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ROC curve reaching 0.791 (95%CI: 0.722–0.864) in the training dataset and

0.750 (95%CI: 0.627–0.858) in the external dataset. Calibration curve validation

showed good agreement between predicted and ideal probabilities (p > 0.05,

Brier score = 0.171). DCA indicated substantial net benefit across most threshold

probabilities in both training and test datasets, supporting the nomogram’s

clinical utility.

Conclusion: Through systematic analysis of clinical data, this study established

and validated a novel online calculator for identifying early cognitive impairment

in patients with ARC, using demographic and ocular biomarkers, thereby

providing a visual representation of the prediction model.

KEYWORDS

mild cognitive impairment, ocular biomarkers, Alzheimer’s disease, prediction model,
web-based calculator

1 Introduction

Alzheimer’s disease (AD) is the predominant cause of
dementia, accounting for approximately 60-80% of cases. Its
primary pathological hallmarks are β-amyloid (Aβ) plaques and
neurofibrillary tangles composed of hyperphosphorylated tau,
which can impair synaptic plasticity and lead to neuronal death
(Begcevic et al., 2018). Clinical AD is preceded by a prolonged
asymptomatic phase, termed preclinical AD, characterized by
the accumulation of brain pathology, which may begin 10-
20 years before cognitive symptoms emerge (Bateman et al.,
2012; Ameri et al., 2020). The progression of AD includes mild
cognitive impairment (MCI), characterized by cognitive decline
exceeding age-appropriate and education-appropriate norms but
not yet significantly affecting daily activities (Albert et al., 2011).
Considering the irreversible nature of AD, early detection of MCI
is crucial. Current diagnostic methods for probable AD primarily
rely on neurocognitive tests, brain imaging, and cerebrospinal fluid
(CSF) analysis (Veitch et al., 2022). However, these procedures
are often expensive and invasive for patients. Furthermore, despite
these diagnostic tools, AD diagnoses remain inaccurate in 10-
15% of cases owing to limitations in sensitivity and specificity
(Weller and Budson, 2018). The development of cost-effective,
non-invasive biomarkers in alternative body fluids or tissues for the
detection of early cognitive dysfunction remains an active research
focus. Recent studies have identified blood-based biomarkers,
including tau protein, neurofilament light chain (NFL), and Aβ, as
potential indicators of cognitive decline in AD, although research
regarding their effectiveness remains preliminary, warranting
further investigation (Baiardi et al., 2022).

A comprehensive retrospective cohort study from the
Taiwan National Health Insurance Program established that
elderly individuals with cataracts exhibit a 1.43-fold increased
risk of developing AD (Lai et al., 2014). Light deficiency
caused by cataracts may influence this process by disrupting
the suprachiasmatic nucleus (SCN) regulation of circadian
rhythms, subsequently exacerbating age-related conditions such
as depression, insomnia, and cognitive impairment (Moncaster
et al., 2022). This suggests that age-related cataract (ARC), being

an age-associated condition, may predispose individuals to AD.
Recent research has increasingly focused on the eye, specifically the
retina, as an accessible window into brain function. Anatomically
and developmentally, the retina originates from pluripotent
ectodermal cells of the developing diencephalon neuroectoderm
and exhibits numerous structural and functional similarities
with brain tissue (Lamb et al., 2007). Initial observations of ocular
symptoms in patients with AD were reported by Schlotterer et al. in
1984 (Schlotterer et al., 1984). Subsequently, in 1986, Hinton et al.
first documented histological evidence of retinal abnormalities in
AD, including substantial loss of retinal ganglion cell neurons,
decreased thickness of the retinal nerve fiber layer (RNFL),
and optic nerve degeneration (Hinton et al., 1986). Given these
findings, ocular biomarkers present promising opportunities for
early identification of AD through non-invasive and multi-modal
approaches. Therefore, this study aimed to develop and validate a
prediction model to facilitate early identification of MCI in patients
with ARC who demonstrate risk factors for the progression of AD.

2 Materials and methods

2.1 Patient selection

This prospective study enrolled 170 patients (60 male, 110
female; mean age 71 years) with ARC awaiting cataract surgery
from the Ophthalmology Unit of the First Medical Center of
Chinese PLA General Hospital between November 1, 2023, and
June 30, 2024, forming the training dataset. Additionally, 65
individuals meeting the same criteria were enrolled from the
Ophthalmology Unit of the Third Medical Center of Chinese
PLA General Hospital between October 1, 2024, and January
20, 2025, constituting the test dataset. These medical centers
operate independently in terms of patient care. One eye from each
participant was randomly selected for the study.

The inclusion criteria encompassed: (1) cataract diagnosis
confirmed via slit-lamp biomicroscopic lens examination; (2)
complete clinical data availability; and (3) normal basic functional
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independence. The exclusion criteria comprised: (1) severe
cataracts or uncooperative status affecting examination quality; (2)
concurrent fundus pathologies, including glaucoma, age-related
macular degeneration, diabetic retinopathy, optic neuropathy, high
myopia, and demyelinating disease; (3) conditions potentially
causing cognitive impairment apart from AD, such as Parkinson’s
disease, multiple sclerosis, anxiety disorders, depressive disorders,
hypothyroidism, and vitamin deficiency; and (4) personal or three-
generation familial psychiatric history.

The Medical Ethics Committee of the Chinese PLA General
Hospital approved the study protocol (S2024-160-01). Written
informed consent was obtained from all participants prior to
study enrollment.

