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Parkinson’s disease-related fatigue has an insidious onset and complex 
pathomechanisms, causing many adverse effects on patients. In clinical practice, 
Parkinson’s disease-related fatigue has not received sufficient attention, and its early 
diagnosis and targeted interventions are inadequate. Currently, pharmacological 
treatments for Parkinson’s disease-related fatigue have limited efficacy and 
nonpharmacological therapies such as non-invasive brain stimulation techniques 
and exercise therapy have been shown to have a role in improving Parkinson’s 
disease-related fatigue. Further studies have revealed that modulation of functional 
cortical excitability, induction of neuroplasticity changes, inhibition of oxidative 
stress, improvement of cardiorespiratory fitness, and enhancement of muscle 
strength may be potential mechanisms of action of non-pharmacological therapies. 
As relevant research continues to progress, targeted therapy based on the theory 
of neuroplasticity may become an important therapeutic idea for Parkinson’s 
disease-related fatigue. This article provides an overview of the diagnosis, etiology, 
and treatment of Parkinson’s disease-related fatigue, and on this basis proposes 
a new diagnostic and therapeutic idea of targeting neuroplasticity to improve 
Parkinson’s disease-related fatigue for clinical reference. Further studies on the 
pathological mechanisms of Parkinson’s disease-related fatigue are needed in the 
future to optimize the treatment regimen of Parkinson’s disease-related fatigue 
to improve the efficacy of treatment for the benefit of patients.
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1 Introduction

As a common neurodegenerative disease, studies have shown that the prevalence of 
Parkinson’s disease is about 1–2% in people over 60 years of age (Bloem et al., 2021; Cabreira 
and Massano, 2019). Patients with Parkinson’s disease can exhibit a wide range of motor and 
non-motor symptoms, resulting in disruption of daily life and increased socio-medical burden. 
The focus of Parkinson’s disease research has been on motor symptoms, while non-motor 
symptoms are under-recognized and under-intervened clinically due to the insidious nature 
of the symptoms (Kumar et al., 2022). Fatigue is one of the common non-motor symptoms in 
Parkinson’s patients (Friedman and Friedman, 1993). Relevant studies have found that about 
half of Parkinson’s patients present with symptoms of fatigue, as evidenced by the presence of 
significantly reduced energy levels almost every day of the month or for most of the day, or by 
exhibiting fatigue that is disproportionate to the level of activity (Barone et al., 2009; Siciliano 
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et al., 2018). In Parkinson’s patients fatigue often occurs insidiously 
and develops before the onset of motor symptoms and may be a major 
cause of disability (Friedman et al., 2007). The fatigue experienced by 
patients with Parkinson’s Disease, excluding other causes, is called 
Parkinson’s Disease-Related Fatigue (PDRF). PDRF is a feeling of 
exhaustion and weakness without a clear cause that is disproportionate 
to physical activity, which is chronic and unpredictable (Bruno and 
Sethares, 2015; Friedman et al., 2016). PDRF can have adverse effects 
on patients’ exercise capacity, cardiorespiratory fitness, quality of life, 
and social participation. PDRF can directly affect the aerobic capacity 
and exercise endurance of Parkinson’s patients, leading to a decline in 
motor function. In addition, one study showed that PDRF may further 
exacerbate neuropsychiatric symptoms such as apathy, depression, 
and anxiety, thus affecting patients’ quality of life (Béreau et al., 2022). 
Further studies have found that PDRF shows a gradual worsening 
trend with the progression of the disease (Ongre et al., 2021; Herlofson 
and Larsen, 2002). A longitudinal cohort study showed that patients 
with PDRF had a longer duration of illness, higher doses of levodopa 
medication, and more significant progression of motor symptoms as 
well as sleep, mood, cognitive, and autonomic dysfunction (Zhou 
et  al., 2023). Moreover, PDRF increases in severity as the disease 
progresses and can interact with sleep disorders, pain, and 
psychosomatic problems, thus further decreasing patients’ quality of 
life (Diaconu et al., 2024). In some ways, the PDRF may be even more 
destructive due to the above adverse effects. Therefore, early 
identification and active intervention of PDRF are significant in 
improving the quality of life and the prognosis of patients with 
Parkinson’s disease (Heimrich et al., 2023; Mantri et al., 2021).

