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Objective: To assess the therapeutic e�ect of tDCS on cognitive function in

patients with Parkinson’s disease.

Methods: From the start of the library’s construction until June 24, 2024,

we searched the following databases for literature: PubMed, Embase, Web of

Science, Cochrane Library, China National Knowledge Infrastructure (CNKI),

Wanfang, China Science and Technology Journal Database (VIP), and China

Biomedical Literature Database (CBM). We also looked through the references

in the articles. The improvement of overall cognition in patients with Parkinson’s

disease with tDCS was the primary outcome indicator. The improvement of

executive function, memory, attention, language, quality of life, and depression

with tDCS were the secondary outcome indicators. Two researchers extracted

data independently, with a third researcher mediating in the event of a dispute.

The Cochrane risk of bias tool was used to evaluate the quality of the

included literature.

Results: A total of 23 articles encompassing 874 subjects were included. tDCS

has shown significant e�cacy on overall cognition (SMD = 0.73, 95% CI = 0.57

to 0.89, I² = 0%, P < 0.00001), particularly in the areas of executive function

(SMD = −0.32, 95% CI = −0.56 to −0.07, I² = 0%, P = 0.01) and language

function (SMD = 0.5, 95% CI = 0.2 to 0.8, I² = 0%, P = 0.001). Furthermore,

the clinical e�cacy of tDCS was enhanced with a stimulation intensity of 2mA

(SMD = 0.76, 95% CI = 0.58 to 0.93, I² = 7%, P < 0.00001), a stimulation duration

of ≥25min (SMD = 0.70, 95% CI = 0.49 to 0.91, I² = 6%, P < 0.00001), and a

minimum of 10 stimulation sessions (SMD = 0.74, 95% CI = 0.56 to 0.92, I² = 0%,

P < 0.00001). Furthermore, tDCS has shown e�cacy in alleviating depressive

mood (SMD = −0.46, 95% CI = −0.79 to −0.13, I² = 0%, P = 0.006).

Conclusion: tDCS demonstrated substantial e�cacy in enhancing overall

cognition in patients with PD. The e�cacy of tDCS was obvious in executive

function, language, and depressive mood. Nonetheless, a substantial quantity of

rigorous clinical trials on tDCS for cognitive function in patients with PD remains

necessary in the future.
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1 Introduction

Parkinson’s disease (PD) is primarily characterized by various

movement disorders, including impairments in ambulation and

balance. As the disease advances, patients also display non-motor

symptoms, such as hyposmia, cognitive decline, and sensory

abnormalities, with cognitive decline being themost prevalent non-

motor symptom (Aarsland et al., 2017). Patients with PD initially

show subjective cognitive decline, which subsequently advances

to moderate cognitive impairment (PD-MCI) and ultimately

progresses to dementia (PDD) (Aarsland et al., 2017, 2021).

About 50% of people diagnosed with PD will develop cognitive

impairment within 6 years of their diagnosis, and projections

indicate that by 2050, there will be 12 million individuals afflicted

with Parkinson’s worldwide, with a prevalence rate in men ∼1.4

times that of women, and this scenario will impose a significant

burden on society and profoundly affect the daily lives of patients,

necessitating the urgent development of effective treatments (GBD,

2018; Chandler et al., 2021). There are a variety of causes of

cognitive impairment in patients with PD, including synaptic

changes, neuronal inflammation, structural changes in the brain,

genetic variants, and aging (Hirsch and Hunot, 2009; Lashuel

et al., 2013; Emre et al., 2014; Lee et al., 2014; Hopfner et al.,

2020; Aarsland et al., 2021). Currently, the major treatment

techniques are medication, but the treatments have side effects

such as dizziness, nausea, vomiting, and so on. Patients may

also acquire a certain degree of drug resistance (Zhang et al.,

2020). Other non-pharmacological treatments, such as routine

cognitive training and physical activity for addressing cognitive

deficiencies in patients with PD, exhibit limited empirical support

and are currently in the process of clinical evaluation (Emre

et al., 2014; Aarsland et al., 2021). Consequently, there are no

definitive and efficacious treatments, and long-term medication

is typically necessary to enhance cognitive deficits in individuals

with PD.

