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Introduction: The moment-by-moment variability in brain signals, a newly

recognized indicator, demonstrates both the adaptability of an individual’s brain

as a unique trait and the distribution of neural resources within that individual in

response to constantly shifting task requirements. This study aimed to explore

brain signal variability in older adults using oxyhemoglobin (HbO) variability

derived from fNIRS during tasks with increasing signal-to-noise ratio (SNR)

loads and to assess the effects of varying degrees of hearing loss on speech

recognition performance and related brain signal variability patterns.

Methods: Eighty-one participants were categorized into three groups: healthy

controls (n = 30, aged 65.5 ± 3.4), mild hearing loss (n = 25, aged 66.0 ± 3.7),

and moderate to severe hearing loss (n = 26, aged 67.5 ± 3.7). Speech perception

was tested under quiet, 5 dB SNR, and 0 dB SNR conditions.

Results: Results revealed that the brain signal variability increased with higher

SNR loads in healthy older adults, indicating enhanced neural resource

allocation with the SNR load. In contrast, we found that hearing loss reduced

brain signal variability during speech recognition tasks, especially in noisy

conditions, in the mild hearing loss and moderate to severe hearing loss

groups, possibly indicating decreased neural processing efficiency. Additionally,

a positive correlation between brain signal variability and speech recognition

performance was observed in healthy control participants across all SNR

conditions, suggesting that brain signal variability could dynamically respond to

the precise level of auditory environment demands. However, this relationship

was only significant at the 5 dB SNR condition in hearing loss groups.

Discussion: Taken together, this study underscores the significant impact of

hearing loss on brain signal variability modulation in auditory cognitive tasks

and highlights the need for further research to understand the underlying

neural mechanisms.
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Introduction

Aging is associated with a range of cognitive and sensory
declines, including hearing loss, which significantly impacts
the quality of life in older adults (Tremblay et al., 2021).
Hearing loss is not merely a peripheral sensory deficit but
also involves changes in central auditory processing and
brain function. Specifically, hearing loss has been shown to
significantly impact various cognitive functions, including
memory, attention, and executive functioning (Slade et al.,
2020). According to the sensory deprivation hypothesis
(Humes et al., 2013), long-term hearing loss leads to the
redistribution of cognitive resources to auditory perception
over time, resulting in a decline in cognitive ability. This
functional change may lead to alterations in brain signal
variability, which is crucial for efficient neural processing
(Li et al., 2024).

Brain signal variability reflects the dynamic adaptability and
flexibility of neural systems, and greater variability has been
linked to better cognitive performance in various tasks. In
the field of cognitive neuroscience, most studies concentrate
on deriving conclusions from average brain activation patterns,
while the moment-to-moment brain signal variability is often
considered as conceptualized “noise” (Garrett et al., 2010;
Steinberg et al., 2022). However, recent neuroimaging research
has demonstrated the variability of brain signal is a critical
component of brain function, enabling the nervous system to
adapt to constantly changing internal and external demands
and make appropriate behavioral responses (Koen and Rugg,
2019; Li et al., 2024). This is complementary to the theory
that biological variation is necessary for optimal brain function
(Nomi et al., 2017). According to the coordination dynamics
theory, the brain is a metastable configuration that dynamically
fluctuates between integration and isolation. The variability
of brain neural signals is the basis for high integration
or segregation brain networks to flexibly transition between
metastable configurations (Nomi et al., 2017; Tognoli and
Kelso, 2014). Evidence has suggested that brain signal variability
within individuals can dynamically adjust to specific levels of
environmental demands (Garrett et al., 2014; Grundy et al., 2019;
Li et al., 2024), and the potential neural mechanisms of intra-
individual variability (Boylan et al., 2021). Specifically, linking brain
signal variability with multiple indicators of task performance, such
as accuracy and reaction time, could help understand individual
differences in brain variability behind cognitive performance.
Variability in brain signals may demonstrate utility as a novel
measure of individual differences in cognitive neuroscience
(Mohr and Nagel, 2010).

