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Extreme signal amplitude events 
in neuromagnetic oscillations 
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Introduction: Neurophysiological activity, as noninvasively captured by electro- 
and magnetoencephalography (EEG and MEG), demonstrates complex temporal 
fluctuations approximated by typical variations around the mean values and rare 
events with large amplitude. The statistical properties of these extreme and rare events 
in neurodynamics may reflect the limits or capacity of the brain as a complex system 
in information processing. However, the exact role of these extreme neurodynamic 
events in ageing, and their spectral and spatial patterns remain elusive. Our study 
hypothesized that ageing would be associated with frequency specific alterations 
in the brain’s tendency to synchronize large ensembles of neurons and to produce 
extreme events.

Methods: To identify spatio-spectral patterns of these age-related changes 
in extreme neurodynamics, we examined resting-state MEG recordings from 
a large cohort of adults (n = 645), aged 18 to 89. We characterized extreme 
neurodynamics by computing sample skewness and kurtosis, and used Partial 
Least Squares to test for differences across age groups.

Results: Our findings revealed that each canonical frequency, from theta to lower 
gamma, displayed unique spatial patterns of either age-related increases, decreases, 
or both in the brain’s tendency to produce extreme neuromagnetic events.

Discussion: Our study introduces a novel neuroimaging framework for 
understanding ageing through the extreme and rare events of the neurophysiological 
activity, offering more sensitivity than typical comparative approaches.
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Introduction

Recordings of electromagnetic fields from the human brain are widely used to study 
neurophysiological processes and their characterize functional changes across typical and 
clinical mental states. Non-invasive techniques, such as electroencephalography (EEG) and 
magnetoencephalography (MEG), are commonly employed to capture these recordings. These 
methods predominantly measure the integrated activity of post-synaptic and transmembrane 
currents generated by thousands of neurons (Lopes da Silva, 2013). Historically, EEG and 
MEG recordings have been interpreted primarily as reflecting rhythmic brain activity, 
commonly referred to as neural oscillations (Buzsáki and Draguhn, 2004).

EEG and MEG studies have traditionally compared properties of neural oscillatory across 
experimental groups or conditions by analyzing metrics averaged over a fixed recording 
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period. However, this approach may overlook key aspects of temporal 
variability, in particular, rare events with extreme values near the 
maximum. Empirical evidence indicates that many brain parameters, 
such as firing rates or synapse counts, follow skewed distributions 
(Buzsáki and Mizuseki, 2014). This pattern extends to both functional 
and anatomical features of the brain across multiple hierarchical levels 
(Buzsáki and Mizuseki, 2014; Roberts et al., 2015).

Skewed distributions suggest that single representative values, 
such as the mean or median, fail to capture the full range of temporal 
variability in brain activity (Limpert and Stahel, 2011). For instance, 
no single “average” neuron exists in a population because the minority 
of fast-firing neurons disproportionately influences the group’s mean 
firing rate. Similarly, neuronal ensemble sizes cannot be accurately 
described by an average value, as their distribution often follows, if not 
a pure power law, then at least a hybrid distribution combining 
power-law scaling and exponential decay (Dehghani et  al., 2012). 
These findings underscore the need to account for the heavy-tailed 
nature of brain activity distributions when analyzing neural dynamics.

Multiple studies have demonstrated associations between temporal 
variability in neurophysiological signals and various cognitive, behavioral, 
and sensory processes (Basalyga and Salinas, 2006; McIntosh et al., 2008; 
Pinneo, 1966). Signal variability have been proposed as an indicator of 
effective and optimal performance (Faisal et al., 2008). However, despite 
the substantial body of research in this area, many studies continue to rely 
on traditional averaging approaches to analyze neurophysiological data 
(Garrett et al., 2013). These approaches present significant limitations as 
they fail to account for the inherently skewed distributions that 
characterize the variability of parameters governing the behavior of the 
underlying dynamical systems.

There is no consensus on which temporal properties of neural 
activity are most sensitive to variations in mental states (Cohen, 2017). 
Several theoretical frameworks have been proposed to capture 
different aspects of temporal dynamics. Key concepts in this literature 
include brain microstates (Musso et al., 2010), neuronal avalanches 
(Beggs and Plenz, 2003), and metastability (Tognoli and Kelso, 2014). 
Brain microstates are defined as brief periods of quasi-stable brain 
activity, thought to result from the coordinated activation of neural 
ensembles within specific networks (Vakorin et al., 2013). The theory 
of neuronal avalanches describes neurophysiological activity as 
cascades of bursts, supported by neural networks of varying sizes 
(Plenz and Thiagarajan, 2007). Finally, metastability characterizes a 
sequence of relatively stable states in a complex dynamical system. 
These states emerge from interactions among multiple parameters 
within the system’s phase space (Naik et al., 2017). Metastability offers 
a theoretical framework for understanding the balance between the 
brain’s stable activity patterns and its transient dynamics (Deco and 
Kringelbach, 2016).

