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Characterizing changes to
individual-specific brain
signature with age

Monireh Taimouri* and Vikram Ravindra

Department of Computer Science, University of Cincinnati, Cincinnati, OH, United States

The increasing prevalence of neurodegenerative diseases in an aging population

underscores the critical need for reliable biomarkers distinguishing normal

aging from pathological neurodegeneration. This study leverages neuroimaging

to identify age-resilient biomarkers, establishing a baseline of neural features

that are relatively stable across the aging process. Our research objectives

are threefold: (a) Validate a methodology using leverage scores to identify

age-robust neural signatures; (b) Confirm the consistency of these features

across a diverse age cohort (18-87 years); and (c) Assess the stability of

individual-specific neural characteristics across multiple brain parcellations

(Craddock, AAL, and HOA). Using functional connectomes data from

resting-state and task-based fMRI, we found that a small subset of features

consistently capture individual-specific patterns, with significant overlap (∼50%)

between consecutive age groups and across atlases. Our approach e�ectively

minimized inter-subject similarity while maintaining intra-subject consistency

across di�erent cognitive tasks. The stability of these signatures throughout

adulthood and their consistency across di�erent anatomical parcellations

provide new perspectives on brain aging. They highlight both the preservation

of individual brain architecture and subtle age-related reorganization. These

findings enhance our understanding of age-related brain changes, potentially

aiding in di�erentiating normal cognitive decline from neurodegenerative

processes.

KEYWORDS

brain signature, functional connectome, matrix sampling, biomarkers of aging, feature
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1 Introduction

Research on aging and its impact on the brain is a rapidly growing field, driven by

the increasing prevalence of age-related neurodegenerative diseases and the increasing

global population of older adults. Identifying biomarkers that accurately delineate the

biological processes of aging is a cornerstone in the quest to understand and mitigate

age-related decline. Such biomarkers hold the potential to predict functional outcomes and

distinguish between the effects of normal aging and pathological neurodegeneration. Baker

and Sprott (1988) set forth criteria for ideal biomarkers, which have been expanded to

emphasize the need for reproducibility, minimal invasiveness, and, in particular, resistance

to confounding age-related factors, as supported by recent discourse (Fuellen et al., 2019).

The inherent heterogeneity and complexity of aging present significant challenges

in identifying a universal biomarker. In light of this, the field is pivoting toward a

multi-biomarker approach that can provide a richer, more integrated characterization of

aging, as proposed by Earls et al. (2019) and Kudryashova et al. (2020). The utility of

composite biomarkers, as demonstrated by Belsky et al. (2018) and Hastings et al. (2019),
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further underscores the potential of nuanced indicators to enhance

predictive power for outcomes related to aging.

A pivotal study by Jiang et al. (2022) has refined our

understanding of brain network organization, revealing that

distinct but overlapping functional connectivity patterns can

predict cognitive function and age-related changes. They

demonstrate that while cognitive decline and aging affect all

network connections, specific networks, such as the dorsal

attention network, show a unique relationship with cognitive

performance independent of age. This insight is crucial for

differentiating between cognitive decline due to normal aging and

neurodegenerative processes.

Building on the current methodologies in aging and

neuroimaging research (Jiang et al., 2022; Setton et al., 2023;

Zheng et al., 2023), this study uses functional neuroimages

to uncover biomarkers that are resilient to age-related changes.

Identifying consistent signals over the lifespan allows us to establish

a baseline of neural features that are relatively unaffected by aging.

This baseline is crucial to discern neural alterations attributable to

neurodegenerative diseases, distinct from normal aging effects.

Our objectives are threefold: (a) To validate a methodology

using leverage scores to identify robust neural signatures against

age-related variability. (b) To determine the consistency of these

neural features within a diverse age cohort and to evaluate

their resilience to aging-related changes. (c) To assess the

stability of individual-specific neural characteristics across multiple

parcellations to fortify our findings.

2 Materials and methods

We initiate this section with a brief description of relevant

software infrastructure—the CamCan dataset and pertinent brain

atlases. We then provide details for the setup and methodology we

used in this study. Finally, we discuss the significance and open

questions posed in related research articles.