Transcranial direct current stimulation (tDCS) is a non-

invasive technique that administers weak direct current to the

scalp to influence neural activity in the brain. tDCS is noninvasive,

relatively safe, cost-effective, easy to administer, and well tolerated

and is widely used to treat depression, Alzheimer’s disease,

moderate cognitive impairment, and a variety of psychiatric and

neurological disorders (Meinzer et al., 2015; Teselink et al., 2021;

Aust et al., 2022; Woods et al., 2016; Zhao et al., 2017). In

addition, tDCS has shown great potential in enhancing cognitive

functioning, especially executive functioning and memory, in

patients with PD, and in the future, it may become a promising

treatment for cognitive deficits in patients with PD; however,

the efficacy of tDCS is greatly influenced by parameter settings,

including current intensity, stimulation duration, and electrode

placement, which have been subjects of considerable debate and

research focus (Zhao et al., 2017; Lawrence et al., 2018; Aksu

et al., 2022; Ruggiero et al., 2022). Consequently, due to the clinical

significance of tDCS in addressing cognitive deficits in patients with

PD, this study further clarified the effectiveness of tDCS on overall

cognition and various cognitive domains in this population while

also performing subgroup analyses of the stimulus parameters that

affected efficacy.

2 Methods

A comprehensive review and meta-analysis of published

studies was conducted without the need for patient consent

or ethical review (Higgins and Thompson, 2002). This

study strictly adhered to the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines (Moher et al., 2009). This systematic evaluation

protocol is already registered with PROSPERO (reference

number: CRD42024553573).

2.1 Search strategy

We conducted a search in Embase, PubMed, Web of Science,

Cochrane Library, China National Knowledge Infrastructure

(CNKI), Wanfang Database, China Science and Technology

Journal Database (VIP), and China Biomedical Literature Database

(CBM) and additionally examined references. All publications were

published prior to 24 June 2024 with the search phrases “tDCS

OR transcranial direct current stimulation,” “cognitive function

OR cognitive,” and “Parkinson Disease.” Inclusion criteria were

the following: (1) Participants were individuals diagnosed with

PD; (2) tDCS was employed as the intervention; (3) at least one

outcome measure evaluated cognitive function; and (4) the study

was a RCT. Exclusion criteria were the following: (1) The subjects

were not diagnosed with PD; (2) there was no tDCS intervention;

(3) data were unavailable; and (4) the complete text could not

be found.

2.2 Data extraction and outcome measures

We gathered information and data encompassing authors,

publication year, region, disease type, disease duration, age, sex

ratio, subject count, interventions in experimental and control

groups, combined treatments, stimulation intensity, electrode

locations, stimulation sessions, and each outcome measure. Data

extraction was conducted individually by both researchers (WZ

and SM), and disputes were resolved by a third researcher

(XW) when they arose. In the absence of raw data, we utilized

the Java tool GetData Graph Digitizer 2.26 to obtain the data

from graphs. Primary outcome metrics were the efficacy of

tDCS on overall cognition in individuals with PD, and the

efficacy on executive function, memory, attention, language,

depressed mood, and quality of life were used as the secondary

outcome indicators.

2.3 Quality assessment

An independent assessment of the quality of the included

literature was made by two investigators, with a third researcher

intervening solely in cases of unresolved ambiguities. The Cochrane

Risk of Bias Tool was adopted to evaluate literature collected

for risk of bias, encompassing selecting bias, implementing bias,

measuring bias, and following up bias.
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FIGURE 1

Flowchart for the literature retrieval and screening process.

2.4 Statistical analysis

Data were analyzed with Stata 12.0 and Review Manager

version 5.4. The standardized mean difference (SMD) and 95%

confidence interval (CI) were utilized to represent the final

combined effect for continuous outcome indicators with varying

scales, while the mean difference (MD) and 95% CI were employed

for outcome indicators with identical scales (Murad et al., 2019).