These frameworks have been adapted to characterize age-related 
changes in temporal properties of neural oscillations in the typical 
brain across the lifespan (Kahana, 2006). Using the concept of 
microstates, Vakorin et al. (2013) explored age-related changes across 
early adolescence in resting-state EEG dynamics in eyes open and 
closed conditions under the framework of microstates. They showed 
that the number of microstates increased with age, whereas their 
average durations decreased. Similarly, Brookes et al. (2018) reported 
that when the number of microstates are held constant, the mean time 
spent in each state increased with age, spanning mid-childhood to 
early adulthood. Other studies have focused on the relationships 
between neurodynamic events and ageing. For rexample, Fosque et al. 

(2022) analyzed age-related changes in neural avalanche properties in 
adults across a wide age range.

Also, the concept of brain metastability has been used to quantify 
the signal complexity of neural oscillations. Signal complexity reflects 
the amount of information in neural signals, representing the 
collective activity of neuronal ensembles (Deco et al., 2017). Lippe 
et  al. (2009) observed age-related increases in the complexity of 
resting-state EEG signals across infants and children. They also 
examined the relationship between maturation and signal complexity 
during a rapid face recognition task in children and young adults, 
reporting increased complexity with age.

In this study, we aimed to investigate extreme neural dynamics, 
characterized by the tails of skewed distributions of brain parameters, 
using skewness and kurtosis. Skewness quantifies the asymmetry of a 
probability distribution, while kurtosis measures the extremity of the 
tails without reflecting the shape of the central peak (Westfall, 2014). 
Both metrics capture properties of the signal tails, which may indicate 
periods of intense cognitive processing or heightened attention, as well 
as potential markers of cognitive impairment or neural dysfunction 
(Buzsáki and Mizuseki, 2014).

The tails of skewed distributions likely reflect moments of long-range 
synchronized neural activity, a process believed to play a critical role in 
both cognitive function and pathological conditions (Meijer et al., 2020; 
Nowak et al., 2017). Heightened synchronization during these moments 
may optimize neural processing but can also lead to pathological 
outcomes, such as seizures, when excessive (Jiruska et al., 2013). For 
example, several studies have examined extreme values in cortical 
oscillations under clinical conditions such as epilepsy, demonstrating their 
utility in facilitating seizure detection from EEG recordings (Xiang et al., 
2020; Karpov et al., 2022). Other studies have identified differences in 
signal power distributions under varying conditions, such as the 
transitions between eyes-open and eyes-closed states, emphasizing the 
relevance of extreme values in characterizing the temporal variability of 
neurophysiological recordings (Mišić et al., 2011).

Statistical properties of distribution tails, such as skewness and 
kurtosis, provide practical insights into cognitive and clinical states. 
Skewness has proven effective in distinguishing cognitive states, such 
as meditation, mathematical problem-solving, and open-eye 
conditions, highlighting its potential for cognitive state monitoring 
(Joshua Davis et  al., 2020). Similarly, kurtosis has demonstrated 
clinical relevance in multiple domains. In pediatric epilepsy, high-
frequency brain signals exhibit significantly elevated kurtosis in 
patients compared to controls, particularly in epileptogenic zones 
(Xiang et  al., 2020). This makes kurtosis a useful biomarker for 
identifying seizure onset regions and guiding clinical interventions. 
Also, kurtosis-based methods have been developed for detecting high-
frequency oscillations in intracranial EEG, which are critical for 
localizing seizure onset zones in epilepsy patients (Quitadamo 
et al., 2018).

Kurtosis has also been implicated in neurodegenerative disorders. 
EEG studies in Alzheimer’s patients reveal higher kurtosis values 
compared to controls, leading to the development of kurtosis-based 
denoising techniques that enhance diagnostic accuracy (Liu et al., 
2015). Furthermore, brain-computer interface (BCI) research has 
used kurtosis to classify motor imagery tasks in EEG data, achieving 
high accuracy in distinguishing between imagined left- and right-
hand movements (Wu and Ye, 2006).