2.1 Dataset and atlases

In this paper, we use the dataset collected by the Cambridge

Center for Aging and Neuroscience (Cam-CAN). Specifically, we

show results from the Cam-CAN Stage 2 study cohort, a substantial

resource for investigating age-related changes in cognition and

brain function. Cam-CAN Stage 2 includes a diverse range of data

modalities, including Magnetic Resonance Imaging (MRI)—both

structural and functional, Magnetic Encephalography (MEG), and

cognitive-behavioral data collected from a cohort of 652 individuals

(322 males and 330 Females) spanning the adult lifespan (from

18 to 88 years). As this dataset samples from a substantially

diverse population, it allows for a comprehensive characterization

of healthy cognitive aging processes, specifically focusing on

understanding age-related alterations in brain structure, function,

and cognitive performance.

For our analysis, we incorporate three distinct brain atlases,

consisting of two anatomical atlases and one functional

parcellation. The atlases are as follows: (a) the Automated

Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)

with 116 regions, (b) the Harvard Oxford (HOA) atlas (Makris

et al., 2006) with 115 regions, and (c) the Craddock atlas (Craddock

et al., 2012) which provides a more granular functional parcellation

with 840 regions. Functional parcellation involves segmenting

the human brain into distinct territories or regions based on the

functional aspects of neural activity. Unlike anatomical divisions,

based on physical brain structures, functional parcellation focuses

on how different brain regions are involved in specific processes

and functions. It is worth noting that the choice of functional

parcellation can have a substantial impact on how researchers

approach the study and modeling of brain functions, as well as

how they analyze and interpret data related to neural activity and

mental processes (Varoquaux et al., 2019).

2.2 Methodology

2.2.1 Pre-processing
The functional MRI data utilized in this study underwent

artifact and noise removal by the dataset curators. Separate

pipelines were tailored for processing resting-state, movie-

watching, and sensorimotor (SMT) tasks. We included all

participants with available resting-state and task-based fMRI scans

who passed the original Cam-CAN quality control. The Cam-

CAN project, as reported in Shafto et al. (2014) and Taylor

et al. (2017), did not apply a framewise displacement threshold

to exclude participants based on head motion during fMRI scans.

Instead, a rigorous pre-screening process ensured that participants

could comfortably lie still during scanning, and foam cushions

were used during acquisition to minimize movement. Quality

control procedures were applied post-hoc to all imaging data to

ensure integrity, but no additional participant-level exclusions were

performed in our study based on motion metrics. As part of the

standard Cam-CAN preprocessing pipeline, functional MRI data

were processed using the SPM12 software and the Automatic

Analysis (AA) framework. The following motion correction steps

were applied: (a) Realignment (rigid-body motion correction)

to correct head motion within sessions, (b) Co-registration of

functional scans to each subject’s T1-weighted anatomical image,

(c) Spatial normalization to MNI space using Diffeomorphic

Anatomical Registration Through Exponentiated Lie Algebra

(DARTEL) templates, and (d) Smoothing with a 4mm FWHM

Gaussian kernel.

The output of the aforementioned preprocessing pipeline is a

clean, functional MRI time-series matrix T ∈ R
v×t , where v and

t denote the number of voxels and time points respectively. Next,

we parcellate each T to create a region-wise time-series matrix

R ∈ R
r×t for each of the three atlases mentioned previously. Here,

r represents the number of regions. Then, we compute the Pearson

Correlation matrices (PC) for each of these region-wise time-series

matrices, where C ∈ [−1, 1]r×r . Each (i, j)-th entry represents the

strength and direction of the correlation between the i-th and j-th

regions. In the literature, these undirected correlation matrices are

also called Functional Connectomes (FCs).

To prepare the data for group-level analysis, we vectorize

each subject’s FC matrix by extracting its upper triangle (since

correlation matrices are symmetric with ones on the diagonal,

we use only the upper triangular part) and stack these vectors

to form population-level matrices for each task (e.g., Mrest, Msmt,

and Mmovie). Each row in these matrices corresponds to an FC
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feature, and each column corresponds to a subject. For age-specific

analysis, we partition the subjects into non-overlapping age cohorts

and extract the corresponding columns to form cohort-specific

matrices of shape [m × n], where m is the number of FC features

and n is the number of subjects in the cohort. Leverage scores are

then computed for each cohort matrix to identify high-influence

FC features that capture population-level variability within each

age group.