2.2 Neuropsychological assessments

All participants underwent comprehensive neuropsychological
assessments across multiple domains: (1) The Montreal Cognitive
Assessment (MoCA) scale evaluated cognitive function, with an
additional point allocated to participants with 12 years or less
of education (MoCAadj); (2) Basic Activities of Daily Living
(BADL) scale and Instrumental Activities of Daily Living (IADL)
scale assessed daily activity capabilities; (3) Global Deterioration
Scale (GDS) evaluated cognitive impairment symptoms and
stages; and (4) Hamilton Anxiety Scale/Hamilton Depression Scale
and Neuropsychiatric Inventory (NPI) assessed neuropsychiatric
symptoms. MCI diagnoses adhered to Petersen’s diagnostic criteria
(Petersen, 2004). The inclusion criteria comprised: (1) self-
reported memory loss persisting for 3 months or longer; (2)
MoCAadj score < 26; (2) intact BADL and normal or minimally
impaired IADL; and (3) absence of dementia, defined as a Global
Deterioration Scale score of 2 or 3. Based on these criteria,
participants were classified into the MCI group and the normal
cognition group. The screening procedure is illustrated in Figure 1.

2.3 Data collection

All baseline characteristics and medical histories were obtained
from the hospital’s electronic medical records. Each patient
underwent a comprehensive ophthalmic evaluation comprising
slit-lamp examination, refraction assessment, visual acuity
testing with best-corrected visual acuity measurement (using a
standardized Snellen eye chart), intraocular pressure measurement
(via non-contact tonometry), dilated fundus examination (using
binocular indirect ophthalmoscopy), spectral domain-optical
coherence tomography (SD-OCT), optical coherence tomography
angiography (OCTA), and retrobulbar blood flow examination.

2.3.1 OCT and OCTA examinations
OCT and OCTA examinations were conducted using an SD-

OCT system and the AngioVue system on the Optovue RTVue
XR Avanti (Optovue-100, Fremont, CA, United States). The
scanning parameters included a speed of 26,000 scans per second,
optical axial resolution of 5 µm, and 6 mm × 6 mm scanning
patterns. During the examination, participants were positioned
at an appropriate distance from the instrument and instructed

to maintain focus on a central fixation point throughout the
procedure. Mydriasis was not required. All examinations were
performed by an experienced physician.

The OCT acquisition protocol consisted of several
measurements: (1) retinal thickness (measured from the inner
limiting membrane [ILM] to the retinal pigment epithelium [RPE],
ILM-RPE thickness) included macular central subfield thickness
in the central circular area of 1 mm diameter (Figure 2a) and
four quadrants (superior [S], inferior [I], temporal [T], and nasal
[N]) in the circular area of 6 mm diameter, excluding the macular
central subfield (Figure 2d); (2) macular ganglion cell-inner
plexiform layer thickness (mGC-IPL thickness) divided the 6 mm
diameter circular area, excluding the macular central subfield,
into six quadrants (superior [S], inferior [I], superonasal [SN],
inferonasal [IN], superotemporal [ST], and inferotemporal [IT])
(Figure 2e); (3) peripapillary retinal nerve fiber layer thickness
(pRNFL thickness) divided the 6 mm diameter circular area into
four quadrants:(superior [S], inferior [I], temporal [T], and nasal
[N]) (Figure 2f); (4) optic nerve parameters included the disc area,
rim area, cup volume, and cup-to-disc ratio (C/D) in both vertical
and horizontal dimensions.

OCTA scans were utilized to analyze vessel density (VD) and
perfusion density (PD) of the superficial capillary plexus (SCP).
The analysis incorporated the following distinct areas: (1) inner
ring: a central circular region with 1 mm diameter (Figure 2a);
(2) middle ring: a circular region of 3 mm diameter, excluding the
inner ring (Figure 2b); (3) outer ring: a circular region of 6 mm
diameter, excluding both the inner and middle rings (Figure 2c); (4)
quadrant division: the circular region of 6 mm diameter, excluding
the inner ring, divided into four quadrants (superior [S], inferior
[I], temporal [T], and nasal [N]) (Figure 2d).

2.3.2 Retrobulbar blood flow examination
Retrobulbar blood flow was assessed using the Acuson Sequoia

512 diagnostic ultrasound system (SIEMENS, Germany) by a
qualified ultrasound physician with ≥ 3 years of experience in
retrobulbar blood flow sonography. Participants were examined
in a supine position with closed eyes. The arterial flow velocity,
pulsatility index, and resistance index (RI) were measured in
retrobulbar vessels, including the ophthalmic artery, central retinal
artery (CRA), and short posterior ciliary artery (SPCA).

2.4 Statistical analysis

The pattern of missing data was evaluated using the
md.pattern() function from the “mice” package in R software
to determine the missing data mechanism. Multiple imputation
was implemented to address missing data, with 10 imputations
performed following standard recommendations under the
Missing At Random (MAR) mechanism. The Multiple Imputation
by Chained Equations approach was applied using the “mice”
package in R software. Clustering heat maps were generated using
Origin 2021 software to standardize the dataset by rows through
z-score normalization. This process involves calculating the
difference between each data point and the mean of the respective
row, which is then divided by the adjusted standard deviation of
that row. Expressed as: z = (x-µ )/σ .
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FIGURE 1

Schematic representation of the selection process of the training and test datasets.

FIGURE 2

(a–f) Schematic diagrams of regional division of OCT and OCTA examination.