Previous research has predominantly focused on how
cognitive load affects brain signal variability during tasks
involving working memory and attention (Grundy et al.,
2019; Steinberg et al., 2022). During the n-back working
memory task, an increase in task difficulty is associated with
greater variability in brain signals, which correlates with
faster and more stable response times (Steinberg et al., 2022).
Similarly, numerous studies have shown that variability in brain
function may have practical applications as a new method for
measuring individual differences in cognitive neuroscience

(Good et al., 2020; McGinley et al., 2015; Rieck et al., 2022;
Zhang et al., 2021). In addition, previous research has found that
brain signal variability across large-scale brain regions may be
impacted by the developmentally aging process (Rieck et al., 2022).
Some perspectives maintain that older adults demonstrate reduced
individual variability in brain responses when confronted with
continuously changing cognitive demands. Specifically, compared
to younger individuals, older adults exhibit less fluctuation
in brain activity when transitioning from non-task-relevant
regions to various task-relevant regions (Cieslak et al., 2018;
Rieck et al., 2022). This limited variability in core cognitive
control areas may contribute to the working memory deficits
commonly observed in the aging process. These studies suggest
that increased brain signal variability provides the flexibility to
shift between different cognitive states, enhancing the dynamic
range and contributing to more effective cognitive performance
on the tasks being performed. However, opposite findings is also
reported that older adults show greater brain signal variability
across primarily cortical regions during the fixation period of
a task, compared with younger individuals (Boylan et al., 2021;
Garrett et al., 2013). It is plausible that brain signal variability
may exhibit both increases and decreases across the adult lifespan,
with the effects of these fluctuations potentially differing across
various brain regions (Boylan et al., 2021). Prior studies conducted
by our lab and other research groups have investigated that
age-related hearing loss (characterized by gradually developing
high-frequency hearing loss) is often accompanied by declines in
auditory function (Du et al., 2016; Wang et al., 2024; Yang et al.,
2024). Prior neuroimaging research has revealed an increased
activation in prefrontal regions associated in adults with age-
related hearing loss. This enhanced activation is believed to
reflect a compensatory strategy employed to improve auditory
performance (Proskovec et al., 2016). However, the impact of
auditory cognitive load, particularly in the context of hearing loss,
on brain signal variability remains underexplored. Understanding
these dynamics is essential, as they may reveal compensatory
mechanisms or deficiencies in neural processing associated with
hearing loss.

The main objective of this study was to utilize HbO
variability derived from the fNIRS technique to explore how
brain signal variability in older adults changes in response
to tasks with increasing signal-to-noise ratio (SNR) loads.
Additionally, we aimed to examine the effects of varying
degrees of hearing loss on speech recognition performance
and related brain signal variability patterns. By doing so,
we seek to provide a deeper understanding of the neural
mechanisms underlying auditory processing in older adults with
hearing loss and to identify potential biomarkers for assessing
and managing auditory cognitive decline. In this study, we
hypothesize that brain signal variability will increase with lower
SNR loads in healthy older adults, reflecting greater neural
resource allocation and cognitive flexibility. Conversely, we
expect that hearing loss will reduce brain signal variability,
particularly under noisy conditions, indicating a less adaptive
neural system. Furthermore, we anticipate that greater brain
signal variability will be associated with better speech recognition
performance, but this relationship may be disrupted in individuals
with hearing loss.
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2 Materials and methods

2.1 Sample

Eighty-four subjects were recruited and participated in the
study. Participants were excluded from participating if they
reported a history of neurological disorders, prior use of hearing
aids or cochlear implants, and cognitive-function-affecting drug
use or treatment. The general cognitive function of each subject
was examined using the Mini-Mental State Examination (MMSE)
and Montreal Cognitive Assessment (MoCA), while depression
symptoms were evaluated using the Geriatric Depression Scale
(GDS) and University of California at Los Angeles Loneliness Scale
(UCLA). Each participant fully understood the purpose of the study
and provided written informed consent before the experiment. All
patients recruited in this study were able to independently follow
the study instructions. Due to participants’ incorrect execution
of task procedures or low data quality, three participants were
excluded from all data analysis. Experiment was approved by
the local ethics committee (Institutional Review Board of Beijing
Institute of Otolaryngology and Beijing Tongren Hospital), and was
performed in accordance with the Declaration of Helsinki.

2.2 Audiometry

Hearing loss was assessed using the speech-frequency pure tone
average (PTA), measured with a clinical audiometer at frequencies
of 0.25 kHz, 0.5 kHz, 1 kHz, 2 kHz, 4 kHz, and 8 kHz. Based on PTA
results, thirty participants were categorized into the healthy control
(HC) group (PTA < 25 dB HL at 0.25 kHz–4 kHz bilaterally,
14.6 ± 3.4 dB HL, Range: 8.8 dB HL–20.0 dB HL), 25 participants
were categorized into the mild hearing loss (M_HI) group (PTA 26–
40 dB HL at 0.25 kHz–4 kHz bilaterally, 33.1 ± 3.9 dB HL, Range:
26.8 dB HL–35.3 dB HL), and 26 participants were categorized into
the moderate to severe hearing loss (MS_HI) group (PTA > 40 dB
HL at 0.25 kHz–4 kHz bilaterally, 46.6 dB HL ± 3.4 dB HL, Range:
41.8 dB HL–63.8 dB HL), using a Melison audiometer following
WHO standards (Chadha et al., 2021). The audiogram can be found
in the Supplementary Figure 1.