2.2.2 Feature selection and leverage score
sampling

The goal of this paper is to find a small set of regions that

strongly code for individual-specific signatures that remain stable

across ages. However, the number of rows in the C matrices

computed previously is O(r2), which can become prohibitively

large for fine-grained parcellations. Thus, our next step is to

identify a subset of features, those with non-zero values in

the correlation matrix, which provide the most insight into

individual signatures. These selected features have clear physical

interpretations, representing the edges of functional connectomes.

By isolating a small, yet informative subset, we can better capture

individual differences while maintaining interpretability. Since

each of these selected features is associated with two regions of

the brain (corresponding to the two nodes of each edge), we can

directlymap them to the spatial domain, facilitating further analysis

of their anatomical significance.

As interpretability is a core requirement, our method is based

on leverage-score sampling. Consider again M as the data matrix

representing connectomes. Let U denote an orthonormal matrix

spanning the columns of M. The leverage scores for the i-th row

ofM are defined as the two-norm of the same row in U. i.e.,

li = Ui,⋆U
T
i,⋆, ∀i ∈ {1, . . . ,m}. (1)

The values of the leverage scores themselves are a measure

of the relative importance of different rows. Rows with higher

scores have more “leverage” than rows with lower scores. While

traditional approaches use leverage scores in a randomizedmanner,

we simply sort the scores in descending order and retain only the

top k features. The theoretical guarantees for our deterministic

strategy are provided by Cohen et al. (2015). We note that we have

previously used leverage-score sampling in Ravindra et al. (2021) to

find individual-specific signatures in healthy young adults from the

Human Connectome Project (HCP) dataset, where pairs of images

corresponding to the same individual were matched with over 90%

accuracy. A key advantage of the method was that it required the

acquisition of only one image for every subject, whereas other

methods such as Finn et al. (2015), Byrge and Kennedy (2019) and

Gratton et al. (2018) required at least two sessions.

2.3 Related literature

2.3.1 Individual specific signature
Neuroimaging research has increasingly focused on the

individuality of brain connectivity, with resting-state fMRI

providing a window into the unique neural wiring of each person.

The foundational work by Mueller et al. (2013) highlighted the

diversity of functional connectivity patterns across individuals,

with particular variability in regions associated with higher

cognitive functions and evolutionary development. Building on

this, Finn et al. (2015) deconstructed the identification task at

both the whole-brain and the network-specific levels, achieving

an impressive 93% success rate through the utilization of region-

wise correlation matrices encompassing the entire brain. Notably,

certain networks, such as the medial frontal and frontoparietal

networks, emerged as highly discriminative, echoing findings of

Mueller et al. (2013) and Miranda-Dominguez et al. (2014),

although with a prerequisite for prior knowledge of functional

brain regions. In a comparative dialogue, Airan et al. (2016)

and Byrge and Kennedy (2019) also explored the identifying

power of certain brain connections. Airan et al. (2016) optimized

neuroimaging techniques to differentiate individual subjects,

finding key acquisition times and brain regions that maximize

between-subject variability andminimize within-subject variability,

enhancing the design and interpretation of resting-state fMRI

experiments. Byrge and Kennedy (2019) advanced this domain

by introducing a technique known as connectome fingerprinting,

which could reliably identify individuals based on a select few

functional connections, significantly reducing the complexity

from tens of thousands to merely dozens while maintaining

identification accuracy. In 2017, using Human Connectome Project

data, Finn et al. (2017) examined how different brain states, beyond

resting conditions, may better highlight individual differences in

functional connectivity. They analyze variability across conditions

to improve biomarker discovery and individualized brain mapping,

setting the stage for future research. After that, Gratton et al.

(2018) added depth to the understanding of individual brain

signatures by examining the temporal consistency of connectivity

patterns, reinforcing the notion that functional networks are

reflective of stable individual differences over time. Diversifying

the methodological landscape, Hannum et al. (2023) utilized

Linear Discriminant Analysis to achieve near-perfect accuracy

in identifying individuals from a large cohort. Their work also

scrutinized the influence of image preprocessing on cognitive state

decoding and pinpointed specific sub-networks that are vital for

accurate identification.