A fixed model was employed when the heterogeneity of the

outcome indicators was below 50%, and a random-effects model

and sensitivity analysis were utilized when the heterogeneity was

50% or above. Ultimately, we employed a funnel plot together with

Egger’s test to evaluate publication bias for the primary outcome

indicators and evaluated the degree of evidence for each outcome

indicator utilizing GRADE.

3 Results

3.1 Search results, study characteristics,
and quality assessment

Figure 1 illustrates the literature search and screening strategy

for the current study. 708 publications were obtained after

an exhaustive search, and 23 RCTs were ultimately included,

encompassing 874 patients with PD, comprising 360 females and

514 males. In the experimental group, the intervention was tDCS,

while the control group received sham stimulation or non-tDCS.

Additional detailed information, including combined treatment

modality, stimulation site, treatment duration, evaluation time, and

other fundamental data, is presented in Table 1. Chen et al. (2022),

Wang et al. (2016), Wang et al. (2022) and Zhu (2020) did not

follow the double-blind principle during the intervention, whereas

the remaining papers exhibited high quality (Figure 2).

3.2 E�cacy of tDCS in patients with PD

3.2.1 E�cacy of tDCS on general cognition in
patients with PD

Fourteen papers (Manenti et al., 2016; Swank et al., 2016;

Wang et al., 2016; Lawrence et al., 2018; Li et al., 2018; Manenti

et al., 2018; Sun et al., 2020; Zhu, 2020; Hu et al., 2021; Chen

et al., 2022; Hong et al., 2022; Wang et al., 2022; Simonetta et al.,

2023; Wu et al., 2023) assessed global cognition, and the analysis

revealed a high degree of heterogeneity (Figure 3). Nonetheless,

the heterogeneity diminished to 0% following the elimination of
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TABLE 1 Basic information of the included studies.

References Study
design

Region Disease disease
duration
(year)

Age Intervention
(Exp/Ctr)

n

(EXP/Ctr)
Stimulus
parameter

Stimulus site Evaluation
time after
treatment

(day)

Task/measure (domain)

A C

Hong et al.

(2022)

Parallel China Idiopathic

PD

2.36± 0.79 69.25± 4.10 tDCS/non-tDCS 60 (30/30) 2mA,20 min/session,

1 session/d, 5 d/week

for 2 weeks

L-DLPFC CSA 1 MoCA/points (general cognition)

Sun et al. (2020) Parallel China PD 7.9± 3.4 63.5± 13.5 tDCS/sham 22(11/11) 2mA,20 min/session,

1 session/d, 5 d/week

for 4 weeks

L-DLPFC CSA 1 MoCA/points(General cognition); D2 test of

attention/points (attention)

Wang et al.

(2022)

Parallel China PD NA 64.19± 6.05 tDCS/non-tDCS 85 (43/42) 2mA,25 min/session,

1 session/d, 5 d/week

for 12 weeks

L-DLPFC CSA 1 MoCA/points (general cognition);

SAS/points (depression)

Lawrence et al.

(2018)

Parallel Australia Idiopathic

PD

5.43± 4.76 72.15± 6.08 tDCS/non-tDCS 14(7/7) 1.5mA,20

min/session, 1

session/week for 4

weeks

L-DLPFC CSA 1.84 MMSE/points (general cognition); stroop

test (executive function); paragraph recall

test (memory); PDQ-39/points (QOL)

Lau et al. (2019) Crossover

(WP:14days)

China Idiopathic

PD

7.8± 3.6 62.7± 6.6 tDCS/sham 10 (10/10) 2mA,20 min/session,

once

L-DLPFC CSA 1 VWMk/d
′

(Memory); Go/No Go/RT

(executive function)

Manenti et al.

(2016)

Parallel Italy Idiopathic

PD

7.45± 3.82 69.05± 7.35 tDCS/sham 20 (10/10) 2mA, 25 min/session,

1 session/d, 5 d/week

for 2 weeks

L-DLPFC CSA 1.90 PD-CRS/points (general cognition);

TMT-A/seconds (attention); digit

span/points (memory); TMT-B/seconds

(executive function); SF/points (language);

BDI-II/points (depression); PDQ-39/points

(QOL)

Manenti et al.