2.3 Speech perception test

The speech perception stimuli material consisted of 12 easily
understood sentence lists, each containing 20 sentences with 10
words per sentence spoken by a male talker. These lists were
obtained from the Mandarin Hearing Test in Noise (MHINT)
(Wong et al., 2007), for example, “I really enjoy the bright spring.”
Three test conditions were adjusted to two levels of SNR (5 dB and
0 dB) using speech-shaped noise (SSN) and the quiet condition
(Figure 1A). The SNR quantified the level difference between the
speech signal and the background white noise, with 5 dB SNR
indicating the speech was 5 dB louder than the noise and 0 dB SNR
indicating equal levels. Sentences with varying SNR conditions and
in quiet were randomly presented to participants, with each SNR
condition repeated five times. Participants were asked to repeat as
many words as they could recognize at the end of each sentence

and were encouraged to guess if they were not certain under each
condition. The speech intensity was 65 dB, delivered through a
speaker positioned 1 m directly in front of the subject, with testing
conducted in an isolation chamber where background noise levels
were ≤ 30 dB. Participants received instructions and practice before
the experiment. Speech recognition scores for each participant were
then obtained by calculating the number of correct words in each
sentence under various conditions.

2.4 fNIRS data acquisition

The assessment of brain performance during speech perception
was carried out using a block-designed fNIRS task, similar to the
approach utilized in our previous studies. The acoustic stimuli
material utilized in the fNIRS experiment were also derived from
MHINT software akin to those used in behavioral experiments.
Each fNIRS session started with 3 min of resting in silence, and
three conditions of acoustic stimuli (quiet, SNR 5 dB, and SNR
0 dB) were presented in a block design, with 20 s sound presentation
blocks interleaved with silence blocks of 20 s (Figure 1B). Each
stimulus condition was randomly presented across five blocks to
ensure that no condition repeated consecutively. The experimental
procedure was programmed based on the Psychotoolbox 3.0
extensions in MATLAB 2020b (MathWorks).

fNIRS data was acquired using a NirScan-9000A device
equipped with 24 light-emitting diode sources and 24 avalanche
photodiode detectors positioned on the temporal, parietal, and
frontal areas of the scalp. Each source-detector pair, spaced 3 cm
apart, constituted a channel, resulting in a total of 63 channels.
Measurements of oxyhemoglobin (HbO) and deoxyhemoglobin
(HbR) concentrations in the cerebral cortex were obtained using
near-infrared light at wavelengths of 730 nm, 808 nm, and
850 nm, sampled at 11 Hz. A three-dimensional (3D) digital
locator (Patriot, Polhemus, United States) was employed for
optode positioning, referencing the nasal root point, central
point, left preauricular point, and right pre-auricular point. These
coordinates were then registered to the Montreal Neurological
Institute and Hospital (MNI) standard brain template using spatial
registration in NirSpace (Danyang Huichuang Medical Equipment
Co., Ltd., China). The regions of interest (ROI) for scanning
included areas pertinent to the dual route models of human
speech perception (Friederici et al., 2017) and prefrontal regions
associated with related to auditory function compensation (Du
et al., 2016), encompassing the left superior temporal gyrus (STG),
left middle temporal gyrus (MTG), Broca’s area, Wernicke’s area,
left dorsolateral prefrontal cortex (DLPFC), left ventral premotor
cortex (PMv), and corresponding regions in the right hemisphere,
as illustrated in Figure 1C and the detailed positioning can be found
in Supplementary Table 1.

2.5 Data pre-processing

The FC-NIRS software package was used to evaluate the
quality of the fNIRS data. Channels were considered invalid and
subsequently excluded from further analysis if the heart rate
(1 Hz∼1.5 Hz) was not detectable or if the signal-to-noise ratio
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FIGURE 1

The speech stimuli and fNIRS task process. (A) Speech stimuli for the experimental assessments. Sample waveform was presented to illustrate the
sound conditions in a quiet environment, signal-to-noise ratio (SNR) of 5 dB, 0 dB. (B) The pseudorandom block design of stimulation.
(C) Placement of the channel of fNIRS. The red buttons represent the fNIRS emitting diode sources, the blue buttons represent the fNIRS detectors.