2.3.2 Biomarkers of aging
Understanding the biological underpinnings of aging,

particularly in the brain, is pivotal for addressing age-related

cognitive decline. Recent neuroimaging studies have revealed

consistent individual differences in brain function, with

connectivity patterns in medial frontal and frontoparietal

networks showing remarkable stability over time, as demonstrated

by Horien et al. (2019). These findings underscore the potential

for personalized approaches to track and intervene in the aging

process. Building on this, Higgins-Chen et al. (2021) proposes

a hierarchical framework that incorporates epigenetic and

neuroimaging-derived biomarkers, offering a multifaceted view of

the aging brain. These biomarkers not only reflect biological aging

but also possess a significant relationship with cognitive andmental

health outcomes. Hartmann et al. (2021) extends this discussion

by evaluating general biomarkers of aging and cellular senescence,
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adopting the PICO(Population, Intervention, Comparison,

Outcome) strategy to elucidate the discrepancies between

chronological and biological aging. This work is instrumental

in refining the biomarkers used to monitor aging’s impact,

with implications for both clinical practice and aging research.

Zamani Esfahlani et al. (2022) contributes to this discussion by

examining age-related changes in the coupling between brain

structure and function, noting a general decline across the lifespan

with specific reductions in sensorimotor regions. Conversely, areas

tied to higher cognitive functions exhibit more resilience to aging

effects, suggesting a nuanced landscape of neural aging. Jiang et al.

(2022), leveraging data from the CamCAN cohort, further our

understanding of cognitive decline with age, linking it to alterations

in brain network connectivity. This research supports theories of

neural dedifferentiation and compensatory mechanisms, which

may guide future strategies to mitigate cognitive aging. Lastly,

the collaborative effort by the Aging Biomarker Consortium

(ABC) (Consortium et al., 2023) highlights the field’s collective

endeavor to standardize brain aging biomarkers. Their consensus

paves the way for a systematic assessment of brain aging, with

potential benefits for the development of targeted interventions

and treatments for aging-related brain diseases. These studies

form a mosaic of insights into the complex interplay between

aging, brain structure and function, and cognitive health, pointing

toward an increasingly personalized approach to managing and

understanding aging.

2.3.3 Feature selection methods
Feature selection is a pivotal process in machine learning and

pattern recognition, with significant implications for brain imaging

studies aimed at elucidating brain signatures of cognitive processes

(Popp et al., 2024), disease states (Guo et al., 2017; Shi et al.,

2020), and other neurological phenomena. In the domain of disease

diagnosis, Guo et al. (2017) harnessed deep neural networks to

parse resting-state fMRI data, unveiling 32 functional connections

as potential biomarkers for Autism Spectrum Disorder (ASD).

Building on this, Shi et al. (2020) improved the specificity of feature

selection by creating a minimum spanning tree from connectivity

data, thus refining ASD classification by balancing discriminative

power and feature redundancy. Furthering our understanding of

cognitive function, Xu et al. (2020) compared discrimination-based

and reliability-based feature selection methods using the Human

Connectome Project’s extensive dataset. Their findings suggest

discrimination-based features excel in decoding brain states,

while reliability-based features demonstrate enhanced stability–a

crucial consideration for longitudinal studies. Rastegarnia et al.

(2023)’s investigation into personalized brain decoding challenges

conventional group-level models, revealing the potential for

individualized machine learning models to achieve comparable

accuracy with significantly less data. This work opens avenues

for bespoke brain state analysis that could revolutionize cognitive

neuroscience. Complementing this, Popp et al. (2024) linked

individual variations in cognitive ability to structural-functional

brain network coupling, validated across independent samples,

providing a predictive framework for cognitive performance based

on connectivity patterns.

3 Results

3.1 Result 1: sampled feature-space
demonstrates a high level of
individual-specific similarity for all age
groups

A feature representation designed to maximize individual-

level differences has two properties: (a) similarity metrics (such

as correlation) between pairs of distinct individuals must be low,

and (b) similarity between different pairs of images corresponding

to the same subject should be high. In our first set of results, we

will establish that our approach of sampling features based on their

leverage scores efficiently characterizes individual-specific signals

for subjects in all age groups.

