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Introduction: This study systematically explores the overall impact and

interactions of body composition and nutritional inflammatory indices on early-

onset mild cognitive impairment (EOMCI) in type 2 diabetes mellitus (T2DM).

Methods: A cross-sectional study included 816 T2DM patients. Body

composition indices included body mass index (BMI), waist circumference

(WC), a body shape index (ABSI), body roundness index (BRI), visceral fat

area (VFA), body fat percentage (BF%), and skeletal muscle mass index

(SMMI). Nutritional inflammatory indices included the geriatric nutritional risk

index (GNRI), prognostic nutritional index (PNI), C-reactive protein-albumin-

lymphocyte index (CALLY), and fibrinogen-to-albumin ratio (FAR). K-means

clustering and quantile g-computation (QGC) assessed the combined impact,

with interactions evaluated by simple slope analysis.

Results: K-means clustering revealed two distinct patterns: Low-pattern

and High-pattern. The Low-pattern group exhibited significantly lower body

composition indices (BMI 24.6 vs. 27.7 kg/m2; WC 88 vs. 99 cm; ABSI 0.081

vs. 0.084; BRI 3.89 vs. 5.02; VFA 91 vs. 112; BF% 29% vs. 31%; SMMI 9.38

vs. 10.48 kg/m2; all P < 0.001) and poorer nutritional status with higher

inflammation (GNRI 97.9 vs. 104.6; PNI 47.9 vs. 53.1; CALLY index 4 vs. 5;

FAR 0.082 vs. 0.072; all P < 0.05). This group had a higher prevalence of

EOMCI (32% vs. 23%, P = 0.006). After adjusting for confounders, the Low-

pattern group had a 1.45-fold increased risk of EOMCI (OR 1.45, 95% CI

1.01–2.08). QGC analysis demonstrated that the combined overall effect of body

composition and nutritional inflammatory indices was negatively associated with

EOMCI risk. A one-quintile increase in all indices was linked to a significant

31.3% reduction in EOMCI risk (95% CI −44.4%, −15.0%). Interaction analysis

revealed that abdominal obesity (ABSI > 0.08), combined with malnutrition

(low GNRI), significantly increased EOMCI risk (Pinteraction = 0.018). Similarly,

low muscle mass (SMMI < 11.33 kg/m2), when combined with malnutrition

and high inflammation (low CALLY index), further exacerbated EOMCI risk

(Pinteraction = 0.028).
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Discussion: The findings suggest that in T2DM patients, the interactions and

overall effects of underweight, reduced muscle mass, abdominal obesity,

malnutrition, and elevated inflammation are significantly associated with an

increased risk of EOMCI. Integrated management of these factors is essential

to mitigate EOMCI risk.

KEYWORDS

mild cognitive impairment, type 2 diabetes mellitus, sarcopenia, malnutrition,
inflammation, interaction

1 Introduction

Over the past 30 years, the number of dementia cases in
China has increased nearly fourfold, with elevated blood glucose
levels recognized as one of the major risk factors (Li et al.,
2022). China has the largest diabetes population globally, with
approximately 116 million patients as of 2021 (GBD 2021 Diabetes
Collaborators, 2023). Studies suggest that patients with midlife-
onset type 2 diabetes mellitus (T2DM) have a stronger association
with dementia risk compared to those with late-onset T2DM
(Xu et al., 2009; Rawlings et al., 2014; Gottesman et al., 2017;
Hwang et al., 2023; Hu J. et al., 2024), and the onset age
of dementia is significantly earlier in this population. Notably,
the age of onset for T2DM in China has shown a decreasing
trend. In the past decade, new cases have rapidly increased
among young and middle-aged adults (Lin et al., 2025). This
trend may potentially exacerbate the dementia burden in the
future.

Mild cognitive impairment (MCI) is an early stage of
dementia, characterized by a decline in memory or other
cognitive functions that does not meet the diagnostic criteria for
dementia (Nasreddine et al., 2005). Early-onset mild cognitive
impairment (EOMCI), defined as MCI occurring before the
age of 65, has a prevalence of nearly 50% among individuals
with diabetes (Pal et al., 2018; Makino et al., 2021; You
et al., 2021). Poor glycemic control further accelerates the
progression from MCI to dementia, especially within the first
year after diagnosis (Pal et al., 2018; Makino et al., 2021; You
et al., 2021; Ding et al., 2024). Notably, younger and middle-
aged individuals have a higher potential for reversing cognitive
impairment compared to older adults (Pandya et al., 2017; Overton
et al., 2019; Xue et al., 2019). Therefore, early identification
and intervention targeting critical risk factors for EOMCI in
middle-aged patients with T2DM are crucial for delaying or
reversing cognitive decline and reducing the future burden
of dementia.

Recently, a prospective study based on the United Kingdom
Biobank by Hendriks et al. (2024) identified multiple risk
factors beyond diabetes, such as elevated C-reactive protein
(CRP) and reduced grip strength, significantly associated with
early-onset dementia. Numerous studies have indicated that
systemic inflammation, malnutrition, and sarcopenia are closely
related to cognitive decline (Roberts et al., 2009; Shen et al.,
2019; Peng et al., 2020; Liu et al., 2021; Sun et al., 2021;
Anita et al., 2022). Notably, these conditions frequently coexist

in patients with T2DM, often accompanied by visceral fat
accumulation, leading to a state known as sarcopenic obesity
(Biolo et al., 2014; Gingrich et al., 2019; Ligthart-Melis et al.,
2020; Izzo et al., 2021; Feng et al., 2022; Li H. et al., 2023;
Ida et al., 2024; Zhang T. et al., 2024). However, previous
research typically examined the association between single factors
and MCI individually, ignoring their complex collinearity and
interactions. Although indices such as the geriatric nutritional
risk index (GNRI) (Ishihara et al., 2020; Sun et al., 2021;
Xu et al., 2023), prognostic nutritional index (PNI) (Zhou
et al., 2021; Wang et al., 2024), and fibrinogen-to-albumin
ratio (FAR) (Li X. et al., 2023) have been widely applied in
older populations to assess nutritional status and MCI risk,
research in middle-aged patients with T2DM remains limited.
Additionally, recently proposed indicators such as the CRP-
albumin-lymphocyte (CALLY) index, reflecting both nutritional
and inflammatory status (Yang et al., 2023; Li et al., 2024),
and new abdominal obesity indices, such as A body shape
index (ABSI) (Ji et al., 2018; Orsi et al., 2022; Lu et al., 2023)
and body roundness index (BRI) (Rico-Martin et al., 2020; Wu
et al., 2022), have not been extensively studied in relation to
MCI risk. Therefore, it is necessary to systematically explore the
combined effects and interactions of body composition, body
shape indices, and nutritional-inflammation markers in middle-
aged T2DM patients to comprehensively understand their impact
on EOMCI risk.

This study adopted a cross-sectional design focusing on
middle-aged Chinese patients with T2DM. We employed
K-means clustering to identify distinct patterns of body
composition, body shape, and nutritional-inflammation
indices. Quantile g-computation (QGC) was applied to
systematically explore the combined effects of these indices
on the risk of EOMCI. Subsequently, we utilized least
absolute shrinkage and selection operator (LASSO) regression
to further identify key risk factors and performed simple
slope analyses to examine potential interactions among
these indices. This study aims to clarify the complex
associations between body composition, nutritional-
inflammation status, and EOMCI risk, thus providing
theoretical support for early screening and precise interventions
to delay EOMCI progression and reduce the long-term
dementia burden.
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2 Materials and methods

2.1 Study population and cognitive
assessment

This study is an observational cross-sectional study involving
patients who first visited the Endocrinology Department of
Nankai University Affiliated Hospital between July 2018 and
February 2024. Cognitive function was screened using the Montreal
Cognitive Assessment (MoCA), which has been proven to be a
convenient and sensitive tool for detecting MCI (Nasreddine et al.,
2005; Lu et al., 2011). All participants underwent their initial MoCA
test administered by trained professional doctors. To adjust for the
impact of educational years on MoCA scores, we added one point
to the total MoCA score for participants with 12 or fewer years of
education if their score was less than 30 (Nasreddine et al., 2005).
According to the MoCA norms reported by Lu et al. (2011) for
mainland China, participants were diagnosed with MCI if their
MoCA scores were≤13 for illiterate individuals,≤19 for those with
1–6 years of education, and≤24 for those with seven or more years
of education.