Data normality was assessed using the Shapiro–Wilk test
in SPSS version 27.0. Normally distributed data were presented
as mean ± standard deviation and analyzed using Student’s
t-test. Non-normally distributed data were expressed as median
(interquartile range; IQR) and compared using the Mann–Whitney

U test. Categorical variables were presented as percentages, with
between-group differences evaluated using the chi-squared test or
Fischer’s exact test.

Least absolute shrinkage and selection operator (LASSO)
regression analysis was employed for data dimensionality reduction

Frontiers in Aging Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1492804
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1492804 April 15, 2025 Time: 19:42 # 5

Zhang et al. 10.3389/fnagi.2025.1492804

and variable selection by using the “glmnet” and “MASS”
packages in R software. In this process, we implemented the
glm (family = binomial) function to build a binary classification
model. Before applying LASSO, we standardized the continuous
predictive factors (Mean = 0, SD = 1) to prevent the influence
of scale differences of variables. Non-significant variables were
eliminated by increasing the penalty coefficient λ, which was
determined through 5-fold cross-validation based on cv.glmnet
function. Subsequently, multivariable logistic regression analysis
was performed to further refine variable selection based on
LASSO regression results. A nomogram was constructed and
visualized using the “rms” package, incorporating the identified
independent risk factors.

A baseline model incorporating demographic variables
was established and compared with the complete nomogram
model to assess improvements in predictive capability following
the inclusion of ocular indicators. The evaluation utilized
three distinct metrics: receiver operating characteristic (ROC)
curve, Net Reclassification Index (NRI), and Integrated
Discrimination Improvement (IDI), implemented through
the “rms,” “nricens,” and “PredictABEL” packages in R software.
Model discrimination was assessed using ROC curves with 95%
confidence intervals, calculated via the “fbroc” package. The
model’s sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), positive likelihood ratio (PLR),
and negative likelihood ratio (NLR) were computed using the
“reportROC” package. The optimal diagnostic threshold was
determined by maximizing Youden’s index, calculated as Youden’s
index = sensitivity + specificity – 1.

Model validation included internal verification through 1,000-
resample bootstrap analysis, while calibration curves and Brier
scores assessed the goodness of fit in the training dataset.
Clinical utility was evaluated using decision curve analysis (DCA).
Additionally, an external validation dataset from an independent
medical center served as a test set to further evaluate the
nomogram’s predictive performance.

The online calculator was developed using the nomogram
formula through the “DynNom” and “rsconnect” functions and
hosted at https://www.shinyapps.io/. All statistical analyses and
online calculator construction were performed using R software
(version 4.4.0),1 SPSS version 27.0 (IBM Corp., Armonk, NY,
United States), and Origin 2021. A two-sided P < 0.05 was
considered statistically significant.

3 Results

3.1 Population characteristics

The training dataset included 170 monocular data points that
met the exclusion and inclusion criteria. Based on MCI diagnostic
criteria, participants were categorized into 64 (37.6%) cases of
normal cognition and 106 (62.4%) cases of MCI. Table 1 presents
part of the general characteristics of the training dataset. The
test dataset comprised 65 monocular data points, consisting of 30

1 https://www.R-project.org

(46.2%) cases of normal cognition and 35 (53.8%) cases of MCI.
(Complete data for both training and test datasets are available in
Supplementary Material 1.) A clustering heat map was generated
to evaluate the potential of these variables as diagnostic markers
for MCI risk, illustrating the expression characteristics of variables
in both the normal cognition and MCI groups of patients with
ARC (Figure 3). The horizontal axis of the heatmap represents
individual patient samples, with the left side corresponding to the
normal group and the right side to the MCI group. The vertical axis
denotes the study indicators. As illustrated in the figure, the MCI
group displays a greater enrichment of darker colors, suggesting
that certain indicators are more pronounced in the affected group
and may serve as potential predictors of the disease.

3.2 LASSO regression analysis

Initially, 58 associated variables were entered into the LASSO
regression algorithm using 5-fold cross-validation. Through the
incremental adjustment of the penalty coefficient (λ), non-
significant variables were systematically eliminated (Figures 4A,B).
When λmin (λ = 0.014) was selected, the number of variables
was up to 31. Therefore, we further increased the λ to λ_1se
(λ = 0.045), where the number of variables was 12. It can not
only ensure the performance of the model, but also prevent the
model from becoming too cumbersome due to the inclusion
of too many variables. The list of λ values considered during
cross-validation is available in appendix. The analysis identified
12 potential variables with non-zero coefficients: age (β, 0.188;
p < 0.001), years of education (β, −1.454; p = 0.007), diastolic blood
pressure (DBP) (β, −0.082; p = 0.002), CRA flow rate (β, 0.151;
p = 0.024), CRA RI (β, −1.656; p = 0.384), SPCA flow rate (β, 0.071;
p = 0.036), ILM-RPE thickness (T) (β, 0.038; p = 0.002), mSCPPD
(T) (β, 5.856; p = 0.002), vertical C/D (β, 3.566; p = 0.030), cup
volume (β, −0.096; p = 0.723), pRNFL (I) (β, −0.036; p = 0.001),
pRNFL (T) (β, 0.048; p = 0.012). Subsequently, two variable
with p > 0.05 was excluded: CRA RI (p = 0.384), cup volume
(p = 0.723). While previous studies indicated a negative correlation
between ILM-RPE thickness (T), mSCPPD (T), and pRNFL (T)
biomarkers and cognitive impairment (Ge et al., 2021), our analysis
revealed positive coefficients for these variables, contradicting
previous findings. Additionally, population characteristics analysis
demonstrated no statistically significant differences among these
three variables (p > 0.05). Considering that nomogram models
operate optimally with 4–7 variables, these three variables were
excluded from the final model.