(SNR) fell below 10 (Xu et al., 2015). Ultimately, three subjects
were identified with unusable data and were consequently excluded
from further analysis. The valid recordings were then preprocessed
using the NIRS_KIT toolbox (Hou et al., 2015), including (1)
the conversion of optical density according to the Modified Beer-
Lambert law (MBLL), (2) motion artifact correction based on
the method called temporal derivative distribution repair (TDDR)
(Fishburn et al., 2019) which effectively removes baseline shift and
spike artifacts, (3) detrending using the wavelet-MDL to exclude
physiological noise such as heart rate, and breathing (Yang et al.,
2024), and (4) bandpass filtering (0.01 Hz–0.2 Hz). For the current
study, only HbO data was analyzed because previous studies
have shown that HbO changes are more sensitive than HbR in
determining cerebral blood flow changes. Additionally, HbO data
exhibit a higher signal-to-noise ratio (Li et al., 2024). The mean
of the 5 s before the onset of the block was chosen as the baseline
for baseline correction and an additional 10 s after the block’s end
was included to allow sufficient time for the hemodynamic response
function (HRF) to return to baseline. This process resulted in a total
block-averaged time series of 35 s.

2.6 HbO variability calculation

After preprocessing the fNIRS data, intra-individual brain
signal variability in HbO was quantified by calculating the standard
deviation (SD) of the HbO time series for the channel of
interest. Compared to alternative metrics (such as mean squared
successive differences), the SD maintains the same scale as the
original time series, rendering it a more appropriate measure for

evaluating the temporal variability of short time series, such as
those found in block design tasks (Steinberg and King, 2024;
Zhang et al., 2018). Each SNR condition included 1,925 data
points (35 s task duration × 5 repetitions × sampling rate
of 11 Hz). Significantly, to minimize the differences in signal
magnitude, we applied z-score normalization to standardize the
HbO signal for each channel before computing the SD HbO.
This variability assessment is crucial for understanding neural
adaptation to dynamic environments and stability maintenance in
diverse scenarios (Garrett et al., 2013; Halliday et al., 2018; Li et al.,
2024).

2.7 Behavioral partial least squares
analysis

Behavioral Partial Least Squares (PLS) analysis was a
multivariate statistical, data-driven technique to identify significant
relationships between brain activity and task performance. The
PLS method in neuroscientific research explored meaningful
structures by modeling channel covariance and avoided multiple
comparison corrections (Krishnan et al., 2011; Meidenbauer et al.,
2021). In addition, the data-driven nature reduces the impact of
individual researcher biases (Romero et al., 2015). We employed
the behavioral PLS to investigate the relationships between HbO
variability and speech perception performance by accessing inter-
individual effects in three groups. The goal of this analysis was
to explore whether higher levels of SD HbO associate with better
speech perception performance at each SNR load, and to identify
the main control brain regions that maintain this association.
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In the present study, behavioral PLS was performed to
investigate the correlation between performance and channel-
specific HbO variability across three SNR levels in three
groups. The behavioral data consisted of averaged speech
recognition score for each SNR level for each participant
during the speech perception behavioral test and the fNIRS
brain data consisted of the SD of the HbO corresponding
to changes in HbO time series for each SNR level for each
participant. Specifically, behavioral PLS relies on singular value
decomposition (SVD) applied to a covariance matrix. For example,
consider the healthy control group, matrix X represents HbO
variability, and matrix Y represents speech recognition score,
both of which are mean-centered and normalized. Matrix X
(90 × 63) consist of 30 subjects across 63 channels, with
three matrices corresponding to each SNR level. Matrix Y
(90 × 1) comprises three 30 × 1 vectors, each representing
average speech recognition score for a SNR level. Then, the
mean-centered matrix undergoes SVD to derive orthogonal
latent variables (LVs) that capture significant covariance between
HbO variability and behavioral score, highlighting optimal
associations between brain variables and behavior variables.
Typically, the number of experimental conditions or behavioral
variables matches the number of LVs. Each LV comprises
the singular value variable, which represents the strength of
the effect that the LV represents. The singular vectors of
brain saliences denote the brain variables most relevant to the
behavior relationship.

Statistical testing occurs at two levels in behavioral PLS
analyses. Initially, the overall significance of the LV is assessed
through permutation tests. The significance of each LV pattern is
assessed using 5,000 permutation tests. LVs are deemed significant
if their singular value exceeds that of 95% of singular values derived
from randomly shuffled data (permuted p < 0.05). Additionally,
the reliability of each brain salience is evaluated using 5,000
bootstrap tests. A Bootstrap Ratio (BSR), normalized to assess
robustness, is calculated by dividing the mean salience of each
channel by its bootstrapped standard error. In this study, channels
with bootstrap ratios larger than + 2 or smaller than − 2 were
determined to be statistically significant corresponding to a 95%
confidence level. Furthermore, bootstrap estimation is employed to
determine 95% confidence intervals for each LV (Li et al., 2024).
Non-overlapping confidence interval in behavioral PLS with zero
suggests a significant correlation between HbO variability and
behavioral performance.