2.2 Participants selection

Inclusion criteria were patients aged 65 years or younger with
diabetes diagnosed per the 1999 WHO criteria. Exclusion criteria
included type 1, gestational, or other specific types of diabetes;
inability to complete bioelectrical impedance analysis (BIA) due
to severe edema, implanted metal devices, pregnancy, or skin
damage; missing key variables (albumin, CRP, lymphocyte count,
or fibrinogen); inability to complete the MoCA test due to visual
or hearing impairments; a history of cerebrovascular diseases,
severe head trauma, mental illness, or neurological disorders;
renal failure [eGFR < 60 mL/min/1.73 m2 or urine albumin-
to-creatinine ratio (UACR) > 30 mg/mmol]; heart failure; liver
dysfunction [aspartate aminotransferase (AST) and/or alanine
aminotransferase (ALT) ≥2 times the upper limit]; diabetic
ketoacidosis, ketonuria, or infections; malignancies, autoimmune
diseases, severe anemia [hemoglobin (Hb) < 60 g/L]; and thyroid
dysfunction. A total of 816 T2DM patients under 65 years were
included: 218 diagnosed with EOMCI and 598 in the non-MCI
control group (NOMCI). The participant selection flowchart is
shown in Supplementary Figure 1.

2.3 Data collection

This study collected participants’ demographic characteristics
(sex, age, education level, marital status), lifestyle factors (smoking
status, drinking status, regular exercise, diabetes dietary control),
diabetes duration, hypoglycemia frequency in the past 3 months,
medical history, and medication use through standardized
questionnaires, face-to-face interviews, and medical record reviews.
Comprehensive evaluations were conducted for complications
and comorbidities, including dyslipidemia, diabetic microvascular
complications (DMC), peripheral arterial atherosclerosis (PAA),
and coronary heart disease (CHD). All data were collected by

trained healthcare professionals, who were only involved in data
collection. Blood cell counts, Hb levels, serum biochemistry, and
urinary parameters were measured using standardized methods.
Written informed consent was obtained from all participants.
The study was conducted strictly in accordance with the ethical
principles outlined in the Declaration of Helsinki. Ethical approval
was granted by the Ethics Committee of Tianjin Union Medical
Center [Approval No. 2018 (C08)]. Detailed methods for data
collection, laboratory measurements, and variable definitions are
provided in Supplementary materials.

2.4 Anthropometry and body
composition analysis

In this study, participants’ height and weight were measured
using an automated height-weight measuring device while they
stood barefoot, wore light clothing, and had an empty bladder.
Waist circumference (WC) was measured at the midpoint between
the lower rib margin and the iliac crest using a flexible tape
measure. Body composition was assessed using a body composition
analyzer (InBody770, Biospace, South Korea) through BIA, which
evaluated skeletal muscle mass, body fat percentage (BF%), and
visceral fat area (VFA). The body composition indices used in this
study included body mass index (BMI), WC, ABSI, BRI, skeletal
muscle mass index (SMMI), BF%, and VFA. The formulas for these
calculations are as follows:

(1) BMI = weight (kg)/height2 (m2)

(2) ABSI = WC
BMI2/3 × height1/2 , where WC and height are in meters

(Krakauer and Krakauer, 2012).

(3) BRI = 364.2−365.5×

√√√√1−

( (
WC
2π

)2

(0.5 × height)2

)
, where WC

and height are in cm (Chang et al., 2015).
(4) SMMI = skeletal muscle mass (kg)/height2 (m2) (Lee et al.,

2020).

2.5 Nutritional and inflammatory indices

The nutritional and inflammatory indices used in this study
included the GNRI, PNI, CALLY index, and FAR. Lower GNRI
and PNI values indicate poorer nutritional status. A lower CALLY
index suggests malnutrition accompanied by a high inflammation
state, while a higher FAR indicates higher inflammation and poorer
nutritional status. The formulas for these calculations are as follows:

(1) GNRI =
[
1.489× albumin(g/L)

]
+

[
41.7×

(
weight(kg)

WLO

)]
;

WLO = height (cm)−100− [height(cm)−150]
4 for male;

WLO = height (cm)−100− [height(cm)−150]
2.5 for female

(Bouillanne et al., 2005)
(2) PNI = albumin(g/L) + lymphocytes (× 109/L)× 5 (Pinato

et al., 2012)
(3) CALLY index = albumin(g/dL) × lymphocyte count(µL)

CRP(mg/dL) × 104 (Tsai et al.,
2022)
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(4) FAR = fibrinogen(g/L)
albumin(g/L)

(Wang et al., 2021)

2.6 Statistical analysis

We compared baseline covariates, body composition, and
nutritional inflammatory indices between the EOMCI and
NOMCI groups. Continuous variables were tested for normality
using the Kolmogorov-Smirnov test and Q-Q plots. Normally
distributed variables were presented as mean and standard
deviation (SD) and compared using Student’s t-test. Non-normally
distributed variables were expressed as median and interquartile
range (IQR) and compared with the Wilcoxon rank sum test.
Categorical variables were reported as frequencies and percentages
and compared using the Chi-squared or Fisher’s exact test.
Pearson correlation analysis was performed for body composition
and nutritional inflammatory indices, and correlations were
visualized with a heatmap.

To evaluate independent associations between body
composition, nutritional inflammatory indices, and EOMCI,
we performed multivariable logistic regression analyses. Each
index was divided into tertiles, with the third tertile as the
reference. Three models were created: Model 1 was unadjusted;
Model 2 adjusted for sociodemographic factors (age, sex, marital
status, education); and Model 3 further adjusted for diabetes-
related variables (duration, HbA1c, fasting plasma glucose
(FPG), hypoglycemia frequency) and baseline covariates with
significant differences (smoking, regular exercise, dietary control,
UACR, AST, and Hb).

To examine clustering patterns of body composition and
nutritional inflammatory status and their overall effect on EOMCI,
we performed K-means clustering. All variables were standardized
using Z-scores. Specifically, each observed value of a variable was
adjusted by subtracting the variable’s mean and then dividing by
its standard deviation. This ensured that the distribution of each
variable had a mean of zero and a standard deviation of one,
giving all variables equal weight in the clustering analysis. The
elbow method identified two optimal clusters, and 25 random
initializations were conducted. We then compared the prevalence
of EOMCI, MoCA scores, and baseline differences between these
clusters. Multivariable logistic regression was used to assess the
independent association between clustering patterns and EOMCI,
adjusting for potential confounders, consistent with the previous
logistic regression model settings.

Quantile g-computation (QGC) analysis is a statistical method
used to evaluate the relationship between mixed exposures and
health outcomes. QGC divides exposure variables into quantiles,
estimates the effect of each quantile using a generalized linear
model (GLM), and then calculates the weighted average of the
effects to obtain the overall effect of the mixed exposures on health
outcomes. This method addresses the high dimensionality and
multicollinearity issues among body composition and nutritional
inflammatory indices, providing an overall effect estimate. In this
study, we transformed the indices into quintiles and estimated the
percentage change in EOMCI risk for a simultaneous one-quintile
increase in all indices as (eβ

−1)× 100%. QGC also assessed
the positive and negative weights of each index, indicating their

impact on EOMCI risk and relative contribution. We constructed
two models and used 1,000 bootstrap resampling to ensure the
robustness of the results: Model 1 was unadjusted, and Model
2 adjusted for confounders (sociodemographic factors, diabetes-
related variables, and baseline significant variables). Additionally,
we performed stratified analyses to compare the overall effect of
body composition and nutritional inflammatory status on EOMCI
across different subgroups based on sex, education level, diabetes
duration, HbA1c tertiles, hypoglycemia frequency in the past
3 months, DMC, PAA, and CHD.