3.3 Multivariate logistic regression
analysis

The initially screened variables were incorporated into a
multivariate regression analysis to identify independent factors
predictive of MCI. Table 2 presents the β coefficients, standard
error (SE), odds ratios (OR), 95% confidence intervals (95% CI),
and P-values of the seven variables. Subsequently, one variable
with p > 0.05 was eliminated: CRA flow rate (p = 0.122). The
final model identified six independent predictors of MCI: age

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1492804
https://www.shinyapps.io/.
https://www.R-project.org
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1492804 April 15, 2025 Time: 19:42 # 6

Zhang et al. 10.3389/fnagi.2025.1492804

TABLE 1 Summary of variables in the training dataset.

Predictive variables MCI (n = 106) Normal cognition (n = 64) P

Demographic data

Age, years 73.19 ± 7.64 68.52 ± 7.42 <0.001

Gender, n (%) 0.846

Male 38 (35.8) 22 (34.4)

Female 68 (64.2) 42 (65.6)

SBP, mmHg 140 (134.00,148.25) 140 (132.25, 149.25) 0.261

DBP, mmHg 79 (71.75, 83.00) 84.5 (75.75, 89.00) 0.001

Years of education, n (%) 0.186

≤ 12 years 64 (60.4) 32 (50.0)

>12 years 42 (39.6) 32 (50.0)

Smoking, n (%) 21 (19.8) 8 (12.5) 0.220

Drinking, n (%) 16 (15.1) 8 (12.5) 0.638

IOP, mmHg 13.95 (12.00, 16.00) 14.00 (12.23, 16.00) 0.700

Comorbidities

Hypertension, n (%) 52 (49.1) 30 (46.9) 0.783

Diabetes, n (%) 24 (22.6) 20 (31.3) 0.214

Cardiovascular disease, n (%) 22 (20.8) 10 (15.6) 0.407

Cerebrovascular disease, n (%) 12 (11.3) 4 (6.3) 0.417

Anxiety, n (%) 5 (4.7) 2 (3.1) 0.712

Depression, n (%) 4 (3.8) 1 (1.6) 0.651

Retrobulbar blood flow

SPCA flow rate, cm/s 20.40 (16.98, 26.70) 19.30 (14.03, 23.30) 0.036

SPCA PI 1.77 (1.49, 2.00) 1.66 (0.96, 1.66) 0.133

SPCA RI 0.81 (0.74, 0.86) 0.79 (0.61, 0.79) 0.162

OCT of macula

ILM-RPE thickness (T), µm 286.00 (272.38, 292.38) 280.50 (267.50, 292.88) 0.306

mGCIPL thickness (S), µm 81.00 (71.75, 85.00) 78.00 (72.00, 84.00) 0.186

OCTA of macula

mSCPVD(T), mm−1 9.63 (4.71, 15.23) 9.35 (3.41, 14.51) 0.226

mSCPPD(T), mm−1 0.23 (4.71, 15.23) 0.21 (0.08, 0.34) 0.141

OCT of optic disc

vertical C/D 0.51 (00.3.44, 0.63) 0.49 (0.38, 0.57) 0.039

Cup volume, mm3 0.12 (0.04, 0.25) 0.09 (0.05, 0.30) 0.988

pRNFL(I), µm 105.00 (89.75, 127.00) 119.00 (105.25, 133.00) 0.001

pRNFL(T), µm 70.00 (60.75, 77.25) 69.00 (58.75, 74.00) 0.311

OCTA of optic disc

pSCPVD(T), mm−1 14.15 (8.49, 16.73) 15.05 (10.09, 16.89) 0.744

pSCPPD(T), mm−1 0.33 (0.18, 0.41) 0.35 (0.21, 0.40) 0.804

SBP, systolic blood pressure; DBP, diastolic blood pressure; IOP, intraocular pressure; SPCA, short posterior ciliary artery; PI, pulsatility index; RI, resistance index; ILM -RPE (T), inner
limiting membrane to the retinal pigment epithelium (temporal); mGCIPL (S), macular ganglion cell-inner plexiform layer thicknes (superior); mSCPVD (T), the vessel density of macular
superficial capillary plexus (temporal); mSCPPD (T), the perfusion density of macular superficial capillary plexus (temporal); C/D, cup-to-disc ratio; pRNFL(I/T), peripapillary retinal nerve
fiber layer (inferior/temporal); pSCPVD (T), the vessel density of peripapillary superficial capillary plexus (temporal); pSCPPD (T), the vessel density of peripapillary superficial capillary plexus
(temporal). OCT, optical coherence tomography; OCTA, optical coherence tomography angiography.

(OR: 1.097; 95%CI: 1.041–1.161; p < 0.001), years of education
(OR: 0.333; 95%CI: 0.140–0.749; p = 0.010), DBP (OR: 0.949;
95%CI: 0.907–0.990; p = 0.019), SPCA flow rate (OR: 1.063; 95%CI:

1.008–1.132; p = 0.038), pRNFL (I) (OR: 0.979; 95%CI: 0.964–
0.993; p = 0.005), vertical C/D (OR: 11.927; 95%CI: 1.059–155.308;
p = 0.049).
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FIGURE 3

Heatmap illustrating standardized variables (z-scores by row) in the normal cognition group and MCI group of ARC patients. Colors closer to red and
dark green represent higher and lower z-scores, respectively.