2.8 Statistical analysis

We conducted a one-way ANOVA test to statistically analyze
the demographic characteristics of three groups of participants.
Significantly, the statistical analysis of gender adopted the two-
sided chi-squared test. In addition, a mixed two-way ANOVA
test (3 groups × 3 SNR conditions) was used to detect the
impact of hearing loss groups and SNR conditions on behavioral
performance (speech perception) and fNIRS signal variability.
A detailed description of the statistics for each indicator has been
described in the result section. SPSS 20.0 and Gretna statistical
software were used in this study (Wang et al., 2015).

3 Results

3.1 Participants characteristics

We conducted one-way ANOVA and two-sided chi-squared
test (only for gender) to examine the baseline level of demographic
inclusion in three groups. Results showed that the groups were
not different in age, gender, years of education (all p > 0.05). In
addition, three groups of participants exhibited normal cognitive
abilities (MoCA and MMSE) and depression status (GDS and
UCLA), with no significant inter-group differences (Table 1, all
p > 0.05). Remarkably, the one-way ANOVA test indicated
substantial differences in hearing levels across the three groups [all
F(2, 78) > 27.3, p < 0.001] at various frequency thresholds of the
pure tone audiometry (0.25 kHz, 0.5 kHz, 1 kHz, 2 kHz, 4 kHz,
and 8 kHz, Table 1). Post hoc comparisons revealed that the M_HI
group exhibited significantly lower hearing levels compared to the
HC group but better than the moderate to SM_HI group under
different frequency threshold conditions.

3.2 Behavioral results

The mixed two-way ANOVA test (3 groups × 3 SNR
conditions) revealed that both the groups [F(2, 243) = 5.8,
p = 0.005] and SNR conditions [F(2, 243) = 134.8, p < 0.001]
significantly influenced the speech recognition scores (Figure 2).
Additionally, there was a significant interaction between groups
and SNR conditions [F(4, 243) = 5.9, p = 0.004). The simple
effect analysis indicated significant differences in speech perception
scores among the three groups at 5 dB SNR [F(2, 78) = 5.4,
p = 0.006] and 0 dB SNR [F(2, 78) = 5.7, p = 0.005] noise
conditions. For the condition of 5 dB SNR, post hoc comparisons
showed that the MS_HI adults performed significantly worse in
speech perception tasks than the HC adults (Bonferroni correction,
p = 0.006), and a marginal statistical difference with M_HI adults
(Bonferroni correction, p = 0.073). For the condition of 0 dB
SNR, the speech perception scores for the MS_HI adults were
also significantly lower than the HC adults (Bonferroni correction,
p = 0.005) and the M_HI adults (Bonferroni correction, p = 0.049).

3.3 fNIRS signal variability results

As described in the methodology section, we defined 12
symmetrical ROIs and conducted statistical analysis on the HbO
variability recorded by the channels within these regions. Detailed
coordinates are available in the Supplementary materials. A mixed
two-way ANOVA test was employed to investigate the influence
of hearing loss on HbO variability during speech recognition
tasks under noisy conditions. The main effect of SNR conditions
was found significant for the HbO variability in left MTG [F(2,
243) = 3.5, p = 0.04], left STG [F(2,243) = 3.8, p = 0.03], left
DLPFC [F(2, 243) = 5.2, p = 0.008], left Wernicke’s area [F(2,
243) = 3.5, p = 0.04], and right Wernicke’s area [F(2, 243) = 3.6,
p = 0.03]. We conducted a planned comparison to clarify the
comparison between the SNR conditions under three groups. The
results showed the HbO variability was significant SNR-related
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TABLE 1 Demographic characteristics.

HC, n = 30 M_HI, n = 25 SM_HI, n = 26 P-value

Mean (s.d.) Mean (s.d.) Mean (s.d.)