In addition to QGC analysis, which evaluates the relative
contribution of each index to the risk of EOMCI through their
positive and negative weights, we employed the Least Absolute
Shrinkage and Selection Operator (LASSO) regression. LASSO
adds an L1 regularization term to the loss function, effectively
shrinking some regression coefficients to zero, thus enabling
variable selection. LASSO is particularly effective in identifying key
indices influencing EOMCI in the presence of multicollinearity.
In this study, LASSO regression combined with ten-fold cross-
validation was used for variable selection. Key indices were selected
based on two regularization parameters: one that minimizes the
mean squared error (MSE) (Min standard) and another that is
within one standard error of the minimum MSE (1SE standard).

To further evaluate their interaction effects on EOMCI,
we constructed logistic regression models with multiplicative
interaction terms, adjusting comprehensively for confounders.
To visualize these interactions, we created interaction plots
with nutritional inflammatory indices as primary predictors and
body composition indices as moderators, grouped into tertiles.
Additionally, we performed simple slope analysis to explore the
effects of GNRI and CALLY on EOMCI at different levels of
BMI, ABSI, and SMMI. Johnson-Neyman plots were generated
to identify critical values of body composition indices, showing
confidence intervals where the effect of nutritional inflammatory
indices on EOMCI is significant.

All statistical analyses were conducted using R software
(version 4.3.2). QGC and interaction analyses were performed with
the “qgcomp” and “interactions” packages, respectively. Tests were
two-sided, with P < 0.05 considered significant. The statistical
power of the fully adjusted logistic regression model (Model 3) was
calculated using the “pwr” package. With an effect size (Cohen’s f2)
of 0.15, a significance level of 0.05, a sample size of 816, and 15
predictors, the power was 1.0. A similar power analysis for the t-test
used in baseline comparisons also showed a power of 1.0.

3 Results

3.1 Baseline characteristics of
participants

Table 1 presents the baseline characteristics of the 816
participants, with an EOMCI prevalence of 27%. Compared to
the NOMCI group, the EOMCI group had a significantly higher
average age (59.2 vs. 57.4 years, P < 0.001), a lower proportion of
participants with more than 12 years of education (10% vs. 18%,
P = 0.003), and a higher proportion of unmarried individuals (12%
vs. 4.3%, P < 0.001). While there were no significant differences
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TABLE 1 Baseline characteristics of participants stratified by cognitive status.

Characteristic Overall, N = 816 (100%) NOMCI, N = 598 (73%) EOMCI,N = 218 (27%) P-value

Age 57.9 (5.1) 57.4 (5.3) 59.2 (4.3) < 0.001∗

Sex-females 367 (45%) 260 (43%) 107 (49%) 0.154

Duration of education 0.003∗

<9 years 47 (5.8%) 40 (6.7%) 7 (3.2%)

9–12 years 642 (79%) 453 (76%) 189 (87%)

> 12 years 127 (16%) 105 (18%) 22 (10%)

Unmarried 52 (6.4%) 26 (4.3%) 26 (12%) < 0.001∗

Smoking status 0.004∗

Current smoker 277 (34%) 209 (35%) 68 (31%)

Former smoker 111 (14%) 67 (11%) 44 (20%)

Never smoker 428 (52%) 322 (54%) 106 (49%)

Drinking status 0.085

Current drinker 265 (32%) 197 (33%) 68 (31%)

Former drinker 62 (7.6%) 38 (6.4%) 24 (11%)

Never drinker 489 (60%) 363 (61%) 126 (58%)

Regular exercise 596 (73%) 424 (71%) 172 (79%) 0.023∗

Non-dietary control 292 (36%) 199 (33%) 93 (43%) 0.013∗

Duration of diabetes 5 (1, 10) 5 (1, 10) 5 (1, 11) 0.461

Hypoglycemia frequency 0.017∗

0 times 653 (80%) 493 (82%) 160 (73%)

1–2 times 141 (17%) 91 (15%) 50 (23%)

≥3 times 22 (2.7%) 14 (2.3%) 8 (3.7%)

Antidiabetic agents

Metformin-yes 336 (41%) 255 (43%) 81 (37%) 0.159

Other oral drugs-yes 494 (61%) 357 (60%) 137 (63%) 0.416

Insulin-yes 243 (30%) 172 (29%) 71 (33%) 0.293

GLP-1RA-yes 13 (1.6%) 11 (1.8%) 2 (0.9%) 0.531

DMC-yes 661 (81%) 484 (81%) 177 (81%) 0.934

PAA-yes 552 (68%) 397 (66%) 155 (71%) 0.203

CHD-yes 197 (24%) 147 (25%) 50 (23%) 0.627

Dyslipidemia-yes 450 (55%) 336 (56%) 114 (52%) 0.322

FPG (mmol/L) 8.28 (6.69, 10.52) 8.30 (6.82, 10.53) 8.16 (6.47, 10.48) 0.250

HbA1C (%) 8.55 (7.40, 10.40) 8.70 (7.50, 10.40) 8.30 (7.20, 10.30) 0.070

Uric acid (µmol/L) 291 (80) 290 (79) 291 (84) 0.956

UACR (mg/mmol) 1 (1, 4) 1 (1, 4) 2 (1, 6) 0.019∗

eGFR (mL/min/1.73 m2) 125 (28) 126 (26) 124 (32) 0.367

GGT (U/L) 27 (20, 41) 27 (20, 42) 27 (18, 39) 0.203

ALT U/L) 20 (15, 31) 20 (15, 31) 18 (14, 31) 0.104

AST (U/L) 18 (14, 23) 17 (14, 23) 19 (15, 23) 0.038∗

Hb (g/L) 138 (15) 138 (15) 135 (16) 0.020∗

WBC count (109/L) 6.03 (5.05, 7.18) 6.04 (5.05, 7.18) 6.01 (5.10, 7.23) 0.899

SBP (mmHg) 132 (13) 132 (13) 133 (13) 0.512

DBP (mmHg) 80 (8) 80 (8) 80 (8) 0.850

BMI (kg/m2) 26.3 (3.7) 26.6 (3.7) 25.7 (3.6) 0.002∗

(Continued)
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TABLE 1 (Continued)

Characteristic Overall, N = 816 (100%) NOMCI, N = 598 (73%) EOMCI, N = 218 (27%) P-value