3.4 Construction of nomogram and
online calculator

A nomogram was constructed using the “rms” package to
predict the probability of MCI development in patients with
ARC by incorporating six independent predictors: age, years of
education, DBP, SPCA flow rate, pRNFL (I), and vertical C/D,
(Figure 5). The model’s methodology involved calculating the total
score (bottom ruler) by summing the individual prediction index
scores (top ruler), with the corresponding probability indicating
the risk of MCI diagnosis. Higher total scores correlated with
an increased risk of MCI. To enhance the clinical application,
a web-based calculator was developed based on the dynamic
nomogram using the “DynNom” and “rsconnect” functions at
https://www.shinyapps.io/. This prediction model calculator is
freely accessible at https://phccalculate.shinyapps.io/dynnomapp/.
The user interface of the web-based calculator is shown in Figure 6.
We have included 7 cases as examples for display in the calculator.
The specific data, along with the actual predictor values and
prediction results, is presented in Supplementary Material 1.

3.5 Evaluation and validation of the
nomogram

As shown in Figure 7A, the predicted probability of all cases
ranged between 0 and 1, demonstrating appropriate differentiation.

Subsequently, Cook’s distance (Dennis Cook et al., 1977) was
calculated for each sample (Figure 7B), and all values remained
within the normal range (Di < 0.5), indicating that no outliers
significantly influenced the overall effect sizes or significance levels.
Variance inflation factors (vifs) were calculated for each predictor
to detect multiple collinearities, with all values approximating 1: age
(vif, 1.14), years of education (vif, 1.28), DBP (vif, 1.09), SPCA flow
rate (vif, 1.10), pRNFL(I) (vif, 1.08), vertical C/D (vif, 1.07).

The discrimination and calibration of the nomogram in
the training and test datasets are illustrated in Figures 8A,B,
respectively. Through bootstrapping validation, the area under the
ROC curve values for the model were determined to be 0.791
(95%CI: 0.722–0.864) in the training dataset and 0.750 (95%CI:
0.627–0.858) in the test dataset. The 95% CIs of the calibration
belt in both groups did not cross the diagonal bisector line,
indicating acceptable concordance performance of the prediction
model. The analysis yielded the following metrics using the
“reportROC” package: sensitivity (0.877, 95%CI: 0.815–0.940),
specificity (0.594, 95%CI: 0.473–0.714), PPV (0.782, 95%CI: 0.707–
0.856), NPV (0.745, 95%CI: 0.625–0.865), PLR (2.16, 95%CI:
1.593–2.929), and NLR (0.207, 95%CI: 0.119–0.357). The optimal
diagnostic threshold was determined using the maximum Youden’s
Index, calculated as sensitivity + specificity − 1. The best
cutoff value of 0.504 indicated optimal predictive performance at
this decision threshold. Following 1,000 bootstrap self-sampling
internal validation, the calibration curve demonstrated strong
concordance between predicted and ideal probabilities in both
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FIGURE 4

Least absolute shrinkage and selection operator (LASSO) regression analysis was used for data dimensionality reduction and variable selection.
(A) LASSO coefficient profiles of the58 candidate predictors. (B) Five-fold cross validation with a minimum error criterion was performed to
determine the optimal penalization estimate of λ in LASSO regression.

TABLE 2 Multivariate logistic regression analysis.

Intercept and variables β SE OR (95% CI) P

Age 0.093 0.028 1.097 (1.041–1.161) <0.001*

Years of education −1.101 0.425 0.333 (0.140–0.749) 0.010*

DBP −0.052 0.022 0.949 (0.907–0.990) 0.019*

CRA flow rate 0.088 0.057 1.092 (0.980–1.226) 0.122

SPCA flow rate 0.061 0.030 1.063 (1.008–1.132) 0.038*

pRNFL(I) −0.021 0.008 0.979 (0.964–0.993) 0.005*

Vertical C/D 2.479 1.262 11.927 (1.059–155.308) 0.049*

DBP, diastolic blood pressure; CRA, central retinal artery; SPCA, short posterior ciliary artery; pRNFL(I), peripapillary retinal nerve fiber layer (inferior); C/D, cup-to-disc ratio; *P < 0.05.

the training dataset (P = 0.949) and test dataset (P = 0.972;
Figures 9A,B). The Brier scores measuring prediction accuracy
were 0.171 and 0.199, respectively, confirming the model’s strong
probabilistic predictions.

3.6 Value of ocular indicators to
nomogram

For baseline analysis, a model incorporating three demographic
variables (years of education, DBP, and age) was constructed
in training and test datasets. This model was then compared
with the complete nomogram model to assess improvements in
predictive capability following the inclusion of ocular indicators.
Three evaluation metrics were used, implemented through the
“rms,” “nricens,” and “PredictABEL” packages in R software. In
training dataset, the area under the ROC curve (Figure 10A) for the
baseline model was 0.746 (95%CI: 0.664–0.821), while the complete
prediction model achieved an AUC of 0.791 (95%CI: 0.722–
0.864), representing a statistically significant difference (z = 2.107,
p = 0.035). Subsequently, threshold values of 0.35 and 0.6 were

applied as the lower and upper bounds for the prediction model
using the “nricens” package, as illustrated in Figures 10C,D. NRI
and IDI calculations, performed using the PredictABEL package,
are presented in Table 3. Both categorical and continuous NRI,
along with IDI, showed statistically significant improvements
(p < 0.05), indicating that the complete model demonstrated
enhanced predictive capacity across risk categories, continuous
risks, and overall risks compared to the baseline model. In test
dataset, AUC of the baseline model (Figure 10B) was 0.694 (95%
CI: 0.554–0.828), while the AUC of the complete prediction model
was 0.750 (95% CI: 0.627–0.858), with no statistically significant
difference between the two (p > 0.05). NRI and IDI were also
calculated, and the results showed that the IDI had a statistically
significant difference (p < 0.05), while the NRI did not exhibit a
significant difference (p > 0.05) (Figure 10).