(2018)

Parallel Italy PD 6.9± 3.64 64.65± 6.65 tDCS/sham 22 (11/11) 2mA,25 min/session,

1 session/d, 5 d/week

for 2 weeks

L-DLPFC CSA 1.90 PD-CRS/points (general cognition);

TMT-A/seconds (attention); RAVLT,

immediate recall/points (memory); Go/No

Go/RT (executive function); verbal

fluency/points (language); BDI-II/points

(depression); PDQ-39/points (QOL)

Swank et al.

(2016)

Crossover

(WP:7days)

USA Idiopathic

PD

7.9± 7.1 68.7± 10.2 tDCS/sham 10 (10/10) 2mA,20 min/session,

once

L-DLPFC R-

DLPFC

1 TUG cognitive/accuracy (general cognition);

PDQ-39/percentage (QOL)

Ferrucci et al.

(2016)

Repeated

measures

Italy Idiopathic

PD

10.67± 3.16 74.33± 7.89 tDCS/sham 9(9/9) 2mA, 25 min/session,

1 session/d for 5 d

M1 right

deltoid

1 word recall/points (memory); BDI/points

(depression)

Dagan et al.

(2018)

Crossover

(WP:2days)

USA Idiopathic

PD

9.0± 5.7 68.8± 6.8 tDCS/sham 20(20/20) 1.5mA, 20

min/session, once

M1 and

L-DLPFC

NA 1 Stroop test/accuracy (executive function)

Wang et al.

(2016)

Parallel China PD NA 61.5± 2.24 tDCS/non-tDCS 60 (30/30) 1mA,10 min/session,

1 session/d for 10 d

L-DLPFC CSA 1 MoCA/points (general cognition)

Li et al. (2018) Parallel China PD 1.24± 0.56 64.36± 5.49 tDCS/sham 56(28/28) 2mA,20

min/session,1

session/d for 8 weeks

Parietal

and M1

CSA 1 MoCA/points (general cognition)

Hu et al. (2021) Parallel China PD 2.72± 0.96 63.96± 4.99 tDCS/sham 98(49/49) 2mA,25

min/session,1

session/d for 12 weeks

DLPFC CSA 1 MoCA/points (general cognition)

(Continued)
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TABLE 1 (Continued)

References Study
design

Region Disease disease
duration
(year)

Age Intervention
(Exp/Ctr)

n

(EXP/Ctr)
Stimulus
parameter

Stimulus site Evaluation
time after
treatment

(day)

Task/measure (domain)

A C

Chen et al. (2022) Parallel China PD 2.67± 0.35 62.32± 3.15 tDCS/non-tDCS 126(63/63) 2mA,25 min/session,

once

DLPFC CSA 1 MoCA/points (general cognition)

Wu et al. (2023) Parallel China PD 6.76± 2.91 59.4± 7.06 tDCS/non-tDCS 60(30/30) 2mA,20 min/session,

1 session/d,5 d/week

for 4 weeks

L-DLPFC CSA 1 MoCA/points (general cognition)

Zhu (2020) Parallel China PD 3.79± 2.15 77.09± 3.22 tDCS/non-tDCS 70(35/35) 2mA,20 min/session,

2∼3 session/week for

8 weeks

L-DLPFC CSA 1 MoCA/points (general cognition)

Aksu et al. (2022) Parallel Italy idiopathic

PD

4.81± 3.48 65.52± 7.49 tDCS/sham 26(13/13) 2mA, 20 min/session,

once

L-DLPFC R-

DLPFC

1.30 TMT-A/seconds (attention); WMS IR/points

(memory); Stroop test interference

time/seconds (executive function); SF/points

(language)

Bueno et al.

(2019)

Crossover

(WP:7days)

UK Idiopathic

PD

NA 64.45± 8.98 tDCS/sham 20(20/20) 2mA, 20 min/session,

once

L-DLPFC Right

orbital

frontal

cortex

1 TMT-A/seconds (attention); TMT-B,

seconds/(executive function); verbal

fluency/number (language)

Mishra and

Thrasher (2022)

Crossover

(WP:7days)

USA Idiopathic

PD

4.8± 3.8 67.8± 8.3 tDCS/sham 20 (20/20) 2mA, 30 min/session,

once

L-DLPFC CSA 1 Dual task/accuracy (attention)

Elder et al. (2017) Crossover

(WP:1day)

UK PDD 7.39± 2.85 66.63± 8.39 tDCS/sham 38 (38/38) 2.8mA, 20

min/session, once

L-DLPFC Right

deltoid

1 CRT/ms (attention)

Simonetta et al.