Empirical evidence on age-related changes in the maximal 
capacities of neurophysiological parameters remains limited, 
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particularly when examined across the lifespan. In this study, 
we aimed to investigate brain ageing by focusing on extreme events in 
neurodynamics across adulthood, spanning young to elderly adults. 
We hypothesized that ageing would be associated with frequency-
specific trajectories in the brain’s capacity to generate extreme 
neurodynamic events.

To quantify these age-related changes, we analyzed resting-state 
magnetoencephalography (MEG) recordings from the Cam-CAN 
repository (Shafto et al., 2014). Our analysis focused on frequency-
specific temporal variations in MEG amplitude, assessing their 
statistical properties through the metrics of skewness and kurtosis. 
These metrics characterized the tails of the amplitude distributions, 
capturing extreme dynamics in brain activity. We then examined how 
these parameters evolved with age, identifying spatio-spectral 
patterns of age-related trajectories in extreme neurodynamics 
throughout adulthood.

Methods

Participants

We analyzed MEG data from the Cambridge Centre for 
Ageing and Neuroscience (Cam-CAN) Stage 2 cohort study 
(Shafto et  al., 2014), which is a cross-sectional, multimodal, 
population-based adult lifespan (18–89 years old) investigation. 
The Cambridgeshire 2 Research Ethics Committee approved the 
Cam-CAN study which was conducted in compliance with the 
Helsinki Declaration. For secondary use of the Cam-CAN data, 
we  obtained ethical approval from the Research Ethics Board 
(REB) at Simon Fraser University. We analyzed data from 646 
healthy aging adults (see Shafto et  al., 2014, for details on the 
inclusion and exclusion criteria). Participants were ranked 
according to their age and grouped into five age categories without 
an overlap, based on age percentiles, with 20% of participants in 
each group (19–36, 36–48, 48–61, 61–74, 74–89). The number of 
participants in the five age groups from young to elderly adults 
was 128 (69 females), 130 (60 females), 129 (65 females), 129 (60 
females), and 130 (65 females).

MEG data acquisition

The resting-state MEG data were collected as part of the 
CamCAN study (see Shafto et  al., 2014; Taylor et  al., 2017 for 
details on the study protocol and data acquisition). MEG was 
recorded with a 306-channel Elekta Neuromag MEG scanner (102 
magnetometers and 204 planar gradiometers). During the MEG 
recording session, participants were asked to lie still and remain 
awake with their eyes closed for approximately 8–9 min. The 
recordings were sampled at 1 kHz, with a high-pass filter of 
0.03 Hz. We  analyzed minimally-preprocessed MEG from the 
Cam-CAN Release 005. These recordings were processed by the 
Cam-CAN team applying the MaxFilter 2.2.12 software (Elekta 
Neuromag Oy, Helsinki, Finland) without movement 
compensation. More specifically, a MaxFilter was applied to the 
continuous MEG data to remove noise from external sources 
(correlation threshold 0.98, 10-s sliding window) with temporal 

signal space separation (tSSS, Taulu and Simola, 2006), to remove 
mains-frequency noise (50-Hz notch filter), and to detect and 
reconstruct noisy channels.

Neuromagnetic amplitude distributions

We analyzed the temporal variability in MEG signal fluctuations 
at five frequencies each assigned to one of five canonical frequency 
bands: 2 Hz (delta), 6 Hz (theta), 10.5 Hz (alpha), 22 Hz (beta), and 
39 Hz (lower gamma). We  analyzed data recorded by the MEG 
gradiometers only. We selected 11 non-overlapping segments for each 
participant, with each segment being 30 s long.

We processed each segment of the MEG time series by 
normalizing the signal to have a mean amplitude of zero and a 
standard deviation of one. We applied time-frequency decomposition 
to reconstruct frequency-specific MEG oscillations at five frequency 
points. Specifically, we  used a complex Gaussian wavelet 
transformation of the eighth order, as described by Lee et al. (2019). 
This transformation allows for capturing a broader range of 
frequencies around each central frequency, enabling a more 
continuous scaling of the band-pass-filtered spectrum of neural 
activity within each canonical frequency band.