WC (cm) 94 (11) 95 (12) 93 (11) 0.020∗

ABSI 0.083 (0.004) 0.082 (0.004) 0.083 (0.004) 0.256

BRI 4.53 (3.75, 5.46) 4.59 (3.78, 5.58) 4.41 (3.72, 5.31) 0.086

VFA 102 (31) 103 (32) 101 (30) 0.291

BF% 30 (8) 30 (8) 31 (8) 0.731

SMMI (kg/m2) 10.00 (1.51) 10.11 (1.50) 9.68 (1.50) < 0.001∗

GNRI 101.7 (5.6) 102.1 (5.2) 100.4 (6.5) < 0.001∗

PNI 50.8 (5.1) 51.2 (4.9) 49.9 (5.4) 0.002∗

CALLY index 4 (2, 9) 5 (3, 10) 3 (1, 6) < 0.001∗

FAR 0.076 (0.066, 0.089) 0.075 (0.065, 0.088) 0.077 (0.068, 0.091) 0.107

Mean (standard deviation, SD) for normally distributed continuous variables and compared using Student’s t-test; median (interquartile ranges, IQRs) for skewed continuous variables and
compared using Wilcoxon rank sum test; n (%) for categorical variables and compared using Chi-squared test or Fisher’s exact test; ∗P < 0.05. NOMCI, non-mild cognitive impairment;
EOMCI, early-onset mild cognitive impairment; GLP-1RA, glucagon-like peptide-1 receptor agonist; DMC, diabetic microvascular complications; PAA, peripheral arterial atherosclerosis;
CHD, coronary heart disease; FPG, fasting plasma glucose; HbA1C, hemoglobin A1C; UACR, urine albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate; GGT, gamma-
glutamyl transferase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; Hb, hemoglobin; WBC, white blood cell; SBP/DBP, systolic/diastolic blood pressure; BMI, body mass
index; WC, waist circumference; ABSI, A body shape index; BRI, body roundness index; VFA, visceral fat area; BF%, body fat percentage; SMMI, skeletal muscle mass index; GNRI, geriatric
nutritional risk index; PNI, prognostic nutritional index; CALLY, C-reactive protein-albumin-lymphocyte index; FAR, fibrinogen to albumin ratio.

in drinking status, the EOMCI group had a higher proportion of
current or former smokers (51% vs. 46%, P = 0.004), a higher
proportion of participants engaging in regular exercise (79% vs.
71%, P = 0.023), and a higher likelihood of not following diabetes
dietary control (43% vs. 33%, P = 0.013). The EOMCI group
also had a significantly higher frequency of hypoglycemia episodes
in the past 3 months (P = 0.017), but there were no significant
differences in diabetes duration, antidiabetic medication use, FPG,
or HbA1c. Additionally, there were no significant differences
between the two groups in terms of diabetes complications or
comorbidities.

In laboratory test indicators, the EOMCI group had
significantly higher UACR levels (2 vs. 1, P = 0.019), higher
AST levels (19 vs. 17, P = 0.038), and lower Hb levels (135 vs. 138,
P = 0.020). Regarding body composition, the EOMCI group had
significantly lower BMI, WC, and SMMI compared to the NOMCI
group (all P < 0.05), but no significant differences in ABSI, BRI,
VFA, or BF% were observed. In terms of nutritional inflammatory
indices, the EOMCI group had significantly lower GNRI, PNI, and
CALLY indices (all P < 0.05), while FAR did not differ significantly
between the two groups (P = 0.107).

3.2 Independent association between
individual body composition and
nutritional inflammatory indices with
EOMCI

To investigate the independent association between individual
body composition and nutritional inflammatory indices with
EOMCI, we conducted multivariable-adjusted logistic regression
analyses, as shown in Figure 1. In the unadjusted Model 1,
participants in the lowest tertile (T1) of BMI, WC, and SMMI had a
significantly higher risk of EOMCI compared to those in the highest
tertile (T3). The increased risk associated with the lowest tertile of
BMI and SMMI remained significant in Model 2, which adjusted for

sociodemographic factors, and in Model 3, which further adjusted
for potential confounders. In Model 3, the odds ratios (ORs) were
1.44 (95% CI 1.06–1.95) for BMI and 1.46 (95% CI 1.01–2.10) for
SMMI.

For nutritional inflammatory indices, the unadjusted Model
1 showed that participants in the lowest tertile of GNRI, PNI,
and CALLY had a significantly higher risk of EOMCI compared
to those in the highest tertile. After full adjustment in Model 3,
only the lowest tertiles of GNRI and CALLY remained significantly
associated with increased EOMCI risk. Specifically, participants in
the lowest tertile of GNRI had a 1.37 times higher risk of EOMCI
(OR = 1.37, 95% CI 1.01–1.86), and those in the lowest tertile of
CALLY had a 1.82 times higher risk (OR = 1.82, 95% CI 1.36–2.47)
compared to those in the highest tertile.

3.3 Correlation analysis and clustering
patterns of body composition and
nutritional inflammatory indices

Figure 2A shows the complex relationships between body
composition and nutritional inflammatory indices. Most body
composition indices were strongly correlated, whereas ABSI and
SMMI showed weaker or moderate correlations with other body
composition indices. Similarly, various nutritional inflammatory
indices exhibited different degrees of correlation.

K-means clustering analysis was employed to identify
subgroups with similar characteristics. Based on the body
composition and nutritional inflammatory indices of 816
participants, two clustering patterns were identified: a high
body composition-high nutrition pattern (High-pattern, 56%)
and a low body composition-low nutrition pattern (Low-pattern,
44%). Participants in the Low-pattern had significantly lower BMI,
WC, ABSI, BRI, VFA, BF%, and SMMI compared to those in the
High-pattern (all P < 0.001). Additionally, the Low-pattern group
had significantly lower GNRI, PNI, and CALLY indices and higher
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FIGURE 1

Multivariable-adjusted logistic regression for body composition, nutritional inflammatory indices, and cluster patterns on EOMCI in T2DM. EOMCI,
early-onset mild cognitive impairment; T2DM, type 2 diabetes mellitus; BMI, body mass index; WC, waist circumference; ABSI, A body shape index;
BRI, body roundness index; VFA, visceral fat area; BF%, body fat percentage; SMMI, skeletal muscle mass index; GNRI, geriatric nutritional risk index;
PNI, prognostic nutritional index; CALLY, C-reactive protein-albumin-lymphocyte index; FAR, fibrinogen to albumin ratio; OR, odds ratio; CI,
confidence interval; Ref, reference. This forest plot presents multivariable-adjusted logistic regression analyses examining the associations between
individual body composition indices, nutritional inflammatory indices, and their cluster patterns with the risk of EOMCI in participants with T2DM.
The analyses include three models: Model 1 (unadjusted), Model 2 (adjusted for age, sex, marital status, and duration of education), and Model 3
(further adjusted for diabetes duration, HbA1c, FPG, hypoglycemia frequency, smoking status, regular exercise, diabetes dietary control, UACR, AST,
and Hb). *P < 0.05; P-Linear, the P-value for the linear trend test.

FAR, indicating poorer nutritional status and higher inflammation
levels (all P < 0.05) (Table 2 and Figure 2B).

The prevalence of EOMCI was higher in the Low-pattern group
compared to the High-pattern group (32% vs. 23%, P = 0.006)
(Table 2). The Low-pattern group also had significantly lower
MoCA total scores and sub-scores in visuospatial and executive
function, abstraction, and language (all P < 0.05) (Figure 2C).
Multivariable-adjusted logistic regression analysis showed that,
after fully adjusting for confounders in Model 3, the Low-pattern
was associated with a 1.45 times higher risk of EOMCI compared
to the High-pattern (OR 1.45, 95% CI 1.01–2.08) (Figure 1).

3.4 Quantile g-computation for assessing
the overall effect of body composition
and nutritional inflammatory indices

We also utilized QGC analysis to estimate the overall effect of
body composition and nutritional inflammatory status on EOMCI.
As shown in Figures 3A, C and both before and after adjusting
for confounders, body composition and nutritional inflammatory
indices were generally negatively associated with the risk of

EOMCI. In the fully adjusted Model 2, a one-quintile increase in all
indices was associated with a significant 31.3% reduction in EOMCI
risk (95% CI −44.4%, −15.0%). Figure 3B further illustrates the
positive and negative weights of each index on EOMCI risk. In the
model adjusted for confounders, CALLY had the highest negative
impact weight at 31.6%, followed by GNRI (22.9%), SMMI (15.9%),
and BMI (12.4%). Conversely, ABSI had the highest positive impact
weight at 61.9%.