(2023)

Crossover

(WP:90days)

Italy Idiopathic

PD

7.9± 3.57 52.3± 4.24 tDCS/sham 10 (10/10) 2mA,20 min/session,

1 session/d for 10 d

L-M1 CSA 1 PD-CRS/points (general cognition);

PDQ-39/points (QOL)

Boggio et al.

(2006)

Repeated

measures

USA Idiopathic

PD

12.7± 8.1 61.0± 12.1 tDCS/sham 9 (9/9) 2mA, 20 min/session,

once

L-DLPFC CSA 1 Three-back/accuracy (memory)

Ruggiero et al.

(2022)

Crossover

(WP:30days)

Italy Idiopathic

PD

13.14± 5.9 64.56± 10.27 tDCS/sham 9 (9/9) 2mA, 20

min/session,1

session/d for 5 d

Cerebellar Right

shoulder

1 SRT/ms (attention)

A, anode; BDI, Beck Depression Inventory; C, cathode; Ctr, control group; CSA, contralateral supraorbital; CRT, choice reaction time; DLPFC, dorsolateral prefrontal cortex; Exp, experimental group; MoCA, The Montreal Cognitive Assessment; MMSE, Minimum

Mental State Examination; NA, no answer; PD-CRS, Parkinson’s Disease-Cognitive Rating Scale; QOL, Quality of Life; RAVLT, Rey Auditory Verbal Learning test; RT, reaction time; SAS, Self-Rating Anxiety Scale; SF, semantic fluency; TMT, Trail Making Test; WMS,

Wechsler Memory Scale; WP, washout period.
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FIGURE 2

Risk of bias summary of the included RCTs.

Wang et al. (2022). Consequently, we omitted this article, and it was

postulated that its significant variability may be attributed to the

combination treatment, stimulus intensity, or stimulus duration.

The final results demonstrated substantial immediate efficacy of

tDCS on overall cognition (SMD = 0.73, 95% CI = 0.57 to 0.89,

I²= 0%, P < 0.00001) (Figure 4).

Furthermore, we conducted subgroup analysis of the results

to investigate factors affecting efficacy. The final results indicated

that tDCS with high stimulation intensity (2mA) (SMD = 0.76,

95% CI = 0.58 to 0.93, I² = 7%, P < 0.00001) demonstrated

greater efficacy than tDCS with low stimulation intensity (<2mA)

(SMD = 0.54, 95% CI = 0.08 to 1.01, I² = 0%, P = 0.02)

(Figure 5); tDCS with a longer stimulation duration (≥25min)

(SMD = 0.78, 95% CI = 0.53 to 1.03, I² = 4%, P < 0.00001)

was more effective than tDCS with short stimulation duration

(<25min) (SMD = 0.70, 95% CI = 0.49 to 0.91, I² = 6%, P

< 0.00001) (Figure 6); and the efficacy of tDCS with multiple

sessions (≥10 sessions) was significant (SMD = 0.74, 95% CI

= 0.56 to 0.92, I² = 0%, P < 0.00001), whereas the efficacy

of tDCS with fewer sessions (<10 sessions) was not obvious

(SMD = 0.47, 95% CI = −0.38 to 1.32, I² = 70%, P = 0.28)

(Figure 7).

3.2.2 E�cacy of tDCS on specific cognitive
domains in patients with PD

We evaluated the effectiveness of tDCS on particular cognitive

domains, namely, executive function, language, attention, and

memory, in individuals with PD.