At each frequency and time point, we calculated the absolute value 
of the reconstructed analytic signal to evaluate fluctuations in the 
instantaneous amplitude of frequency-specific oscillations. To 
investigate the variability in signal amplitude across time, we derived 
empirical probability distributions that represent temporal variability 
in the neuromagnetic signal. Specifically, each 30-s time series was 
converted into an empirical distribution, where each time point 
corresponded to a single realization. From these distributions, 
we computed sample skewness and kurtosis.The skewness reflected a 
degree of asymmetry of distributions, whereas the kurtosis reflected a 
tendency to generate outliers (Westfall, 2014). Finally, for each 
participant, channel, and frequency, we  averaged skewness and 
kurtosis values across segments by considering their median values. 
As a result of this procedure, each participant was associated with two 
arrays (one for skewness and one for kurtosis), representing the 
tailedness of the distributions of MEG signal across time: 204 MEG 
channels times five frequencies.

Group analysis

For each of 11 MEG segments extracted from a channel, 
we calculated two characteristics, skewness and kurtosis (we used 
Fisher’s definition where a normal distribution has kurtosis = 0), of 
the corresponding power probability distribution. The median values 
of the characteristics across the eleven segments were used for 
further analysis.

Differences across five age groups were explored separately for 
skewness and kurtosis, and separately for each frequency. Figures 1, 2 
show the kurtosis and skewness values, respectively, across age groups, 
for each frequency. To test for differences in the skewness and kurtosis 
across age groups, we applied a multivariate analysis known in the 
neuroimaging and neurophysiology literature as Partial Least Squares 
(PLS). Specifically, we  applied Mean-Centered PLS, wherein the 
overall group differences were tested without specifying a priori 
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contrast (model) across the age groups (Krishnan et  al., 2011; 
McIntosh and Lobaugh, 2004).

PLS considers all the data at once: all MEG features (the estimates 
of skewness or kurtosis for all MEG channels) and all five age groups. 
Mean-Centered PLS decomposes the covariance between the MEG 
data and dummy variables encoding five age groups with Singular 
Value Decomposition (SVD) into a set of latent variables (LV), similar 
to Principal Component Analysis. Each LV is associated with: (i) a 
vector of overall group contrast (a 5-dimensional vector in our case), 
(ii) a vector representing a contribution of each feature (MEG channel) 
to the identified group contrast, and (iii) a diagonal element of the 
middle matrix of SVD, which can used to quantify the variance 
explianed by a given LV. The significance of each group contrast is 
tested with a permutation test, based on the permutation of 
participants across the groups. This may be viewed as a global test, as 
the permutation test generates one p-value for one overall group 
contrast representing differences across the age groups across all 
features (MEG channels) at once. The robustness of the contribution 
of each feature is tested with a bootstrap test, based on resampling the 
participants with replacement within the groups.

We used 10′000 samples in the permutation and bootstrap 
tests. We considered the first LV, with the largest variance explained. 

As a result of this procedure, each PLS analysis was associated with: 
(i) an overall group contrast; (ii) the corresponding p-value; and 
(iii) a set of bootstrap ratio values (for each MEG channel), 
representing the robustness of contribution of each channel to the 
overall group contrast. The bootstrap ratio values are equivalent to 
z-scores. In our study, we used these terms interchangeably. For 
visualization purposes, z-scores were further averaged across MEG 
gradiometers from the same MEG sensor triplets. The spatial 
distributions of z-scores were visualized as topographic plots with 
the function plot_topomap from the MNE-python library 
(Gramfort et  al., 2014). To visualize both negative and positive 
z-scores on the same plot, only for visualization purposes, 
we plotted the resulting z-scores as magnetometers, as the plot_
topomap function applies the root mean square for a pair 
of gradiometers.

Note that large in magnitude z-scores reflect the most robust 
effect. In general, z-scores can be  positive and negative. Positive 
z-scores directly support the overall group contrast. Negative z-scores 
can also support the contrast, but inversely. In case of negative 
z-scores, to interpret the directionality of the effects represented by the 
group contrast for the negative z-scores, we have to invert (multiply 
by −1) the contrast.

FIGURE 1

Changes in the kurtosis of the temporal variability of MEG signal across five age groups at 5 frequencies. The median kurtosis across eleven 30 s 
segments of temporal variability were averaged across subjects and plotted seperately for each age group and each frequency.
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Results

We performed 10 group analyses with PLS (five frequencies times 
two MEG measures), reporting the data-driven overall group contrasts 
with the largest variance explained. The group contrast was significant at 
all frequencies except for the kurtosis measure at lower gamma oscillations.