Age (years) 65.5 (3.4) 66.0 (3.7) 67.5 (3.7) 0.108a

Gender (male/famale) 14/16 12/13 13/13 0.585b

Education (years) 11.8 (1.6) 11.3 (2.2) 11.7 (2.0) 0.649a

MoCA 26.8 (1.8) 26.9 (1.9) 26.3 (2.8) 0.538a

MMSE 28.2 (1.5) 27.5 (1.8) 27.8 (1.5) 0.262a

GDS 5.3 (5.7) 4.2 (3.7) 5.0 (4.2) 0.663a

UCLA 34.2 (6.7) 33.0 (7.6) 34.6 (9.6) 0.748a

L_250 9.2 (4.5) 16.8 (8.9) 27.5 (15.4) < 0.001a

L_500 10.5 (4.2) 20.4 (7.8) 35.2 (10.9) < 0.001a

L_1000 15.0 (6.8) 24.6 (7.3) 42.5 (9.2) < 0.001a

L_2000 12.7 (9.9) 29.6 (7.3) 48.7 (7.9) < 0.001a

L_4000 21.0 (10.9) 39.6 (13.8) 57.3 (14.1) < 0.001a

L_8000 27.5 (15.3) 49.0 (14.1) 63.1 (13.2) < 0.001a

R_250 13.7 (5.9) 23.2 (9.0) 33.1 (13.5) < 0.001a

R_500 12.5 (4.5) 22.2 (7.4) 36.2 (11.9) < 0.001a

R_1000 11.7 (5.6) 16.8 (8.9) 25.0 (7.8) < 0.001a

R_2000 13.3 (8.7) 30.4 (7.5) 50.6 (9.7) < 0.001a

R_4000 20.0 (8.7) 41.2 (12.7) 57.3 (12.7) < 0.001a

R_8000 25.8 (17.5) 48.8 (14.9) 61.5 (13.2) < 0.001a

aOne-way ANOVA. bTwo-sided chi-squared test.

FIGURE 2

Comparison speech recognition scores among the three groups. Group means for speech recognition score under a quiet condition and 5 dB, 0 dB
signal-to-noise ratio (SNR). The range of error bars represent the maximum and minimum values. HC, healthy control; M_HI, mild hearing loss;
MS_HI, moderately severe hearing loss.; *p < 0.05; **p < 0.01.

differences in HC group (Figure 3A) in left MTG [F(2, 87) = 7.5,
p = 0.001], left STG [F(2, 87) = 6.1, p = 0.003], left DLPFC
[F(2, 87) = 6.5, p = 0.002], left Wernicke’s area [F(2, 87) = 8.3,
p = 0.001], and right Wernicke’s area [F(2, 87) = 6.3, p = 0.003].
Post hoc multiple comparison results revealed that HbO variability

under low SNR condition (0 dB SNR) was significantly higher than
that under high SNR condition (5 dB SNR) and quiet condition
(Bonferroni correction, P < 0.05). Results indicated that higher
levels of HbO variability associate with SNR load during the speech
perception task. However, no association pattern between HbO
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FIGURE 3

The main effect of SNR conditions. It is noteworthy that, due to the high variability of HbO in HC individuals, the range of the y-axis for this group is
inconsistent with that of the other two groups. (A) Represents the HC group, (B) denotes the M_HI group, and (C) refers to the MS_HI group. HC,
healthy control; M_HI, mild hearing loss; MS_HI, moderately severe hearing loss; MTG, middle temporal gyrus; SRG, superior temporal gyrus;
DLPFC, dorsolateral prefrontal cortex; *p < 0.05; **p < 0.01; ***p < 0.001.

variability and SNR loading was found in the other two hearing loss
groups (Figures 3B, C).

The main effect of group condition was also found significant
for the HbO variability in left MTG [F(2, 243) = 25.6, p< 0.001], left
DLPFC [F(2, 243) = 18.3, p < 0.001], right DLPFC [F(2, 243) = 8.9,
p = 0.004], right STG [F(2, 243) = 12.3, p = 0.001]. Results of
planned comparison showed HbO variability was significant group-
related differences in the condition of 0 dB SNR (Figure 4C) in left
MTG [F(2, 78) = 10.5, p < 0.001], left DLPFC [F(2, 78) = 12.3,
p < 0.001], right DLPFC [F(2, 78) = 5.1, p = 0.008], right STG [F(2,
78) = 6.5, p = 0.020). Post hoc multiple comparison results revealed
that HbO variability of HC group was greater than the M_HI
and SM_HI group (Bonferroni correction, P < 0.05). However,

no association pattern was found in the quiet (Figure 4A) and
5 dB SNR (Figure 4B) conditions. Results indicated that hearing
loss could particularly affect the HbO variability during speech
recognition tasks, especially in low SNR environments.

3.4 Behavioral PLS analysis: HbO
variability and speech recognition
performance

For each group, separate behavioral PLS analysis was conducted
to correlate performance with changes in HbO variability under
different conditions (i.e., quiet, 5 dB SNR, 0 dB SNR). We found
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FIGURE 4

The main effect of group condition. (A) Represents the HC group, (B) denotes the M_HI group, and (C) refers to the MS_HI group. HC, normal
hearing; M_HI, mild hearing loss; MS_HI, moderately severe hearing loss; MTG, middle temporal gyrus; SRG, superior temporal gyrus; DLPFC,
dorsolateral prefrontal cortex; *p < 0.05; **p < 0.01; ***p < 0.001.