Seven articles (Manenti et al., 2016; Dagan et al., 2018;

Lawrence et al., 2018; Manenti et al., 2018; Bueno et al., 2019;

Lau et al., 2019; Aksu et al., 2022) evaluated executive function

and demonstrated that tDCS had a significant immediate effect

on executive function in patients with PD (SMD = −0.32, 95%

CI = −0.62 to −0.03, I² = 0%, P = 0.03), whereas its long–term

effect was insignificant (SMD = −0.30, 95% CI = −0.74 to 0.14,

I² = 0%, P = 0.18) (Figure 8). Four articles (Manenti et al., 2016,

2018; Bueno et al., 2019; Aksu et al., 2022) evaluated language

function and demonstrated that tDCS significantly improved

language function in patients with PD, exhibiting both immediate

(SMD = 0.48, 95% CI = 0.09 to 0.86, I² = 0%, P = 0.01)

and long–term efficacy (SMD = 0.53, 95% CI = 0.04 to 1.01,

I² = 0%, P = 0.03) (Figure 9). Eight articles (Manenti et al.,

2016; Elder et al., 2017; Manenti et al., 2018; Bueno et al.,

2019; Sun et al., 2020; Aksu et al., 2022; Mishra and Thrasher,

2022; Ruggiero et al., 2022) evaluated attention and revealed no

significant enhancement in attentional function among patients

with PD receiving tDCS (SMD = 0.27, 95% Cl = −0.33 to 0.86,

I2 = 80%, P=0.38) (Figure 10). Additionally, seven articles (Boggio

et al., 2006; Ferrucci et al., 2016; Manenti et al., 2016; Lawrence

et al., 2018; Manenti et al., 2018; Lau et al., 2019; Aksu et al., 2022)

examined memory function, revealing no apparent improvements

(SMD = 0.48, 95% CI = −0.05 to 1.01, I2 = 55%, P = 0.07)

(Figure 11).

3.2.3 E�cacy of tDCS on depressed mood and
quality of life in patients with PD

Four articles (Ferrucci et al., 2016; Manenti et al., 2016, 2018;

Wang et al., 2022) evaluated depressive mood, revealing that tDCS

exerted a significant immediate effect on it (SMD = −0.46, 95%
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FIGURE 3

Forest plot of e�cacy of tDCS on overall cognition before elimination.

FIGURE 4

Forest plot of e�cacy of tDCS on overall cognition after elimination.

CI = −0.79 to −0.13, I2 = 0%, P = 0.006) (Figure 12). Five

articles (Manenti et al., 2016; Swank et al., 2016; Lawrence et al.,

2018; Manenti et al., 2018; Simonetta et al., 2023) involved the

assessment of quality of life, but the results showed that tDCS had

no ameliorative effect on it (SMD = 0.01, 95% CI = −0.39 to 0.42,

I2 = 0%, P= 0.95) (Figure 13).

3.3 Publication bias and sensitivity analysis

We demonstrated that no publication bias existed for the

primary outcome indicator by Egger’s test (P = 0.112) and

funnel plot (Figure 14). We performed sensitivity analyses of

the primary outcomes using a piece-by-piece culling method,

where a study was removed each time and a new meta-analysis

was performed separately, which showed no change in the

effect sizes.

3.4 GRADE quality evaluation results of this
study

The evidence level for each outcome indicator was assessed

using GRADE software, yielding the following results: (1) the

quality rating for the efficacy of tDCS on overall cognition

in patients with PD was high; (2) the quality rating for

the efficacy of tDCS on language, executive functioning,

memory, attention, quality of life, and depressive mood

was moderate.

4 Discussion

The following is the interpretation of the results of the data

analysis: (1) tDCS has a very significant efficacy in enhancing

the general cognition of patients with PD, corroborating findings
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FIGURE 5

Forest plot of tDCS on overall cognition in patients with Parkinson’s disease according to the subgroups of tDCS intensity.

FIGURE 6

Forest plot of tDCS on overall cognition in patients with Parkinson’s disease according to the subgroups of tDCS duration.

from previous clinical research (Lawrence et al., 2018), and

indicating that tDCS may serve as a promising therapeutic

intervention for cognitive deficiencies in this population.

Furthermore, a stimulation intensity of 2mA proved to be more

effective, aligning with the clinical findings of Boggio et al.