Alpha rhythms

Figure 3 shows the patterns of age-related changes in the kurtosis 
and skewness in temporal variability of alpha oscillations at 10.5 Hz. 
In general, these patterns are qualitatively and quantitatively similar. 
Specifically, Figures 3A,D illustrate the data-driven overall contrast 
across the five age groups for kurtosis and skewness, respectively. In 
both cases, the contrasts are found to be significant with p < 0.001. 
Both contrasts represent a trend of monotonic changes across the five 
age groups. The corresponding distributions of z-scores, each 
associated with one MEG channel, are shown in 31B and 3E, 
respectively. Note that these distributions are skewed toward positive 
values. This implies that, on average, the kurtosis and skewness of 
neuromagnetic signals’ temporal variability increase with age.

While the group contrast demonstrates the overall group 
differences, z-scores represent the robustness of the identified contrast 
across individual features (MEG channels). Figure 3C illustrates the 
same distribution of z-scores as shown in Figure  3B, only as a 
topographic map. Similarly, the distribution in Figure 3E is shown as 
a topographic map in Figure 3F. The largest positive z-scores, which 
are shown in dark red in Figures 3C,F, reflect the most robust effects 
across MEG channels. These effects are clustered around 
temporoparietal regions across both hemispheres.

Delta rhythms

Similar to Figures 3, 4 shows the patterns of age-related changes 
in temporal variability of neurodynamics for delta oscillations at 2 Hz. 
Figures 4A,D illustrate the overall data-driven contrasts across the five 
age groups for kurtosis and skewness, respectively. In both cases, the 
contrast was found significant with p < 0.001. The corresponding 
distributions of z-scores, each associated with one MEG channel, are 
shown in Figures  4B,E, respectively. As z-scores are all positive, 
we  interpret the group contrasts directly. Specifically, the group 
contrasts describe age-related changes as an inverted U-function. 

FIGURE 2

Changes in the skewness of the temporal variability of MEG signal across five age groups at 5 frequencies. The median skewness across eleven 30 s 
segments of temporal variability were averaged across subjects and plotted seperately for each age group and each frequency.
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More specifically, the kurtosis (Figure 4A) or skewness (Figure 4D) of 
neurodynamics’s temporal variability first increases with age across 
the first four groups from 19 to 36 to 61–74 years old (y.o.), reaching 
a peak around 61–74 y.o., and subsequently going down for the elderly 
group (74–89 y.o). The topographic maps of positive z-scores in 
Figures  4C,F illustrate how the most robust effects are expressed 
across MEG channels. These effects are supported by clusters of MEG 
channels centered around frontal and temporal regions.

Theta and beta rhythms

Similar to Figures 3–5 shows age-related patterns in the kurtosis 
and skewness of the distributions of MEG signal power across time 
for the theta oscillations at 6 Hz. The overall differences across age 
groups, as illustrated by the data-driven group contrast in Figure 5A 
for the kurtosis and in Figure  5D for the skewness, reflect a 
monotonic trend of changes with p < 0.001, similar to the monotonic 
trend found in the alpha frequency bend. At 6 Hz, however, the 
spatial distribution of z-scores is different from that at 10.5 Hz. 
Specifically, the distribution of z-scores at 6 Hz for both kurtosis 

(Figure 5B) and skewness (Figure 5E) include large in magnitude 
positive and negative z-scores. The increases in the kurtosis and 
skewness with age are mainly supported by the temporal regions, as 
shown by the positive z-scores in the topographic maps in 
Figures 5C,F, respectively. At the same time, decreases in the kurtosis 
and skewness due to aging are supported by the parietal regions, 
vertex, and occipital cortex, as can be seen by the negative z-scores 
in the topographic maps.

The age-related pattern of increases and decreases in the tailedness 
of neuromagnetic variability at 6 Hz (Figure 5) is qualitatively and 
quantitatively similar to that for the beta oscillations at 22 Hz (Figure 6). 
The overall group contrasts significantly represent monotonic changes 
over the entire age range under consideration. The spatial distributions 
of z-scores (Figures  6C,F) at 22 Hz are similar to those at 6 Hz 
(Figure  5). Note, however, that the negative z-scores at 22 Hz by 
magnitude are larger than the positive z-scores: these distributions are 
skewed toward negative values. This implies that, on average, the effects 
represented by negative z-scores (decreases in the kurtosis and 
skewness) are more robust than those for positive z-scores (increases 
in the kurtosis and skewness). The corresponding distributions of 
z-scores at 6 Hz in Figures 5B,F are relatively symmetric, indicating that 