We represent each fMRI session of every subject as a vectorized

FC obtained from the Craddock parcellation. Next, we arrange the

subjects by their age into cohorts of 50. Each cohort represents

approximately five to eight years of biological age. For each cohort,

we create three task-specific matrices for each rest, sensorimotor

(SMT), and movie viewing. Using the rest matrix, we select 1,000

features with the most significant leverage scores from a pool

of 352,380 candidate features. To demonstrate that our approach

selects a parsimonious subset of features to minimize inter-subject

similarity, we compute the pairwise Pearson Correlation between

(a) pairs of subjects performing the same task and (b) pairs of

FCs corresponding to the same subject performing different tasks.

Our results show that the inter-subject within-task similarity is, on

average, 0.0466 for rest, 0.0440 for sensorimotor, and 0.0340 for

movie viewing. On the other hand, limiting the feature space of

the top leverage scores of rest, we report within-subject similarity

of 0.4492 for rest and sensorimotor and 0.4030 for rest and

movie. Thus, our top features increase dissimilarity across subjects

performing the same task and increase similarity within each

subject, even while performing different tasks.

To show the statistical significance of the feature selection

mechanism, we repeat the process for (a) all available features and

(b) random subsets of features. For random features, we repeated

the random selection process for a million runs and computed

all previously mentioned similarity measures for each run. Our

results, summarized in Tables 1, 2 demonstrate that our results

are indeed statistically significant with a p-value of < 1e − 8.

We have provided the same results separately for each cohort in

Supplementary Tables S1, S2.

In consistence with previous studies, we repeated the exclusion

procedure described by Geerligs et al. (2016), and identified regions

with insufficient coverage. Following their method, we examined

the spatial coverage of each ROI by generating a functional brain

mask for each participant, thresholded at 70% of the mean signal

intensity. ROIs that had less than 50% overlap with the functional

mask in even one subject were excluded from further analysis. This

process led to the exclusion of 35 ROIs, resulting in a final set of 805

regions retained for the Craddock-840 parcellation. On examining

the results obtained from this reduced atlas, we can report that the

results before and after the exclusion procedure are very similar.

We have included a list of excluded ROIs and pairwise similarity

results in Supplementary Tables S3, S4.
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TABLE 1 This table shows the average similarity between pairs of subjects

when they are performing one of the three tasks (Rest, SMT, and Movie).

Task Feature set

All LS Random

Rest 0.2461± 0.0144 0.0466± 0.0107 0.2457± 0.0190

SMT 0.2331± 0.0183 0.0440± 0.0088 0.2329± 0.0217

Movie 0.1450± 0.0222 0.0340± 0.0075 0.1448± 0.0233

In each case, we present results for (a) all features, (b) top 1,000 leverage-score (LS) features,

and (c) randomly selected features. The consistent low similarity for top LS shows that our

feature selection approach ensures high dissimilarity across subjects. Here, we use Pearson

Correlation as a measure of similarity.

TABLE 2 This table shows the average similarity between pairs of FCs

drawn from the same subject performing di�erent tasks.

Task-pairs Feature set

All LS Random

Rest-SMT 0.4576± 0.0202 0.4492± 0.0304 0.4572± 0.0220

Rest-Movie 0.4343± 0.0200 0.4030± 0.0204 0.4340± 0.0221

In each case, we present results for (a) all features, (b) top 1,000 leverage-score (LS) features,

and (c) randomly selected features. When compared to Table 1, the higher PCs for LS features

demonstrate that within-subject similarity is strongly encoded in our top features.

While these results are similar to our earlier results in Ravindra

et al. (2021), we include them for the following reasons. The earlier

results were demonstrated on the HCP young adult dataset. Here,

we show that our procedure is generalizable to a different dataset

with a distinct age range, acquisition protocol, and parcellation

scheme. Further, our following result shows that these feature sets

are stable across age groups. Hence, we must first establish that they

are valid representations of signatures.

3.2 Result 2: individual-specific signature
remains stable across age

In the second phase of our analysis, we evaluate the consistency

of individual-specific signatures across the adult human lifespan

(ages 18–87). We generate vectorized FCs for each Craddock, AAL,

and HOA parcellation to ensure reproducibility.