a single significant LV that captured the relationship between
HbO variability and speech recognition performance measures,
and explained 84.3% of the crossblock covariance (permuted,
p = 0.04) for the HC group. For the significant LV 1, greater HbO
variability in bilateral STG, bilateral Wernicke’s area, and right
DLPFC (Figure 5A) was associated with better speech recognition
score during three conditions (i.e., quiet, 5 dB SNR, 0 dB SNR). We
also found a single significant LV for the M_HI group (86.1% of
the crossblock covariance, permuted, p = 0.04) and MS_HI group
(86.9% of the crossblock covariance, permuted, p = 0.03). However,
only the speech recognition score under the condition of 5 dB SNR
was contribute to this LV. Specifically, greater HbO variability in
bilateral STG, bilateral Wernicke’s area, left PMv, and left DLPFC

was associated with better speech recognition score for the M_HI
group (Figure 5B). And similar pattern was found in the M_HI
group (Figure 5C).

4 Discussion

The main objective of this study was to utilize the HbO
variability derived from fNIRS technique to explore how the brain
signal variability of older adult changes in response to tasks of
increasing SNR load and to examine the effects of varying degrees of
hearing loss on speech recognition performance and related brain
signal variability patterns. Results revealed that (1) brain signal
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FIGURE 5

The relationship between task-modulated fNIRS signal variability and task-modulated performance using a behavior-PLS model are shown in left,
and its associated spatial pattern expression in right. The middle column shows the distribution histogram of Bootstrap ratios. (A) Represents the HC
group, (B) denotes the M_HI group, and (C) refers to the MS_HI group. HC, normal hearing; M_HI, mild hearing loss; MS_HI, moderately severe
hearing loss. Yellow/red regions indicate greater up-modulation of brain variability with a decrease in accuracy. Error bars represent bootstrapped
95% confidence intervals. Bootstrap ratios increase from yellow to red, with a threshold value of greater than 2.00.

variability increased with increasing SNR load in healthy older
adults; (2) hearing loss influenced brain signal variability during
speech recognition tasks, particularly under noisy conditions; (3)
greater brain signal variability generally supported better speech
recognition score in three SNR conditions (quiet, 5 dB SNR, 0 dB
SNR) for the healthy older adults, but this pattern was only found
under SNR5 conditions in the hearing loss groups.

Accumulating research has demonstrated that brain signal
variability reveals the dynamic changes in brain states influenced
by internal factors (Steinberg and King, 2024). Specifically, greater
brain signal variability has been linked to healthy adults, with
faster reaction time, more consistent performance and cognitive
flexibility, in multiple tasks involving perception, perceptual
matching, attentional, working memory, and cognitive cueing
tasks (Clark et al., 2021; Garrett et al., 2011; Reinhart and
Nguyen, 2019; Waschke et al., 2021). Our results showed that

HbO variability in the left MTG, left STG, left DLPFC, and
bilateral Wernicke’s area regions increased as the SNR load
increased, showing an up-modulation of HbO variability in these
regions in healthy older adults (Figure 3A). This load-dependent
alteration in brain variability may signify the reinforcement of
computational resources during the speech recognition tasks, and
greater neural variability may indicate a more efficient neural
system in individuals when performing multiple tasks. In fact,
most previous studies have investigated how increased cognitive
load in working memory tasks affects fNIRS signal variability (Li
et al., 2024; Steinberg et al., 2022), but research on the impact
of auditory cognitive load on brain signal variability has not yet
been found. Our findings enhance and build upon prior research
showing that brain variability is influenced by environmental
factors and auditory task-related demands for the healthy older
adults.
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However, this similar significant variability was not found
in the M_HI (Figure 3B) and SM_HI (Figure 3C) groups. In
addition, we found that the HbO variability of M_HI and SM_HI
groups in the left MTG, bilateral DLPFC, and right STG regions
were significantly reduced compared to the HC group, particularly
under extreme noisy conditions (0 dB SNR, Figure 4C). Numerous
studies had shown that the overall brain signal variability across
large-scale brain regions had emerged as a marker of a well-
functioning brain (Guitart-Masip et al., 2016), and might be
a potential biomarker for certain diseases, such as Alzheimer’s
disease (Scarapicchia et al., 2019) and Parkinson’s disease (Maidan
et al., 2022). Evidence also suggested that speech processing
difficulties associated with hearing loss were not only associated
with peripheral hearing loss but also with a cerebral decline across
several functional networks (Harris et al., 2021; Zan et al., 2019),
which might result in a neural system that was less flexible to
speech recognition under noise environment. As introduced in
the introduction, the variability of neural signals is fundamental
for the flexible transition between high-integrated or segregated
brain networks in metastable configurations. We speculate that
hearing loss leads to neural dedifferentiation in auditory-related
brain regions, resulting in a decrease in neural system flexibility in
individuals with hearing loss. Therefore, our research demonstrated
that hearing loss significantly reduced the modulation of HbO
variability in response to auditory cognitive load tasks in older
adults. We posited that future fNIRS research is necessary to
explore the mechanisms and significance of HbO variability in
the modulation related to age-related hearing loss and auditory
cognitive processes.