FIGURE 3

Age-related increases in the skewness and kurtosis of the temporal variability of MEG signal across five age groups at 10.5 Hz. (A) A data-driven overall 
contrast across the age groups for the skewness. (B) Corresponding distribution of z-scores, each associated with a MEG channel, showing the 
robustness of contribution of individual MEG channels to the overall contrast. (C) Same z-scores as in (B), shown a spatial distribution of z-scores 
across MEG channels. (D) Overall contrast across five age groups for the skewness. (E) Corresponding distribution of z-scores for the skewness; and 
(F) same z-scores as in (E), shown as a topographic map. The contrasts in panels (A,D) represent monotonic age-related changes in the skewness and 
kurtosis across the five age groups. The corresponding p-values reflecting the significance of overall group differences are provided in the titles of 
panels (A,D). All the z-scores are positive, which implies that the skewness and kurtosis increase with age. The highest z-scores, which are shown in 
dark red, indicate the most robust effect.
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the robustness of contribution of brain regions expressing increases and 
decreases in the kurtosis and skewness are, on average, similar.

Lower gamma rhythms

Finally, Figure 7 shows the results for the lower gamma oscillations 
at 39 Hz. The overall group contrast (Figure  7D) representing 
differences in the skewness of neuromagnetic dynamics across age 
groups was found to be significant with p = 0.011. Such a pattern of 
age-related changes is supported by mostly positive z-scores 
(Figure 7E). This contrast models age-related changes as an inverted 
U-shape (Figure 7D). Specifically, the MEG measure of skewness first 
increases, reaching a peak around 61–74 years old, then decreasing 
with age. The group contrast for the kurtosis was not significant at the 
95%-confidence interval, with a p-value of p = 0.102. We note that 
qualitatively, the contrast for the kurtosis (Figure 7A) also represents 
an inverted U-shape function, with a peak around 36–48 years old.

Discussion

Our findings revealed that extreme events in the temporal 
variability of MEG signal amplitude, as quantified by skewness 

and kurtosis, exhibited distinct ageing trajectories across 
adulthood. These trajectories varied spectrally across the five 
canonical frequency bands: delta, theta, alpha, beta, and lower 
gamma. Furthermore, the spatial distributions of these age-related 
changes were region-specific, highlighting unique patterns of 
neurophysiological ageing across the brain. This study is the 
initial attempt to investigate the skewed nature of frequency-
specific oscillations and to quantify empirical distributions of 
brain rhythm variability across the full adult lifespan, from young 
to elderly individuals. Importantly, we  introduced a novel 
framework that focuses on extreme events in neurophysiological 
variability. This aspect is commonly overlooked in traditional 
neurophysiological studies, which typically emphasize average 
values and fail to capture the broader spectrum of 
temporal variability.

Our findings can be interpreted within the framework of the 
brain criticality hypothesis (O'Byrne and Jerbi, 2022). This 
hypothesis posits that optimal information processing in a healthy 
brain occurs at a phase transition point between synchronous and 
asynchronous, or regular and irregular, states. A brain operating 
near criticality can rapidly transition between these states, with 
small bursts of neurodynamic activity potentially giving rise to 
extreme value events. According to this framework, critical neural 
networks are essential for achieving optimal information transfer, 

FIGURE 4

Age-related increases in the skewness and kurtosis of the temporal variability of MEG signal across five age groups at 2 Hz. (A) Overall group contrast 
for kurtosis; (B) corresponding distribution of z-scores; (C) same z-scores shown as the topographic maps; (D) overall contrast for skewness; 
(E) corresponding distribution of z-scores; (F) corresponding spatial distribution of z-scores. The contrasts in (A,D) represent age-related changes in 
skewness and kurtosis as an inverted U-function. All the z-scores are positive, which implies that the skewness and kurtosis increase across the age 
groups 19–36 to 61–74 years old (y.o.), and decrease for the age group 74–89 y.o. The highest z-scores indicate the most robust effect.
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which may explain the occurrence of extreme events in 
brain dynamics.

Our analysis revealed that the skewness and kurtosis of delta 
oscillations increased with age, indicating greater deviations from 
white noise in the form of extreme value events in MEG signal 
amplitude (Figures 4C,F). These findings align with recent work by 
Fosque et  al. (2022), which investigated the brain’s functional 
organization across the lifespan under the framework of 
quasicriticality. Using the same MEG dataset from the Cam-CAN 
repository, Fosque et al. (2022) suggested that the brain operates near 
a line of maximal dynamic susceptibility, achieving a critical point for 
optimal information processing without external stimuli, noise, or 
dissipation. In this state, neuronal networks are activated successively 
through neuronal avalanches, whose size and duration follow scale-
free or power-law distributions. Fosque et  al. (2022) identified a 
positive correlation between the variance of avalanche size and age 
across adulthood. They did not consider individual frequency bands. 
However, considering that MEG spectral power approximately follows 
a 1/f distribution, the lowest frequencies, such as delta rhythms, are 
expected to significantly contribute to the reported correlations.