Stratified analysis in Figure 3C further revealed the overall
effect of body composition and nutritional inflammatory indices
across different subgroups. The negative association remained
significant among participants with 9–12 years of education. In
sex-stratified analysis, the negative association was significant in
males but not in females. Participants with a diabetes duration
of more than 5 years showed a significant negative association
after adjustment. Significant negative associations were observed
in the lowest (T1) and highest (T3) tertiles of HbA1c but not
in the middle tertile (T2). Significant negative associations were
also found in subgroups with hypoglycemia, CHD, and PAA. Only
participants with DMC exhibited a significant negative association,
whereas no significant association was found in those without
DMC.
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FIGURE 2

Correlation analysis and K-means clustering of body composition and nutritional inflammatory indices. (A) Heatmap showing the Pearson
correlation matrix of body composition and nutritional inflammatory indices. (B) K-means clustering of 816 participants based on body composition
and nutritional inflammatory indices, identifying two clusters: high body composition-high nutrition pattern and low body composition-low
nutrition pattern. (C) Radar chart comparing total MoCA scores and subdomain scores between the high body composition-high nutrition pattern
and the low body composition-low nutrition pattern. Significant differences are marked: **P < 0.001, *P < 0.05. BMI, body mass index; WC, waist
circumference; ABSI, A body shape index; BRI, body roundness index; VFA, visceral fat area; BF%, body fat percentage; SMMI, skeletal muscle mass
index; GNRI, geriatric nutritional risk index; PNI, prognostic nutritional index; CALLY index, C-reactive protein-albumin-lymphocyte index; FAR,
fibrinogen to albumin ratio.

3.5 LASSO cross-validation for key indices
selection

Using the Min criterion, five key indices were identified through
LASSO cross-validation: SMMI, GNRI, CALLY index, BMI, and
ABSI. Consistent with the QGC analysis, SMMI, GNRI, CALLY
index, and BMI were negatively associated with the risk of EOMCI,
while ABSI was positively associated with EOMCI risk. Using the
1SE criterion, only indices negatively associated with EOMCI risk
were selected as key indices (Figure 4).

3.6 Interaction between key body
composition and nutritional
inflammatory indices

Through QGC analysis and LASSO cross-validation, we
identified key body composition indices (BMI, ABSI, and SMMI)
and nutritional inflammatory indices (GNRI and CALLY). To
evaluate their interaction effects on EOMCI, we conducted analyses
using GNRI and CALLY as predictors and BMI, ABSI, and SMMI
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TABLE 2 Baseline characteristics of K-means clustering patterns of body composition and nutritional inflammatory indices.

Indices Overall, N = 816 (100%) High-pattern, N = 458 (56%) Low-pattern, N = 358 (44%) P-value

BMI (kg/m2) 26.3 (3.7) 27.7 (3.6) 24.6 (3.0) < 0.001∗

WC (cm) 94 (11) 99 (11) 88 (9) < 0.001∗

ABSI 0.083 (0.004) 0.084 (0.004) 0.081 (0.004) < 0.001∗

BRI 4.53 (3.75, 5.46) 5.02 (4.27, 5.97) 3.89 (3.32, 4.62) < 0.001∗

VFA 102 (31) 112 (31) 91 (27) < 0.001∗

BF% 30 (8) 31 (7) 29 (8) < 0.001∗

SMMI (kg/m2) 10.00 (1.51) 10.48 (1.45) 9.38 (1.38) < 0.001∗

GNRI 101.7 (5.6) 104.6 (4.0) 97.9 (5.0) < 0.001∗

PNI 50.8 (5.1) 53.1 (4.2) 47.9 (4.5) < 0.001∗

CALLY index 4 (2, 9) 5 (2, 9) 4 (2, 8) 0.005∗

FAR 0.076 (0.066, 0.089) 0.072 (0.062, 0.082) 0.082 (0.072, 0.099) < 0.001∗

EOMCI 218 (27%) 105 (23%) 113 (32%) 0.006∗

Data are presented as mean (standard deviation, SD) for normally distributed continuous variables and compared using Student’s t-test; median (interquartile ranges, IQRs) for skewed
continuous variables and compared using the Wilcoxon rank sum test; n (%) for categorical variables and compared using the Chi-squared test. Significant differences are marked: ∗P < 0.05.
High-pattern, high body composition-high nutrition pattern; Low-pattern, low body composition-low nutrition pattern; EOMCI, early-onset mild cognitive impairment; BMI, body mass
index; WC, waist circumference; ABSI, A body shape index; BRI, body roundness index; VFA, visceral fat area; BF%, body fat percentage; SMMI, skeletal muscle mass index; GNRI, geriatric
nutritional risk index; PNI, prognostic nutritional index; CALLY index, C-reactive protein-albumin-lymphocyte index; FAR, fibrinogen to albumin ratio.

as moderators. Significant interactions were observed between
CALLY and SMMI, and between GNRI and ABSI (Figure 5),
while no significant interactions were found for other combinations
(Supplementary Figure 2).

Figure 5A1 shows a significant interaction between CALLY and
SMMI (P = 0.028). When both SMMI and CALLY indices were
lower, the risk of EOMCI was higher. Figure 5A2 further shows
that the negative association between CALLY and EOMCI risk was
most pronounced in the lowest tertile of SMMI (slope = −0.070,
95% CI −0.101, −0.031). It was followed by the middle tertile
(slope = −0.047, 95% CI −0.071, −0.021). No significant
association was observed in the highest tertile (slope = −0.025,
95% CI −0.050, 0.0002). The Johnson-Neyman plot in Figure 5A3
indicates that the negative impact of CALLY on EOMCI risk is
significant (P < 0.05) when SMMI is less than 11.33. However, this
effect is not significant when SMMI exceeds 11.33. This indicates
that low SMMI combined with a low CALLY index, reflecting
malnutrition and high inflammation, significantly increases the risk
of EOMCI.

Figure 5B1 shows a significant interaction between GNRI and
ABSI (P = 0.018). When ABSI was higher and GNRI was lower,
the risk of EOMCI increased. Figure 5B2 shows that the negative
association between GNRI and EOMCI risk was most pronounced
in the highest tertile of ABSI (slope = −0.091, 95% CI −0.137,
−0.044). It was followed by the middle tertile (slope =−0.057, 95%
CI−0.090,−0.023). No significant association was observed in the
lowest tertile (slope =−0.026, 95% CI−0.065, 0.014). The Johnson-
Neyman plot in Figure 5B3 shows that the negative impact of GNRI
on EOMCI risk is significant (P < 0.05) when ABSI is greater
than 0.08. However, this effect is not significant when ABSI is less
than 0.08. This indicates that high ABSI combined with low GNRI,
reflecting malnutrition, significantly increases the risk of EOMCI.

4 Discussion

This study systematically examined the combined effects and
interactions of body composition and nutritional-inflammatory
indices on the risk of EOMCI in patients with T2DM. The findings
from K-means clustering and QGC analysis demonstrated that
low body composition, accompanied by malnutrition and elevated
inflammatory status, was overall associated with an increased risk
of EOMCI. Subgroup analysis further revealed that the overall
negative effect of body composition and nutritional inflammatory
indices on EOMCI risk remained significant, particularly in males,
those with longer diabetes duration, DMC, or unstable glycemic
control (indicated by HbA1c in the lowest or highest tertile).
Using QGC analysis and LASSO cross-validation, critical indicators
with negative effects on EOMCI risk were identified, including the
CALLY index, GNRI, SMMI, and BMI. In contrast, ABSI emerged
as the primary indicator with a positive association with EOMCI
risk. Interaction analysis further indicated that in the context of
low muscle mass, malnutrition and elevated inflammatory status,
as reflected by a low CALLY index, significantly exacerbated the
risk of EOMCI. Similarly, the interaction between abdominal
obesity, as indicated by high ABSI, and malnutrition, as indicated
by low GNRI, was significant, leading to a further increase in
the risk of EOMCI.