3.7 Clinical usefulness assessment

DCA was conducted to evaluate the clinical utility of the
nomogram (Figures 11A,B). In the DCA curves, the ordinate
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FIGURE 5

The nomogram was constructed to predict the probability of an ARC patient developing MCI by incorporating the 5 independent predictors: age,
years of education, DBP, SPCA flow rate, pRNFL (I), vertical C/D.

(Y-axis) depicts the net benefit while the abscissa (X-axis)
represents the threshold probability. The analysis revealed that the
model yielded substantial net benefit across nearly all threshold
probabilities in both the training and test datasets, indicating that
the nomogram demonstrated considerable clinical value.

4 Discussion

With demographic shifts, an increasing number of individuals
with low vision or blindness are experiencing cataracts (Flaxman
et al., 2017). Currently, cataract surgery remains the only
effective treatment, characterized by brief operative time and rapid
postoperative recovery, enabling the development of ambulatory
day surgery (Lawrence et al., 2015). Consequently, cataract surgery
is increasingly performed in outpatient clinics rather than inpatient
departments, owing to its efficacy, safety, and cost-effectiveness.

However, patients with ARC are typically older and face a higher
risk of concomitant cognitive dysfunction. The limited time
available for communication during day surgery requires enhanced
coordination. Effective management of these patients, particularly
through early identification of cognitive impairment, is crucial to
predict their coordination levels during the operation.

This study introduces a novel visual and user-friendly
nomogram prediction model utilizing non-invasive and readily
obtainable ocular biomarkers designed for the early identification
of cognitive decline risk among patients with ARC. The nomogram
incorporates six independent prognostic factors: age, years of
education, DBP, SPCA flow rate, pRNFL (I), and vertical
C/D, demonstrating significant discriminative ability in the
training dataset (AUC: 0.791, 95%CI: 0.722–0.864) and the test
dataset (AUC: 0.750, 95%CI: 0.627–0.85) to differentiate between
individuals with MCI and those with normal cognitive function
among patients with ARC, as assessed using the bootstrap method.
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FIGURE 6

Web-based calculator web page using dynamic nomogram. We entered 7 samples into the web calculator as an example. The error bars represent
the 95% confidence interval for the predicted probabilities.

FIGURE 7

(A) The predicted probability of all cases was between 0 and 1, with a bipolar distribution. (B) Cook’s distance (Dennis Cook et al., 1977) of each
sample fell within the normal range (Di < 0.5).

Further validation through DCA confirmed the nomogram’s strong
consistency and clinical utility.

In the training dataset, the inclusion of ocular predictors
enhanced overall prediction accuracy, proving more effective
than the baseline model. In the test dataset, only the IDI
demonstrated a statistically significant difference, while the area

under the ROC curve (AUC) and NRI showed no significant
differences compared to baseline model. On the one hand,
this may be related to the insufficient sample size of the test
set. On the other hand, this discrepancy may be attributed to
the distinct aspects emphasized by different metrics. IDI can
sensitively capture continuous improvements in individual risk
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FIGURE 8

ROC curves of the LASSO model in the training (A) and test (B) dataset, respectively (AUC = 0.791 vs. 0.750). A total of 1,000 bootstrap resamples
used to calculate a relatively corrected AUC and 95% CI. The blue area represents the 95% CIs. ROC, receiver operator characteristics; LASSO, least
absolute shrinkage and selection operator; AUC, area under the curve.

FIGURE 9

Calibration plots in the training (A) and test (B) datasets. Validation of the calibration curves exhibited good concordance between the predicted
probability and ideal probability in the training dataset (P = 0.949) and test dataset (P = 0.972). P > 0.05 indicates a good calibration with no
difference between the ideal probability and predicted probabilities.

prediction without relying on classification thresholds, whereas
the NRI measures the reclassification ability of a model under
predefined risk thresholds and depends on the setting of these
thresholds. Additionally, if the number of correctly upgraded
cases in the event group and incorrectly upgraded cases in the
non-event group offset each other, the difference in NRI might

also fail to reach significance. AUC reflects overall discriminative
ability but may be insensitive to localized improvements in
predicted probabilities (e.g., within intermediate risk ranges). The
statistical significance of IDI indicates that the new model achieved
substantive improvements in the absolute accuracy of predicted
probabilities or risk gradients. However, these improvements were
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FIGURE 10

(A) The area under the ROC curve values for baseline model were found to be 0.746 (95% CI: 0.664-0.821) in training dataset. (B) The area under the
ROC curve was 0.694 (95%CI: 0.554-0.828) in test dataset. (C) Scatter diagram in training dataset. (D) Scatter diagram in test dataset. Setting the
lower threshold at 0.35 and the upper threshold at 0.6 effectively differentiates between the normal group and the MCI group.

TABLE 3 Complete model compared to baseline model.