(2006). Additionally, the clinical efficacy of tDCS is enhanced
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FIGURE 7

Forest plot of tDCS on overall cognition in patients with Parkinson’s disease according to the subgroups of tDCS session.

FIGURE 8

Forest plot of the e�cacy of tDCS on executive function.

with a stimulation duration of ≥25min, and the stimulation

sessions of ≥10 sessions are also better, thereby optimizing

the stimulation parameters of tDCS; (2) tDCS demonstrates a

significant enhancement in executive and language functions.

Executive dysfunction is a cognitive domain that manifests

early in patients with PD and significantly contributes to

cognitive deficits (Muslimovic et al., 2005; Kudlicka et al.,

2011); thus, the enhancement of executive function with tDCS

indicates substantial potential for treating early cognitive

impairments in this population; (3) tDCS improves depressive
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FIGURE 9

Forest plot of the e�cacy of tDCS on language.

FIGURE 10

Forest plot of the e�cacy of tDCS on attention.

symptoms in patients with PD, suggesting it may be a primary

therapy option for those experiencing depressive mood and

cognitive deficits.

There are several main mechanisms by which tDCS improves

cognitive deficits in patients with PD, and these therapeutic

mechanisms are interconnected and interact with each other. To

begin with, tDCS modulates cortical excitability and improves

activity in cortical areas associated with cognitive function, thereby

improving cognitive function in patients with PD. Anodic tDCS

depolarizes the membrane potential of neurons in its area of

action, lowering their excitatory threshold, making them more

easily activated, and increasing neuronal excitability, whereas

cathodic tDCS hyperpolarizes the membrane potential of neurons

in its area of action, raising their excitatory threshold, making

them difficult to activate, and reducing neuronal excitability

(Nitsche and Paulus, 2000; Liebetanz et al., 2002). Boggio et al.

demonstrated that tDCS in the left dorsolateral prefrontal cortex

improved working memory function in patients with PD, and

they suggested that this was due to anodic tDCS inducing

neuronal depolarization in the left dorsolateral prefrontal cortex,
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FIGURE 11

Forest plot of the e�cacy of tDCS on memory.

FIGURE 12

Forest plot of the e�cacy of tDCS on depression.

FIGURE 13

Forest plot of the e�cacy of tDCS on quality of life.

which caused an increase in regional cortical excitability (Boggio

et al., 2006). Bueno et al. (2019) similarly used anodic tDCS

to increase excitability in the left dorsolateral prefrontal cortex

of patients with PD, ultimately improving verbal fluency and

executive function. tDCS also modulates neuroplasticity and has

both immediate and long-term effects on cognitive function in

patients with PD. The immediate effect is due to the fact that

anodic tDCS increases neuronal excitability and neuronal firing

rate, which in turn increases the efficiency of synaptic transmission

(Reis et al., 2009). Doruk et al. (2014) demonstrated that tDCS

Frontiers in AgingNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1495492
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Ma et al. 10.3389/fnagi.2025.1495492

FIGURE 14

Funnel plot of the e�cacy of tDCS on overall cognition.

has a long-term effect on executive function in patients with

PD, which is consistent with the findings of the current meta-

analysis. This is because anodic tDCS depolarises the neuronal

membrane potential increasing the influx of Ca2+ and Mg2+,

activating the N-methyl-D-aspartate receptor (NMDAR) channels,

increasing the postsynaptic concentration of Ca2+ to promote

the expression of post-synaptic densities of proteins (PSDs) and

increasing the activity at glutamatergic synapses, which then

promotes the formation of LTP, while cathodal tDCS promotes

LTD production by reducing cortical excitability and presynaptic

neurotransmitter release, in addition, LTP and LTD are the

basis of neuroplasticity, LTP strengthens synaptic connectivity

and LTD weakens unwanted synaptic connectivity, and together

they participate in the adjustment and optimisation of neural

networks, and the balance between them is very important for

normal learning and memory processes (Bliss and Collingridge,

1993; Bear and Malenka, 1994; Malenka and Nicoll, 1999; Citri

and Malenka, 2008; Doruk et al., 2014; Manenti et al., 2016).

Moreover, neurotransmitter release may be impacted by tDCS.