4.1 Sarcopenia and cognitive impairment

Recent studies have demonstrated an association between
sarcopenia and cognitive impairment through cross-sectional
research conducted in different populations (Chang et al., 2016;
Peng et al., 2020; Komatsu et al., 2021; Hu et al., 2022; Gurholt
et al., 2023). For example, Gurholt et al. (2023) utilizing data
from the United Kingdom Biobank, and Hu et al. (2022) based on
the China Health and Retirement Longitudinal Study (CHARLS),
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FIGURE 3

Quantile g-computation for assessing the overall effect of body composition and nutritional inflammatory indices, and the positive and negative
contributions of indices. (A) Probability of EOMCI by joint exposure quintile, with the third quintile as the reference. (B) Positive and negative weights
of body composition and nutritional inflammatory indices on EOMCI risk, based on the fully adjusted Model 2. (C) Overall analysis and stratified
analysis by sex, education level, diabetes duration, HbA1c tertiles, hypoglycemia, DMC, PAA, and CHD. The figure shows the percentage change and
95% confidence intervals (CIs) for the overall effect of body composition and nutritional inflammatory indices on EOMCI risk. Model 1 (unadjusted)
and Model 2 (adjusted for age, sex, marital status, education level, diabetes duration, HbA1c, FPG, hypoglycemia frequency, smoking status, regular
exercise, diabetes dietary control, UACR, AST, and Hb, with respective adjustments for each subgroup, excluding the stratifying variable). Significant
differences are marked: *P < 0.05. BMI, body mass index; WC, waist circumference; ABSI, A body shape index; BRI, body roundness index; VFA,
visceral fat area; BF%, body fat percentage; SMMI, skeletal muscle mass index; GNRI, geriatric nutritional risk index; PNI, prognostic nutritional index;
CALLY, C-reactive protein-albumin-lymphocyte index; FAR, fibrinogen to albumin ratio; DMC, diabetic microvascular complications; PAA, peripheral
arterial atherosclerosis; CHD, coronary heart disease.

both confirmed this link. Additionally, systematic reviews and
meta-analyses conducted by Peng et al. (2020), Chang et al.
(2016) provided further evidence supporting this relationship by
integrating data from multiple cross-sectional studies, with an
adjusted OR of approximately 2.25. Some prospective cohort
studies suggest a possible bidirectional causal relationship between
sarcopenia and cognitive function. Beeri et al. (2021) demonstrated
that greater baseline severity of sarcopenia increased the future
risk of cognitive impairment. Conversely, a 4 years Japanese
follow-up study indicated that cognitive decline could, in turn,

elevate sarcopenia risk through reductions in physical and social
activities (Nishimoto et al., 2024). Recent bidirectional Mendelian
randomization studies by Liu et al. (2024), Lu et al. (2024) further
clarified this relationship, demonstrating significant bidirectional
causality between sarcopenia features, such as muscle mass, grip
strength, walking speed, and cognitive function. In line with
these studies, our findings revealed that low muscle mass was
independently associated with an increased risk of EOMCI among
young and middle-aged Chinese patients with T2DM, and was
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FIGURE 4

LASSO cross-validation for identifying key body composition and nutritional inflammatory indices associated with EOMCI. (A) LASSO
cross-validation analysis for selecting key indices, showing the optimal λ (lambda) values using the minimum criteria (Min) and the 1 standard error
(1SE) criteria. (B) Heatmap of coefficients of the selected indices under Min and 1SE criteria. EOMCI, early-onset mild cognitive impairment; BMI,
body mass index; WC, waist circumference; ABSI, A body shape index; BRI, body roundness index; VFA, visceral fat area; BF%, body fat percentage;
SMMI, skeletal muscle mass index; GNRI, geriatric nutritional risk index; PNI, prognostic nutritional index; CALLY, C-reactive
protein-albumin-lymphocyte index; FAR, fibrinogen to albumin ratio.

FIGURE 5

Interaction and simple slopes analysis of body composition and nutritional inflammatory indices on the risk of early-onset mild cognitive impairment
(EOMCI). (A1–A3) Interaction between C-reactive protein-albumin-lymphocyte index (CALLY) and skeletal muscle mass index (SMMI) on EOMCI risk.
(A1) Interaction effect of CALLY and SMMI across SMMI tertiles. (A2) Simple slopes of CALLY on EOMCI risk at SMMI tertiles. (A3) Johnson-Neyman
plot showing the significance region of CALLY’s effect on EOMCI risk across SMMI values. (B1–B3) Interaction between geriatric nutritional risk index
(GNRI) and A body shape index (ABSI) on EOMCI risk. (B1) Interaction effect of GNRI and ABSI across ABSI tertiles. (B2) Simple slopes of GNRI on
EOMCI risk at different ABSI tertiles. (B3) Johnson-Neyman plot showing the significance region of GNRI’s effect on EOMCI risk across ABSI values.
All analyses are based on generalized linear models and adjusted for age, sex, marital status, education level, diabetes duration, HbA1c, FPG,
hypoglycemia frequency, smoking status, regular exercise, diabetes dietary control, UACR, AST, and Hb.
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identified as a critical factor in the combined multifactorial effects
analysis.

4.2 Association between
nutritional-inflammatory status and
cognitive impairment: potential
advantages of the CALLY index

Various assessment tools have been utilized in different studies
to investigate the relationship between nutritional status and
cognitive function. For example, Yu et al. (2021) using the Mini
Nutritional Assessment Short Form (MNA-SF) in a Chinese
elderly population, found that after adjusting for confounders,
malnutrition, anorexia, and weight loss were significantly
associated with increased risks of cognitive impairment. Similarly,
a Swedish cohort study indicated that individuals aged 60 and
above with severe cognitive impairment had significantly elevated
risks of malnutrition (Fagerstrom et al., 2011). Additionally, Lu
et al. (2021) using the Elderly Nutritional Indicators for Geriatric
Malnutrition Assessment (ENIGMA) based on the Singapore
Longitudinal Aging Study, demonstrated that older adults with
higher nutritional risk scores were more likely to develop MCI or
dementia. Several studies have consistently reported that low serum
albumin, an important biochemical indicator of nutritional status,
is closely associated with cognitive decline. This finding has been
supported by studies conducted in the Singapore Longitudinal
Aging Study (Lu et al., 2021), a Chinese elderly cohort study (Ng
et al., 2009), and the United States National Health and Nutrition
Examination Survey (NHANES) (Hu Y. et al., 2024). The GNRI,
calculated using serum albumin levels, has been widely used in
nutritional assessments among older adults. A prospective study
from the Chinese Longitudinal Healthy Longevity Survey (CLHLS)
demonstrated a significant association between low GNRI and
cognitive decline (Sun et al., 2021). However, most previous studies
focused primarily on elderly populations. In the present study, we
also observed a significant association between low GNRI and an
increased risk of EOMCI among young and middle-aged Chinese
patients with T2DM.

Elevated oxidative stress and systemic inflammation are
strongly linked to cognitive impairment (Gahtan and Overmier,
1999; Takeda et al., 2014). A study based on the Atherosclerosis
Risk in Communities (ARIC) cohort found that individuals in
the highest quartile of systemic inflammation during middle age
experienced cognitive decline approximately 7.8% faster than those
in the lowest quartile (Walker et al., 2019). Chronic inflammation
inhibits lymphocyte proliferation, leading to reduced lymphocyte
counts and impaired secretion of anti-inflammatory cytokines;
thus, low lymphocyte counts can serve as an indicator of chronic
inflammation (Moro-García et al., 2018). Tsukita et al. (2021) found
that low lymphocyte counts were associated with rapid declines
in MoCA scores and could interact with the apolipoprotein E
epsilon 4 (APOE ε4) allele to exacerbate cognitive impairment.
Similarly, in patients with T2DM, low lymphocyte counts were
significantly associated with cognitive decline (Du et al., 2021;
Yu et al., 2023). Additionally, lower serum albumin levels
were significantly associated with elevated inflammatory markers
(Yamamoto et al., 2021) and mediated cognitive deterioration

linked to pro-inflammatory diets (Chen et al., 2024). The PNI,
calculated from serum albumin and lymphocyte count, indicated
that lower PNI values, reflective of poor nutritional intake, were
significantly associated with an increased risk of cognitive decline
(Zhou et al., 2021). Our findings also showed a significant
association between low PNI and increased risk of EOMCI in
T2DM patients.