Further evidence supporting our results aronf the delta 
frequencies comes from Vakorin et  al. (2013), who investigated 

age-related changes in adolescence by examining the 
non-stationarity of EEG rhythms as a sequence of quasi-stable 
patterns. They segmented EEG recordings into clusters of similar 
dynamics and quantified them in terms of the number of quasi-
stationary microstates and their durations. They found that the 
mean duration of stationary EEG segments decreased with age, and 
these changes were correlated with variability in the signal power of 
delta oscillations. These findings suggest greater non-stationarity 
and complexity of delta oscillations during adolescence. Such a 
pattern resonates with our current results, which show an increase 
in extreme value events of delta oscillations with age. Collectively, 
these studies provide convergent evidence that changes in extreme 
value dynamics, particularly in lower frequency bands like delta 
rhythms, play a critical role in both developmental and 
ageing processes.

Our results revealed age-related changes in the theta 
(Figure 5) and beta rhythms (Figure 3), characterized by both 
increases and decreases in the skewness and kurtosis of temporal 
variability in neuromagnetic signal amplitude. The underlying 
spatial re-distribution of energy associated with these changes 
remains unclear. Previous research has linked similar spatial 
changes during ageing to a balance between localized neural 

FIGURE 5

Age-related changes in the skewness and kurtosis of the temporal variability of MEG signal across five age groups at 6 Hz. (A) Overall group differences 
(group contrast) for kurtosis; (B) corresponding distribution of z-scores; (C) same distribution of z-scores shown as the topographic map; (D) overall 
group differences (group contrast) for skewness; (E) corresponding distribution of z-scores; (F) corresponding spatial distribution of z-scores. The 
contrasts represent a monotonic trend of age-related changes in skewness (A) and kurtosis (D). The largest in magnitude z-scores, positive or negative, 
indicate the most robust effect. Positive z-scores indicate MEG channels, wherein the kurtosis and skewness and increase with age across the age 
groups according to (A,D), respectively. Negative z-scores indicate MEG channels, wherein the skewness and kurtosis decrease with age across the 
age groups according to inversed group contrast (multiplied by −1) in (A,D), respectively.
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processing and long-range communication (McIntosh et  al., 
2014). McIntosh and colleagues examined the signal complexity 
of EEG and MEG oscillations across young, middle-aged, and 
elderly adults. Using metrics such as entropy, they found that local 
entropy increased with age, which was associated with functional 
connectivity within each hemisphere. Conversely, distributed 
or global entropy decreased with age, particularly for 
interhemispheric connections.

Interestingly, in our study, the spatial patterns of age-related 
changes in the probability of extreme events for the theta and beta 
rhythms appeared visually similar. This observation may reflect 
cross-frequency coupling, a mechanism by which local dynamics 
could be integrated into long-range communication (Buzsáki and 
Watson, 2012). Cross-frequency coupling allows slower oscillations 
to propagate across broader spatial scales, facilitating neural 
coordination (Canolty and Knight, 2010). Specifically, coupling 
between theta and beta oscillations may play a critical role in 
sustaining healthy sensory networks (Cravo et  al., 2011). This 
potential interaction between rhythms underscores the importance 
of exploring how cross-frequency dynamics contribute to changes 
in neural function across the lifespan. In addition to theta-beta 
coupling, due to the prominence of changes in alpha power across 
age (Broitman et  al., 2024), we  suggest that future studies also 

analyze coupling effects between alpha and other frequency bands, 
in the context of extreme events.