Items Improvement training test 95% CI training test P training test

NRI (categorical) 0.197 0.071 0.029–0.365 −0.212–0.354 0.022 0.621

NRI (continuous) 0.433 0.429 0.130–0.736 −0.038–0.895 0.005 0.072

IDI 0.076 0.071 0.036–0.115 0.007–0.136 <0.001 0.029

NRI, Net Reclassification Index, IDI, Integrated Discrimination Improvement.

not translated into enhanced classification capability (as reflected
by NRI) or overall discriminative performance (as measured
by AUC). In clinical practice, the model incorporating ocular
indicators may still hold practical value for applications such
as personalized risk assessment. We have reviewed pertinent
literature and found that there is currently no existing model

utilizing ophthalmology-related indicators to predict the risk of
MCI, which highlights the innovative nature of our work. Similar
type of work includes a cross-sectional study based on machine
learning algorithms to predict MCI in older adults dominated
by Song et al. (2025). In their study, 6,434 older adults were
enrolled based on the data of the China Health and Elderly Care
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FIGURE 11

Decision curve analysis established by the training dataset (A) and test dataset (B). The DCA curve indicated that the models contributed high net
benefit in almost all threshold probabilities in both datasets. “All201D curve (gray dashed line): Assume that all individuals are at high risk, which
means adopting the most aggressive intervention strategy. “None” curve (black solid line): assume that all individuals are at low risk, meaning no
intervention measures are taken.

Longitudinal Survey (CHARLS) in 2020. Six machine learning
(ML) algorithms were employed in this study: logistic regression,
K-nearest neighbors (KNN), support vector machine (SVM),
decision tree (DT), LightGBM, and random forest (RF). These
algorithms identified five key characteristics for predicting MCI:
educational level, social engagement, gender, relationship with
children, and age. Some of these findings align with those of our
own study. Ultimately, the area under the ROC curve for each
model ranged from 0.71 to 0.77. In a study conducted by Yuan
et al. focused on the early identification and support of individuals
at risk of developing cognitive impairment following traumatic
brain injury, several significant independent predictive factors were
identified, including age, years of education, pulmonary infection
status, epilepsy status, cerebrospinal fluid leakage status, and the
Helsinki score (Yuan et al., 2025). Additionally, a nomogram was
developed and translated into an online risk calculator, akin to the
approach taken in our study.

Aging is a complex and progressive process characterized
by systematic changes occurring over decades (Yin et al.,
2015). Research has established that aging leads to metabolic
dysregulation, insomnia, depression, and cognitive decline
(Rettberg et al., 2016). Age serves as a fundamental catalyst in
the development of AD (National Institute on Aging, 2015).
This condition is linked to glucose hypometabolism, disrupted
cholesterol homeostasis, mitochondrial dysfunction, altered
immune and inflammatory responses, Aβ processing, white matter
deterioration, and reduced regenerative capacity (Cai and Jeong,
2020; Klosinski et al., 2015; Masters et al., 2015; Shaw et al., 2013).
This study revealed a significant positive correlation between
advanced age and increased cognitive impairment risk (OR: 1.097;
95%CI: 1.041–1.161; p < 0.001), which aligned with previous
research findings. Whitley et al. (2016) examined five cognitive

measures in a large, representative UK population sample of over
40,000 individuals aged 16-100 years. The results demonstrated
that all measured cognitive functions showed an earlier decline
beginning around age 60.

Research indicates that educational attainment may serve
as a protective factor against cognitive decline, commonly
termed cognitive reserve. Education can increase regional cortical
thickness in healthy individuals, contributing to increased brain
reserve, while also enabling patients with AD to better manage
brain atrophy effects through enhanced cognitive reserve (Liu
et al., 2012). However, the cognitive benefits of education may
differ across demographic characteristics such as gender and
ethnicity (Sortsø et al., 2017). Additionally, education’s influence
on cognitive function is closely linked to vascular pathology and
appears most significant during early disease phases, highlighting
the intricate relationship between education, brain health, and
cognitive outcomes (Zieren et al., 2013). This study demonstrated
the protective role of higher education in cognitive function among
patients with ARC (OR: 0.333; 95%CI: 0.140–0.749; p = 0.010).

The risk of MCI showed a negative correlation with DBP
(OR: 0.949; 95%CI: 0.907–0.990; p = 0.019). Longitudinal studies
have supported these findings, suggesting that a mild to moderate
increase in DBP could reduce the risk of developing AD (Verghese
et al., 2003; Yang et al., 2011). A potential explanation for
this relationship is that lower DBP may be insufficient for
maintaining adequate cerebral perfusion, potentially contributing
to cerebral Aβ accumulation (Li et al., 2022). During later life
stages, increased arterial stiffness manifests through decreased
DBP and elevated SBP. Prolonged exposure to elevated pulse
pressure may lead to cerebral white matter damage, brain atrophy,
and deterioration of cortical connections, subsequently affecting
cognitive function (Del Pinto et al., 2021). Alternatively, this
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phenomenon might suggest that dementia onset could influence
the central regulation of blood pressure, resulting in lower DBP
(Masoli and Delgado, 2021). Further research has emphasized the
connection between DBP and hippocampal volume, indicating that
elevated DBP significantly correlates with increased hippocampal
volume, potentially influencing cognitive health (Ngwa et al.,
2018). Additionally, blood pressure variability, including DBP
fluctuations, has been linked to cognitive outcomes. Studies on
visit-to-visit blood pressure variability have shown that increased
DBP variability correlates with higher risks of MCI and probable
dementia, emphasizing the importance of BPV monitoring in
clinical practice (Guo et al., 2023).