Subjects were sorted in ascending order by age and partitioned

into non-overlapping cohorts of 50 subjects. As before, each cohort

represents approximately five to eight years of biological age. To

maintain comparability across different parcellations/atlases, we

retain roughly 1.5 percent of the total features for each parcellation

with the most significant leverage scores. This resulted in 7,000

features from 352,380 candidates for Craddock, 100 features from

6,670 candidates for AAL, and 100 features from 6,555 for HOA.

We then calculate the intersection of top features between all pairs

of cohorts. The intersection set’s size measures the features’ stability

as they age. Features consistently present in cohorts across age

groups are individual-specific biomarkers robust to aging.

Figure 1 illustrates the intersections of top features selected

using the leverage score method between non-overlapping

consecutive age groups in the Craddock atlas for three tasks:

Rest, Movie, and SMT. Similar heatmaps for AAL and HOA

atlases are provided in Supplementary Figure S1. Our analysis

reveals consistent patterns across resting-state and task-based fMRI

conditions. In resting-state fMRI, we observe consistent features

with substantial overlap between consecutive sub-cohorts across all

brain atlases. AAL-Rest and HOA-Rest data show approximately

50% shared features, while Craddock-Rest demonstrates an average

of 43% shared features. In Task-based fMRI, Similar patterns

of feature consistency are observed in movie-watching and

sensorimotor task conditions. Figure 2 provides a comprehensive

overview of the average feature overlap across all sub-cohort pairs

for each atlas and fMRI condition. While our analysis primarily

focuses on the stability of individual-specific brain signatures across

ages, we also considered the influence of gender differences. Our

comparison of male and female subjects across the three tasks

(Rest,Movie, and SMT) reveals slight differences in feature stability,

with males generally showing slightly higher stability in the SMT

task than females. However, these differences are not substantial.

The average percentage intersection across age groups is 30.8% for

males and 30.5% for females in Rest, 30.8% for males and 31% for

females inMovie, and 35.3% for males and 32% for females in SMT.

Plots illustrating these gender-based comparisons in the Craddock

parcellation are provided in Supplementary Figure S2.

To assess the statistical significance of these results, we selected

random features as the top features for each cohort and computed

the pairwise intersection as before. We repeated this experiment

for one million trials. This analysis yielded an average overlap

of 1.95%. Thus, the overlaps with leverage-score features are

significant with a p-value< 1e− 6, substantiating the robustness of

our findings.

The observed consistency in feature sets across age groups

provides a foundation for investigating age-related changes.

Specifically, it facilitates the identification of brain regions and

their associated consistent features that are resilient to aging.

To identify these regions, we first extract the common features

across all cohorts using the Craddock atlas. We then calculate

the brain regions corresponding to these features, extract their

coordinates and match them with the AAL atlas. The resulting

regions are Middle Frontal Gyrus, Supplementary Motor Area,

Middle Cingulate, Parahippocampal Gyrus, Inferior Parietal Gyrus,

and Lobules 6-9 of Vermis (Cerebellum). Figure 3 shows the cross-

sectional view of these regions in Craddock parcellation. We

have also included a network visualization of these regions in

Supplementary Figure S3. While these results suggest time-series

signals associated with these regions are relatively resilient to aging,

further study is required to understand why this is indeed the case.

To further validate the age-invariance of the identified stable

features, we performed a statistical analysis of their relationship

with age.We first extracted the shared features across all age cohorts

and conducted a linear regression analysis. The results revealed

that 425 out of 450 shared features (94.4%) showed no significant

association with age after FDR correction (α = 0.001), confirming

their statistical robustness against aging effects. Additionally, we

evaluated whether these stable features could predict chronological

age using a 10-fold cross-validation framework with a linear

regression model. The model trained on the stable features

yielded a mean absolute error (MAE) of 20.22 ± 2.18 years,

indicating poor predictive performance. In contrast, models trained

on 1,000 randomly selected feature sets achieved significantly
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FIGURE 1

These heatmaps show the percentage intersection of top features selected using the leverage score method between age groups in the Craddock

atlas, for three tasks: Rest, Movie, and SMT. Each cell represents the percentage of shared top features between two age groups, with warmer colors

indicating higher overlap. The subjects are divided into non-overlapping subsets of 50 individuals, arranged by age. The diagonal represents 100%

self-intersection. This visualization reveals the consistency of individual-specific neural signatures across di�erent age ranges and cognitive states,

demonstrating how brain connectivity patterns evolve or remain stable throughout adulthood under various task conditions. The average percentage

intersection across age groups is 42.7% for Rest, 40.4% for Movie, and 46% for SMT.