Our findings also can be considered in the context of previous 
studies investigating age-related changes in the aperiodic component 
of neural signals. This component is characterized by a 1/f spectral 
trend and is distinct from the rhythmic oscillations traditionally 
associated with EEG. The 1/f component is thought to reflect 
aperiodic neural activity that can influence the interpretation of EEG 
data, particularly in the context of brain network organization (Brake 
et al., 2024). Furtehrmore, it may reflect the baseline level of neural 
activity which has been linked to processing speed and cognitive 
decline in ageing populations (Tran et al., 2020), and more generally 
may be  related to excitatory-inhibitory balance (Salvatore et  al., 
2024). The 1/f component has been shown to shift with ageing 
(Voytek et  al., 2015). Since changes in the 1/f component likely 
influence the maximum values of neural signals, variations in the 
kurtosis and skewness of the signal may partially reflect this 
underlying shift in the aperiodic component. While our analysis 
focused explicitly on extreme events within the spectral bands, 
incorporating the 1/f exponent in future studies could provide a 
more comprehensive understanding of extreme neurodynamic 
events. This approach may help clarify how aperiodic shifts interact 
with rhythmic brain activity. Future research could benefit from 

FIGURE 6

Age-related changes in the skewness and kurtosis of the temporal variability of MEG signal across five age groups at 22 Hz. (A) Data-driven overall 
group contrast for kurtosis; (B) corresponding distribution of z-scores; (C) corresponding spatial distribution of z-scores; (D) data-driven overall 
contrast for skewness; (E) corresponding distribution of z-scores; (F) corresponding spatial distribution of z-scores. The contrasts in (A,D) represent 
monotonic age-related changes of skewness and kurtosis. There is a mix of positive and negative z-scores, indicating brain areas of increasing and 
decreasing skewness and kurtosis in aging. Note that the spatial distributions of z-scores, as shown in (C,F) are visually similar to those shown in 
Figure 5.
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using mathematical models that explain the generation of EEG 
signals (Brake et al., 2024).

We note that the two metrics we used in our analysis, skewness 
and kurtosis, produced similar results. These metrics are sensitive to 
extreme values, which makes them useful in neurological applications 
(Karpov et al., 2022; Xiang et al., 2020). For unimodal distributions 
such as the log-normal distribution, both skewness and kurtosis can 
be expected to reflect tail properties. Hence, it is not surprising that 
we  found qualitatively similar results using both metrics in all 
frequency bands of interest, except for the gamma band. For instance, 
a previous study found that both higher skewness and kurtosis of 
MEG signals in three frequency bands (theta to lower gamma 
oscillations, ripples, and fast ripples) were associated with pediatric 
epilepsy compared to the control group (Xiang et al., 2020). Although 
it was not our explicit goal, our study confirms that skewness and 
kurtosis provide virtually identical results for our data set.

Our study has limitations. First, we used cross-sectional data to 
examine age-related changes, which limits our ability to quantify 
ageing trajectories. Cohort differences may influence the comparisons 
across age groups, as noted by Salthouse (2019). Second, our study 
does not account for the heterogeneity or sub-types within the ageing 
population, as recent research by Rodrigues et al. (2022), Nyberg et al. 

(2023), and Hinault et al. (2023) has highlighted. These studies suggest 
that the ageing population should not be treated as a homogeneous 
group, opening new avenues for future research. Potentially, our 
patterns of age-related changes may be affected by muscle artifacts. 
We aggregate our estimates by computing the median metrics across 
segments, which may help to mitigate the influence of artificial 
patterns within individual subjects.

In conclusion, our study introduces and validates a new 
framework focusing on extreme neurodynamic events to investigate 
brain processing across the adult lifespan. We found that ageing is 
characterized by shifts in the occurrence of large-amplitude 
neurodynamic events. These extreme events, measured through 
sample skewness and kurtosis of the MEG signal amplitude 
distributions, exhibit distinct temporal and spatial patterns across all 
frequency bands, from theta to lower gamma. These markers may 
offer a complementary view for defining age-related trajectories of 
healthy brain processing. By emphasizing extreme events rather than 
typical or mean values, our framework provides a novel approach to 
understanding brain function. Our findings highlight the potential of 
extreme events in neurodynamics for exploring maximal capacities, 
thereby contributing to a more comprehensive understanding of the 
neural mechanisms underlying ageing.

FIGURE 7

Age-related changes in the skewness and kurtosis of the temporal variability of MEG signal across five age groups at 39 Hz. (A) Overall group contrast 
for kurtosis; (B) corresponding distribution of z-scores; (C) same z-scores shown on the topographic plot; (D) data-driven overall group contrast for 
skewness; (E) corresponding distribution of z-scores; (F) corresponding spatial distribution of z-scores. The contrasts in (A,D) model age-related 
changes of skewness and kurtosis as an inverted U-shape. The overall group contrast for kurtosis was not significant. All the z-scores are positive, 
which implies that skewness increases across age and peaks at around 48–61 y.o and then decreases, whereas kurtosis peaks at 36–48 y.o and then 
decreases. The highest z-scores indicate the most robust effect.
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