Numerous cross-sectional studies (Schram et al., 2007; Roberts
et al., 2009), meta-analyses (Kuo et al., 2005; Shen et al., 2019;
Leonardo and Fregni, 2023), and prospective cohort studies
(Marioni et al., 2009; Arce Renteria et al., 2020; Lewis and
Knight, 2021) have demonstrated that elevated CRP levels are
associated with higher risks of cognitive impairment and dementia,
particularly in younger populations (Lewis and Knight, 2021) and
in non-memory cognitive domains (Marioni et al., 2009; Roberts
et al., 2009; Arce Renteria et al., 2020). Using K-means clustering,
this study similarly identified significantly lower scores in non-
memory cognitive domains among participants characterized
by low body composition and poor nutritional-inflammatory
status. The novel CALLY index, which integrates serum albumin,
lymphocyte count, and CRP levels, was assessed for the first time in
this study in relation to EOMCI risk in T2DM patients. The results
revealed that the CALLY index showed the strongest negative
association with EOMCI risk among combined effects analyses,
outperforming GNRI, PNI, and the FAR, indicating its potential
utility for cognitive risk assessment.

4.3 Potential advantages of ABSI in
identifying cognitive impairment risk

The association between BMI and cognitive impairment or
dementia risk demonstrates significant heterogeneity across age,
sex, and ethnicity (Cronk et al., 2010; Coin et al., 2012; Sobow
et al., 2014; Vints et al., 2023). Recent meta-analyses indicated
a U-shaped association between BMI and dementia risk among
middle-aged populations, with both underweight and obesity
increasing risk. Conversely, in elderly populations, the association
is predominantly negative, where low BMI is associated with
increased risk and high BMI with decreased risk (Beydoun
et al., 2008; Qu et al., 2020). Our findings similarly revealed a
significant association between low BMI and an increased risk
of EOMCI among middle-aged patients with T2DM. However,
BMI has inherent limitations as an indicator of general obesity.
The American Medical Association explicitly states that BMI
cannot reflect body shape differences related to ethnicity, sex,
and age, nor can it adequately assess abnormal fat distribution,
particularly visceral adiposity (American Medical Association,
2023). Abdominal obesity is recognized as a more critical risk factor
for cognitive impairment compared to general obesity (O’Brien
et al., 2020; Tang et al., 2021), although its assessment tools require
further refinement. WC, despite partially reflecting abdominal
obesity, cannot differentiate between subcutaneous and visceral fat
and is influenced by height and body shape. The newly proposed
ABSI, which integrates waist circumference, height, and weight,
addresses individual variations in body shape and more accurately
identifies visceral adiposity (Krakauer and Krakauer, 2012; Ji et al.,
2018; Lu et al., 2023). Previous studies have demonstrated that
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high ABSI is independently associated with an increased risk of
cognitive decline or dementia in elderly populations from the
United States (Zhang Y. et al., 2024) and rural China (Wang et al.,
2023). Using QGC and LASSO cross-validation analysis, our study
further demonstrated that ABSI contributes significantly more to
the risk of EOMCI compared to other body shape indices. This
finding suggests the potential advantages of ABSI as a marker of
visceral adiposity. Future prospective studies involving ethnically
diverse populations are warranted to validate the clinical utility
of ABSI in the early identification and stratified management of
cognitive impairment.

4.4 Interaction of sarcopenia,
nutritional-inflammatory status, and
abdominal obesity in relation to
cognitive impairment

Previous studies have mainly focused on the independent
associations of abdominal obesity, sarcopenia, and nutritional-
inflammatory status with cognitive impairment, whereas their
interactions have long been overlooked. Sarcopenia often coexists
with malnutrition and elevated inflammatory status (Gingrich
et al., 2019; Ligthart-Melis et al., 2020; Xu et al., 2023). This
coexistence might arise from protein-energy deficiencies and
impaired antioxidant defenses due to malnutrition, triggering
dysregulated secretion of pro-inflammatory cytokines and
chronic low-grade inflammation. Chronic inflammation, in
turn, activates muscle catabolic pathways and inhibits muscle
synthesis (Mujico et al., 2012; Bourke et al., 2016; Xing et al.,
2023), creating a vicious cycle of “malnutrition–inflammation–
sarcopenia.” Cross-sectional studies conducted by Liu et al.
(2021), Hu et al. (2021) in elderly community populations
in western China indicated that nutritional status assessed
by the MNA-SF partially mediates the relationship between
sarcopenia and cognitive decline. Our study, through interaction
analysis, further revealed a significant synergistic effect between
low SMMI and low CALLY index on increased EOMCI risk.
Moreover, the interaction between abdominal obesity (high
ABSI) and malnutrition (low GNRI) further exacerbated EOMCI
risk, suggesting a shared or mutually reinforcing pathological
mechanisms involving visceral adiposity accumulation and
nutritional-inflammatory imbalance. Visceral adiposity induces
chronic low-grade inflammation through abnormal secretion
of pro-inflammatory cytokines (Misiak et al., 2012; Kjærgaard
et al., 2020), whereas malnutrition-induced protein-energy
deficiency further weakens antioxidant defenses (Mujico et al.,
2012; Bourke et al., 2016). These factors synergistically amplify
inflammatory cascades. Spanish studies have highlighted the
common coexistence of obesity and malnutrition in patients
with acute coronary syndrome (Freeman and Aggarwal, 2020)
and elderly T2DM (Sanz Paris et al., 2013). Furthermore,
a prospective study by Yaffe et al. (2004) confirmed that
metabolic syndrome, characterized primarily by abdominal
obesity, accelerated cognitive decline only in individuals with
high inflammation levels. These findings indicate inflammation
as a central mediator linking metabolic abnormalities to cognitive
impairment.

4.5 Multifactorial overlapping state in
T2DM patients and its impact on
cognitive function

Sarcopenia often coexists with malnutrition and chronic low-
grade inflammation, especially notable when chronic diseases or
cancers progress to cachexia (Evans et al., 2008; von Haehling
et al., 2010; Gingrich et al., 2019; Lee et al., 2021; Ida et al., 2024;
Jensen and Cederholm, 2024). Although the loss of body tissues
is the core pathological feature of cachexia, high fat mass may
partially mask the progressive loss of muscle and other tissue cells
(Biolo et al., 2014; Gingrich et al., 2019; Livshits and Kalinkovich,
2019). Notably, sarcopenia and obesity can coexist in the early
stages of chronic diseases, forming a condition termed “sarcopenic
obesity.” Obesity itself may drive the onset and progression of
sarcopenia through multiple mechanisms (Barazzoni and Gortan
Cappellari, 2020; Schneider and Correia, 2020; Park and Choi,
2023; Booranasuksakul et al., 2024). A systematic review integrating
differentially expressed microRNAs (miRNAs) in individuals with
sarcopenia and obesity found that 24 miRNAs changed consistently
in the same direction across 10 studies. These miRNAs are
primarily involved in biological processes such as proteostasis,
mitochondrial dynamics, determination of muscle fiber types,
insulin resistance, and adipogenesis (Dowling et al., 2022). From
a pathological perspective, systemic homeostasis imbalance caused
by excessive fat accumulation is a crucial factor. Obesity-induced
insulin resistance enhances skeletal muscle protein degradation
via activation of the ubiquitin-proteasome system. Impaired
mitochondrial oxidative phosphorylation leads to insufficient
ATP production, directly reducing muscle contraction capability.
Ectopic fat accumulation further exacerbates mitochondrial
dysfunction and oxidative stress through lipotoxicity. Additionally,
inflammatory cytokines, such as interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-α), secreted by adipose tissue create
a positive feedback loop with systemic low-grade inflammation,
synergistically promoting muscle degradation. Reduced physical
activity and lipid infiltration into skeletal muscle also contribute
significantly to decreased muscle density and strength loss (Biolo
et al., 2014; Livshits and Kalinkovich, 2019; Barazzoni and
Gortan Cappellari, 2020; Park and Choi, 2023). Therefore, insulin
resistance, disrupted energy metabolism, chronic inflammation,
reduced physical activity, and insufficient protein intake collectively
form the core mechanisms underlying the overlapping and
progressive conditions of sarcopenic obesity and nutritional-
inflammatory states (Biolo et al., 2014; Livshits and Kalinkovich,
2019; Barazzoni and Gortan Cappellari, 2020).