FIGURE 2

This chart shows the average intersection of feature sets between all pairs of age sub-cohorts for each brain atlas (Craddock, AAL, and HOA) and

di�erent tasks (Rest, Movie, and SMT). Each bar indicates the mean overlap of top leverage score-selected features between non-overlapping age

groups, demonstrating the consistency of individual-specific neural signatures across the adult lifespan (ages 18–87). Higher values suggest greater

stability of brain connectivity patterns across di�erent age ranges.

better age prediction performance, with an average MAE of

12.72 ± 0.59 years. These results confirm that the stable features

capture individual-specific patterns that are largely age-resilient,

reinforcing their role as biomarkers of intrinsic brain organization

rather than age-driven change.

Our findings align with research showing that age-related

brain changes vary across regions, with some areas exhibiting

relative stability. Frontal and parietal regions show gradual decline,

while medial temporal structures age more rapidly (Sele et al.,

2020). Despite age-related volume loss in the middle frontal gyrus

(MFG), evidence suggests that compensatory mechanisms help

preserve its functional role (Rajah et al., 2011). Additionally, while

posterior medial temporal regions, such as the parahippocampal

gyrus, are more vulnerable to aging, anterior regions remain

more stable (Hrybouski et al., 2023). These findings support

the idea that some regions retain individual-specific connectivity

patterns, likely due to intrinsic stability and neural adaptation

over time.

These results demonstrate that, while individual-specific brain

signatures remain largely stable across the lifespan, age-related

factors also exist. This balance between consistency and change

provides valuable insight into the neurobiological underpinnings

of cognitive aging, potentially revealing both preserved and altered

brain networks throughout life.
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FIGURE 3

The image shows three di�erent views (coronal, sagittal, and axial) of the brain with regions highlighted in blue. These highlighted areas represent the

stable brain regions identified using the Craddock parcellation, which remained consistent across di�erent age groups. This visualization was created

using Nibabel (Brett et al., 2024).

3.3 Result 3: cross-atlas consistency of
selected functional connectivity features

In the final phase of our analysis, we investigate the consistency

of individual-specific neuroanatomical signatures across the

Craddock, AAL, and HOA atlases. This examination is crucial

for validating the robustness of our findings and assessing the

generalizability of individual brain signatures across different

anatomical parcellations.

We employ the followingmethodology to assess the consistency

of individual-specific neuroanatomical signatures across atlases.

First, we identify regions corresponding to features with the

most significant leverage scores and calculate their frequency

across cohorts. Using the physical coordinates of approximately

the top half of frequent regions,we compute the intersection of

coordinates for pairs of atlases. Finally, we calculate the overlap

coefficient for the top frequent regions in the two atlases using the

following formula:

Overlap (A,B) =
|A ∩ B|

min(|A|, |B|)
(2)

where A and B are the sets of top frequent regions in the two

atlases, this metric modifies the Dice coefficient used by Lawrence

et al. (2021). We found our version more pertinent, as region

sizes vary significantly between fine-grained atlases, such as the

one by Craddock et al., and coarse-grained atlases, such as AAL

and HOA. Craddock’s fine-grained nature likely contributes to

its higher reliability in capturing individual-specific connectivity

features compared to coarser parcellations. In fact, finer-grained

parcellations can better preserve subtle functional variations

that coarser atlases may average out. Liu et al. (2017) showed

that high-resolution parcellations improve the differentiation of

consciousness states during anesthesia, highlighting their ability

to detect finer-scale functional connectivity changes compared

to coarser parcellations. Similarly, Wang et al. (2023) developed

fine-grained cortical parcellation maps for infants, showing

that high-resolution parcellations reveal complex functional

developmental patterns, such as changes in local network efficiency

and connectivity gradients. These findings support using finer

TABLE 3 This table shows the overlap coe�cients between pairs of

coordinate sets representing frequent regions associated with top

features identified by the leverage score method.