Moreover, results of the PLS analysis that incorporated
individuals’ speech recognition score by different SNR level
demonstrated evidence for an interaction of SNR load and
performance in the recruitment of the auditory circuitry-related
regions. This multivariate approach showed that there was a
significant positive correlation between brain signal variability and
behavioral performance, that was, the higher HbO variability in
bilateral STG, bilateral Wernicke’s area, and right DLPFC, the better
speech recognition score in HC group (Figure 5A). Significantly,
this association was found in all three SNR conditions, suggesting
that the inter-individual brain variability-behavior relationship
was stable and sensitive in HC older adults. Thus, we posited
that brain signal variability could dynamically respond to the
precise level of auditory environment demands. However, our
results also showed that there was a significant positive correlation
between brain signal variability and behavioral performance
in M_HI group (Figure 5B) and MS_HI group (Figure 5C).
And the brain regions with significant correlations increased,
primarily including the left PMv, and left DLPFC, compared
to the HC group, suggesting that hearing loss affected brain
variability-behavior relationship. The source of changes in brain
variability with hearing loss was still unclear (Maidan et al.,
2022), but accumulating evidence suggested that altered regional
variability may reflect sub-optimal functioning and compensatory
mechanisms (Deco et al., 2009; Garrett et al., 2013). Evidence
also suggested that the increased activity in the frontal cortex
(Du et al., 2016) and PMv (Wong et al., 2009) compensated
for impaired speech perception in age related high-frequency
hearing loss older adults. Overall, our findings were consistent
with previous studies that the recruitment of the left PMv, and left

DLPFC might provide a means of compensation in older adults
with hearing loss for decoding speech in the adverse listening
environment.

Of note, the association of brain variability-behavior
relationship was only evident in the 5 dB SNR condition,
suggesting that this relationship might be affected by SNR
load in hearing loss adults. Specifically, the speech recognition
scores were relatively high and concentrated in quiet condition
compared to noise conditions (Figure 2), and the sensitivity of
brain variability to hearing loss decreased (Figure 4A). These
findings may suggest the presence of a ceiling effect, whereby
participants have achieved their maximal performance levels. This
phenomenon could elucidate the lack of significant correlations
between variability and performance under these conditions. In
addition, the non-significant result was also found for the 0 dB
SNR condition. Researchers have argued that if a task is too
difficult, people may disengage from it or simply “give up,” since
it exceeds one’s capability (Causse et al., 2017; Mandrick et al.,
2013). And participants may have varying thresholds for noise
tolerance, which could influence their performance in challenging
listening environments. We infer that the 0 dB SNR condition
might not be reflecting the highest auditory cognitive load across
all participants. Results of a multivariate analysis including
performance and standard task-evoked activation further support
this idea (Meidenbauer et al., 2021). Thus, the large individual
differences and generally poor performance of the 0 dB SNR
condition may explain the non-significant results in this study and
should be examined in more detail in future work.

There are several issues that may limit the interpretability
of our findings that should be mentioned. First, although our
results suggest that hearing loss is associated with a decrease in
the variability of brain signals. However, no significant differences
were observed between the M_HI group and MS_HI group. These
might be due to the overlap in auditory characteristics between mild
and the moderate to severe hearing loss. The sensitivity of sample
size may also affect the results, leading to similar performance
between the two groups. Future studies should consider increasing
the sample size of patients with varying degrees of hearing loss
to further elucidate the effects of hearing loss severity on the
variability of brain signals. Additionally, this study included only
three different SNR levels, and the association of brain variability-
behavior relationship was only evident in the 5 dB SNR condition.
Future studies could set more levels in order to gain further
insight into the relationship between brain signal variability and
behavioral performance.

In conclusion, this study utilized fNIRS-derived HbO
variability to investigate how brain signal variability in older
adults responds to tasks of increasing SNR load and examined the
impact of varying degrees of hearing loss on speech recognition
performance and related brain signal variability patterns. Our
study highlights the significant impact of hearing loss on brain
signal variability modulation in auditory cognitive tasks and
underscores the need for further research in this area. In addition,
the insights derived from the variability-performance correlations
may inform the design of assessments aimed at measuring auditory
cognitive processing capabilities. This might enhance the ability
to assess individual differences and tailor interventions to meet
specific auditory processing needs.
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