The vicious cycle involving visceral fat accumulation, chronic
low-grade inflammation, insulin resistance, and pancreatic β-
cell dysfunction is central to the onset and progression of
T2DM. As the disease evolves, insulin resistance and β-cell
dysfunction severely disrupt the body’s energy metabolism,
leading to glucose and lipid homeostasis imbalance. Under
normal fasting or starvation conditions, hepatic gluconeogenesis
transiently activates to maintain blood glucose levels. However,
in T2DM patients, this pathway remains persistently hyperactive,
promoting lipolysis. When fat stores become insufficient, the
body is forced to rely on protein breakdown for energy
production (Aatsinki et al., 2019). This scenario results in

Frontiers in Aging Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1498478
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1498478 March 24, 2025 Time: 18:50 # 14

Lin et al. 10.3389/fnagi.2025.1498478

metabolic abnormalities similar to cachexia, such as weight
loss and skeletal muscle wasting (Yoshida and Delafontaine,
2015; Shih-Wei, 2022). Therefore, obesity is commonly observed
in the early stages of T2DM. As the disease progresses,
sarcopenia combined with obesity, accompanied by malnutrition
and elevated inflammation, may develop. When energy metabolism
becomes further disrupted, significant weight loss and muscle
wasting become more pronounced, especially in patients with
longer disease duration, multiple complications, and older
age (Barazzoni and Gortan Cappellari, 2020). In the T2DM
population, the overlapping conditions of sarcopenia, abdominal
obesity, and malnutrition-inflammatory states are widespread
(Biolo et al., 2014; Low et al., 2020; Ida et al., 2024),
particularly prevalent in patients with comorbid conditions
such as chronic kidney disease or heart failure (von Haehling
et al., 2010; Lee et al., 2021; Ida et al., 2024). Notably,
this multifactorial overlap is not limited to elderly T2DM
patients; similar mechanisms may also occur in middle-aged
individuals.

Cognitive impairment, T2DM, and sarcopenic obesity
share common pathophysiological mechanisms, including
insulin resistance, mitochondrial dysfunction, oxidative stress,
and systemic inflammation (Arosio et al., 2023; Xing et al.,
2023; Booranasuksakul et al., 2024). Brain insulin resistance
can accelerate Alzheimer’s disease -related pathology through
multiple mechanisms. Persistent peripheral hyperinsulinemia
inhibits insulin transport into the brain and reduces insulin-
degrading enzyme activity, resulting in impaired clearance and
accumulation of amyloid-beta (Aβ) peptides. Aβ oligomers
binding to neuronal insulin receptors induce synaptotoxicity,
further exacerbating insulin resistance. Reduced insulin signaling
also activates glycogen synthase kinase 3β (GSK-3β), promoting
tau hyperphosphorylation and neurofibrillary tangle formation,
creating a vicious cycle (Cholerton et al., 2013; Ma et al.,
2015). Additionally, peripheral metabolic disturbances, such
as hyperglycemia and hyperlipidemia, exacerbate brain energy
metabolism dysfunction and suppress hippocampal function
(Cholerton et al., 2013). Mitochondrial DNA mutations
and metabolic disorders cause mitochondrial dysfunction
and excessive reactive oxygen species (ROS) production,
resulting in insufficient energy supply and organelle damage.
These factors contribute to neuronal apoptosis and cognitive
impairment (Mao, 2013; Lejri et al., 2019). Concurrently,
chronic inflammation and impaired neurogenesis further
drive neurodegeneration (Gahtan and Overmier, 1999; Xing
et al., 2023). On the other hand, skeletal muscle can influence
brain structure and function via the “muscle-brain axis.” In
sarcopenia, dysregulated secretion of myokines with pro-
inflammatory and anti-inflammatory functions (e.g., IL-6,
BDNF, and irisin) impairs their beneficial effects on synaptic
plasticity and neuroprotection. This dysregulation further
aggravates neuroinflammation and energy deficits, ultimately
accelerating cognitive decline and increasing dementia risk
(Arosio et al., 2023; Xing et al., 2023). Interventions targeting
improvements in insulin sensitivity and addressing mitochondrial
dysfunction and oxidative stress hold promise for delaying
cognitive decline and mitigating associated pathological
progression.

4.6 Research innovations and
multidimensional integrated
management of high-risk populations

The innovation of this study lies in being the first to
integrate muscle mass, body shape, and nutritional-inflammatory
status as a comprehensive whole for evaluating their association
with EOMCI risk among young and middle-aged patients with
T2DM, employing multiple advanced statistical models. The
results indicated that the simultaneous presence of low body
weight, reduced muscle mass, abdominal obesity, malnutrition,
and elevated inflammatory status significantly increased EOMCI
risk. Stratified analysis demonstrated that this combined effect
was statistically significant only among male patients, consistent
with previous findings linking lower albumin levels (Hu Y.
et al., 2024), higher CRP levels (West et al., 2020), and higher
ABSI scores (Zhang Y. et al., 2024) to more pronounced
cognitive decline in males. Moreover, patients with a longer
disease duration, poor glycemic control, and DMC exhibited
more pronounced energy metabolism disruption and oxidative
stress. These patients were more likely to experience overlapping
conditions, such as low muscle mass, underweight, and nutritional-
inflammatory states, thus becoming high-risk groups for EOMCI.
These findings provide new theoretical insights for developing
effective intervention strategies, suggesting the necessity of early
nutritional assessment and screening in middle-aged T2DM
patients. Incorporating malnutrition and sarcopenia management
into routine diabetes care, along with cognitive monitoring
and interventions, could effectively reduce EOMCI risk through
optimized weight management, muscle mass preservation, and
comprehensive improvements in nutritional and inflammatory
status.

4.7 Limitations and future perspectives

The study has some limitations. The cross-sectional design
limits the ability to establish causal relationships, restricting
findings to associations. Data from single measurements do not
capture dynamic changes in body composition and nutritional
inflammatory status, potentially affecting the understanding of
long-term effects. Additionally, the sample’s geographic specificity
may limit the generalizability of the results. Finally, potential
interference from antihypertensive or statin medications on
inflammatory markers such as CRP was not controlled, potentially
affecting result interpretation. Future research should consider
using longitudinal designs to more accurately establish causal
relationships and include more diverse populations. Additionally,
research on lifestyle and nutritional interventions is crucial for
developing more effective targeted interventions for EOMCI
in T2DM patients.

5 Conclusion

The study demonstrates that in patients with T2DM, the
overlapping conditions of low body weight, reduced muscle mass,
abdominal obesity, malnutrition, and elevated inflammatory status
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are overall significantly associated with an increased risk
of EOMCI. This finding highlights the impact of the
multifactorial interplay on cognitive health, suggesting that future
interventions should focus on the integrated management of
these risk factors to effectively reduce the risk of EOMCI in
patients with T2DM.
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