Atlas-pairs Tasks

Rest Movie SMT

Craddock-AAL 0.67 0.71 0.71

Craddock-HOA 0.56 0.43 0.55

Comparisons are made between Craddock-AAL and Craddock-HOA atlas pairs. Results are

shown for three tasks: Rest, Movie, and SMT. Higher coefficients indicate greater consistency

in identified regions across atlas pairs, demonstrating the reproducibility of individual-specific

neuroanatomical signatures.

parcellations like the Craddock atlas to identify stable brain

signatures across age groups and tasks.

Given these advantages, our results (Table 3) show that the

overlap between Craddock and AAL regions is 0.67, 0.71, and 0.71

for rest, movie, and SMT states, respectively, while the overlap

between Craddock and HOA regions is 0.56, 0.43, and 0.55. Higher

scores indicate greater agreement between regions corresponding

to top-leverage scores across atlases.

These results demonstrate that the overlap between AAL

and Craddock is consistently higher than between HOA and

Craddock, suggesting greater congruence between these two

atlases. This difference can be attributed to variations in spatial

definitions. While AAL and HOA have nearly the same number

of regions, their alignment with Craddock differs. Specifically,

the percentage of common voxels between Craddock and AAL

(≈90%) is significantly higher than between Craddock and HOA

(≈78%), indicating that Craddock’s fine-grained functional regions

align more closely with AAL’s anatomical subdivisions than with

HOA’s. This greater voxel-level overlap likely explains the observed

discrepancy in overlap scores.

To assess the statistical significance of these results, we

calculated the average overlap for random features, which was

observed to be zero. Our observed overlaps were significantly

higher, with a p-value below< 1e−8, substantiating the robustness

and reliability of our findings.

These results demonstrate the consistency of signatures across

different atlas representations, particularly between Craddock and
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AAL atlases. This consistency suggests that insights derived from

signatures in one atlas also largely apply to other atlases.

4 Discussion

Our study provides significant insights into the stability and

reproducibility of individual-specific brain signatures across the

adult lifespan and different brain atlases.

The key findings of our research lead to several important

conclusions: Our leverage score-based feature selection method

effectively characterizes individual-specific signals across all age

groups, minimizing inter-subject similarity while maximizing

intra-subject consistency across tasks. This approach provides a

robust tool for identifying unique brain connectivity patterns.

We demonstrate the remarkable stability of individual-specific

signatures across the adult lifespan (18–87 years), suggesting

the existence of core neuroanatomical characteristics that remain

stable from early adulthood to old age. This finding is crucial

for establishing a baseline of neural features resilient to normal

aging. Our consistent results across Craddock, AAL, and HOA

parcellations underscore the robustness of these individual-specific

patterns, indicating that the identified features represent genuine

neurobiological phenomena rather than artifacts of a particular

anatomical framework.

The age-resilient features identified in this study have the

potential to serve as reliable biomarkers for distinguishing

normal aging from pathological neurodegeneration. This

could be particularly valuable in the context of the increase

in neurodegenerative diseases in an aging population. Our

findings suggest that components of individual-specific signatures

have age-resilient and age-dependent components. Further,

the characterization of changes in the feature sets across age is

potentially crucial for understanding age-dependent factors.

While this study provides valuable insights into the stability

of individual-specific brain signatures, several limitations must be

acknowledged. One consideration is the use of age cohorts of

equal size, which ensures statistical comparability but does not fully

capture the natural distribution of ages in the population. Although

an alternative grouping based on 5-year cohorts yielded similar

results, future studies on larger datasets may explore more flexible

cohort definitions to further validate our findings. Additionally, our

analysis is limited to healthy subjects, restricting the generalizability

of our results to clinical populations. Investigating whether similar

stability patterns persist in individuals with neurological conditions

or other health-related variability would be an important avenue

for future research. Finally, while our findings suggest that certain

brain regions exhibit stability across age groups, longitudinal

studies are necessary to confirm their consistency over time.

Establishing whether these regions remain functionally stable

across extended periods would provide stronger evidence that they

serve as reliable markers of individual-specific brain signatures.

In conclusion, our study validates a robust methodology for

characterizing individual brain architecture and provides valuable

insights into the stability of these characteristics across adulthood.

These findings contribute to a more nuanced understanding

of brain organization and aging, with potential applications in

research and clinical settings.
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