Since the initial documentation of AD pathology in the retina
of patients with AD in the 1980s (Hinton et al., 1986), substantial
evidence has emerged clarifying the relationship between retinal
changes and AD. Advancements in ophthalmic technologies,
particularly SD-OCT, have significantly improved resolution
compared to time domain OCT, enabling detailed examination
of all retinal layers in patients with AD. Research has identified
a gradient of retinal thickness reduction, with more pronounced
thinning in the inner retinal layers compared to the outer layers
(Asanad et al., 2019). Studies across diverse populations have
indicated a potential correlation between inner retinal thickness
and cognitive function. MRI studies in non-demented individuals
have revealed a possible connection between GC-IPL thickness and
temporal and occipital lobe atrophy (Ong et al., 2015). Additionally,
RNFL thinning has been associated with brain alterations in visual
and limbic networks (Ong et al., 2015; Méndez-Gómez et al., 2018).
While most studies indicate that retinal layers change progressively
with AD progression, some research reports show no statistically
significant differences (Asanad et al., 2019; Chan et al., 2019;
Kesler et al., 2011; Knoll et al., 2016; Tao et al., 2019). These
discrepancies may result from variations in exclusion criteria,
cognitive assessment methodologies, and handling of confounding
factors. In our univariate analysis, neither ILM-RPE thickness
nor GC-IPL thickness showed significant differences between the
MCI and normal groups (p > 0.05). However, pRNFL(I) thinning
emerged as a risk factor for MCI (OR: 0.979; 95%CI: 0.964–
0.993; p = 0.005). The findings suggest that pRNFL thinning
precedes changes in other retinal layers, potentially indicating
neurodegeneration of the central nervous system. Postmortem
analyses of AD retinas have demonstrated cellular shrinkage,
swelling, and vacuolization (Cheung et al., 2017; Dehghani et al.,
2018). Optic disk pallor was observed even in early AD stages,
attributed to axonal loss and perfusion alterations (Bambo et al.,
2015). A meta-analysis indicated that a higher cup-to-disc ratio,
lower height variation contour, lower rim area, and lower rim
volume measured by scanning laser ophthalmoscopy may facilitate
the diagnosis of AD (Ge et al., 2021). Our OCT study findings
confirmed an enlarged cup-to-disc ratio as a significant risk factor
for MCI (OR: 11.927; 95%CI: 1.059–155.308; p = 0.049).

The retinal vasculature shares structural and functional
similarities with the cerebral vasculature. Research indicates that
alterations in blood flow parameters precede neuronal loss (Javaid
et al., 2016). This finding suggests that changes in retinal blood
vessels could reflect underlying cerebrovascular pathology. The
ophthalmic artery, originating from the internal carotid artery,
supplies blood to the ocular region and gives rise to the central
retinal artery and posterior ciliary arteries. The short posterior

ciliary artery branches within the choroid, forming a choroidal
vascular network that supplies the choroid, macula, and the outer
retinal layers, while the central retinal artery delivers blood to the
inner retina (Baldoncini et al., 2019). In this study, patients with
ARC demonstrated an increased SPCA flow rate, which correlated
with a higher likelihood of developing cognitive impairment (OR:
1.063; 95%CI: 1.008–1.132; p = 0.038). Furthermore, OCTA analysis
of the superficial capillary plexus revealed no significant differences
in SCP-VP and SCP-DP of the macular and optic disc regions
between the MCI group and the normal group (p > 0.05).
A study by Yoon et al. comparing patients with MCI to those
with normal cognitive function found no significant differences
in VD, PD, vein diameters, and the area of the foveal avascular
zone (FAZ) (Yoon et al., 2019), aligning with our findings. Diverse
perspectives exist on this matter (Chua et al., 2020). Based on our
findings, we hypothesize that during the progression from cognitive
normality to early cognitive impairments, changes in blood flow
parameters of ocular supply vessels precede alterations in the retinal
capillary network and retinal structure. These modifications in
ocular blood flow initially arise from feedback mechanisms, such
as increased arterial flow velocity. Current research exploring the
relationship between ocular arteries and cognitive function remains
limited. However, as components of the systemic vasculature,
ocular arteries have been implicated in optic nerve damage in
glaucoma, associated with changes in ocular artery blood flow
and hypertension (Waliszek-Iwanicka et al., 2010). This suggests
that alterations in ocular blood flow may impair visual function
through effects on the optic nerve (e.g., enlarged cup-to-disc ratio),
potentially contributing to cognitive-related issues.

Although recent research strongly suggests a correlation
between ocular biomarkers and cognitive impairment, no definitive
diagnostic model has been established. This study introduces
a new nomogram prediction model based on six indicators
obtained through non-invasive, accessible, safe, and cost-effective
methods. The nomogram demonstrates robust performance in
internal and external verification, making it applicable to diverse
patient populations. Additionally, our study provides a visual
representation beneficial for clinicians, particularly in basic
hospitals with limited resources. This study has several limitations
that warrant consideration. First, owing to the heterogeneity of
OCT/OCTA devices in clinical practice, variations in image analysis
software may affect readouts. Hence, this calculator applies only
in settings using the OptoVue device. Second, certain potential
confounding factors (such as ApoE genotype) were not fully
incorporated, potentially affecting the final results. Third, the
limited sample size may affect the generalizability of the results.
Furthermore, the cross-sectional study design precludes causal
inferences. Future large-scale cohort studies are necessary to
validate these findings and conclusions.

5 Conclusion

This research culminates in the development of an online
calculator that enables the identification of early cognitive
dysfunction in patients with ARC through ocular biomarkers.
The validation results confirm the model’s robust discrimination
ability. The identification of novel ocular biomarkers represents
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a significant advancement in the assessment and management of
cognitive impairment for both patients and healthcare providers.
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