Research has demonstrated that patients with PD often have a loss

of dopaminergic neurons and that this loss leads to over activity

of the glutamatergic system, which in turn may lead to neurotoxic

damage to other neurons in the brain and ultimately to cognitive

dysfunction (Akcay and Tamerer, 2023). Stagg et al. (2009) found

that anodic tDCS prevented the formation of γ-aminobutyric

acid (GABA), while cathodic tDCS inhibited the generation of

glutamate, using magnetic resonance spectroscopy (MRS). It has

been shown that anodic tDCS increases excitatory neuronal activity

and thus leads to a decrease in GAD-67, which is a key enzyme in

the promotion of GABA synthesis, ultimately leading to a decrease

in GABA concentration, while cathodic tDCS decreases neuronal

activity, resulting in lower enzyme activity and ultimately lower

glutamate concentrations (Levy et al., 2002; Floyer-Lea et al., 2006;

Stagg et al., 2009). Nonetheless, there is still not enough clinical

research that clearly shows how tDCS precisely and directly affects

GABA and glutamate to enhance cognitive function in patients

with PD. Further research needs to explore these mechanisms

in greater depth to provide more definitive evidence. Pereira

et al. (2013) found that the use of tDCS acting on the left

dorsolateral prefrontal cortex significantly increased the functional

connectivity of the relevant brain networks, which ultimately led to

a significant improvement in verbal fluency in patients with PD,

which is consistent with the present study’s findings and further

supports the view that tDCS can alter the cortical excitability of

different regions and enhance the functional connectivity between

these regions, which can lead to improved efficiency of the

brain networks for information processing and ultimately improve

cognitive function in patients with PD. However, further studies

are required to verify and explain in detail the specific effects

and action mechanisms of tDCS on cognitive function in patients

with PD.

There have been published meta-analyses discussing the

efficacy of tDCS on cognitive performance in individuals with

PD. One of the meta-analyses concluded that tDCS seems to

have a role in improving cognitive performance in individuals

with PD. In this meta-analysis, the composite effect size of the

overall cognitive scores indicated that tDCS did not have an effect

on cognition, but one of the subgroup MoCA scores indicated

that tDCS was effective in improving cognitive performance in

individuals with PD (Liu et al., 2021). Two other meta-analyses

also showed that tDCS did not improve cognitive function in

patients with PD (Suarez-Garcia et al., 2020; Duan and Zhang,
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2024). Unlike them, the network meta-analyses published by Lee

et al. (2024) and Wang et al. (2024) were consistent with the

results of the present study, namely that tDCS has favorable clinical

effects on cognitive function in patients with PD. However, the

number of studies included in these published meta-analyses is

limited. This study is a larger study because of the large number

of articles included. In addition, the included studies were all

RCTs, so the quality of the evidence in this study was high.

At the same time, we discussed the comprehensive analysis of

tDCS on different cognitive domains such as attention, memory,

execution, and language in patients with PD, and we also conducted

a subgroup analysis of the efficacy of tDCS on the overall cognition

of patients with PD, and explored the parameters that affect the

efficacy, such as stimulation intensity, duration, and frequency.

This study still has some limitations because most recent clinical

trials have examined the short-term effectiveness of tDCS on

cognitive impairment in patients with PD without evaluating the

treatment’s long-term effectiveness. As a result, this study primarily

examined the immediate effectiveness of tDCS on improving

cognitive function in patients with PD. In addition, in our meta-

analysis, the varying durations of sham stimulation across studies

may have influenced themagnitude of the placebo effect, potentially

contributing to heterogeneity in control group outcomes. This

is because longer durations of sham stimulation could enhance

participants’ expectations, thereby amplifying placebo responses.

Future studies should aim to standardize the duration of sham

stimulation to ensure consistent treatment conditions in control

and experimental groups.

5 Conclusion

In addition to enhancing depressive symptoms, tDCS

is effective in treating cognitive impairment in patients

with PD, particularly in language, executive function, and

general cognition. However, this study only demonstrated

the immediate effect of tDCS, so more high-quality

clinical studies are needed in the future to explore their

long-term efficacy.
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