2 Recognition and diagnosis of PDRF

PDRF is not easy to draw attention to because of its insidious 
symptoms and the fact that it is mainly based on the patient’s 
subjective feelings. The diagnosis of PDRF is based on the 
simultaneous fulfillment of the following conditions: a confirmed 
diagnosis of Parkinson’s disease, the presence of fatigue and related 
symptoms, and the exclusion of other causes of fatigue (Kluger et al., 
2016). PDRF is primarily assessed using questionnaires. The Fatigue 
Severity Scale (FSS) and The Multidimensional Fatigue Inventory 
(MFI) are commonly used clinical scales to assess fatigue in patients 
with Parkinson’s disease. The FSS focuses on assessing the extent and 
frequency of fatigue and its impact on daily life. The scale consists of 
nine items, each rated 0–7, and the total score is finally tallied. The 
total score reflects the fatigue status, the higher the score the greater 
the fatigue and the greater the impact on life. The MFI consists of 20 
items, each rated on a scale of 1–7, and assesses fatigue on various 
dimensions, including physical, mental, and activity status. One study 
found that an FSS score of ≥37 and an MFI score of ≥60 had 
significant diagnostic value for Parkinson’s disease-related fatigue 
(Huether et al., 2023). PDRF should be distinguished from lethargy, 
emotional apathy, and depression in Parkinson’s patients. 
Characterized by energy deficiency and increased effort required for 
daily activities, PDRF has a different pathomechanism and treatment 
than other co-morbid symptoms in Parkinson’s patients. Indeed, 
PDRF is a multidimensional symptom encompassing physical 
sensations, emotional components, and cognitive involvement 
(Mantri et al., 2020). Currently, the diagnosis of PDRF relies on scale 

scores, and further research is needed to confirm the diagnosis of 
PDRF through relevant objective neurologic tests or markers 
(Sarmento et al., 2024).

3 Etiology of PDRF

The basic pathomechanism of Parkinson’s disease is the death of 
dopaminergic neurons in the substantia nigra and decreased secretion 
of neurotransmitters such as dopamine. A double-blind, placebo-
controlled crossover study found that levodopa improved physical 
fatigue in patients with Parkinson’s disease, suggesting that PDRF is 
associated with reduced dopamine secretion (Lou et al., 2003). Some 
scholars agree that other non-motor symptoms of Parkinson’s disease 
such as sleep disorders, depression and anxiety, and affective and 
cognitive disorders may contribute to PDRF (Nassif and Pereira, 2018; 
Lin et al., 2024). According to the analysis of relevant research results, 
Pathological changes in brain networks, neuroinflammation, and 
autonomic dysfunction are possible causes of PDRF in patients. 
Pathological changes in brain networks are important clinical features. 
A clinical study found abnormal functional connectivity of the 
sensorimotor network system and bilateral precuneus associated with 
PDRF. Further, it looked to the left posterior central gyrus as a 
potential target of action for Parkinson’s Disease-Related Fatigue 
(Shan et al., 2023). Moreover, some scholars believe that the functional 
defects of the striatal-cerebellar-cerebral cortical network are involved 
in the pathological process of PDRF (Hou et al., 2022). In addition, 
abnormal alterations in functional brain regions related to psycho-
cognition may also be a potential mechanism for PDRF. A clinical 
study found a significant correlation between reduced frontal 
perfusion and fatigue in Parkinson’s disease patients by SPECT (Abe 
et al., 2000). Further studies revealed that the altered connectivity of 
the default mode network in the frontal lobe and posterior cingulate 
cortex may be an important pathologic mechanism for patients with 
PDRF (Tessitore et  al., 2016). Another study suggested that the 
frontoparietal attention network may mediate PDRF (Liu et al., 2022). 
Parkinson’s disease is closely related to the dysregulation of 
neuroimmune and inflammatory responses (Cohen et al., 2024). One 
study found that elevated levels of inflammatory components in the 
serum of PD patients may mediate the development of PDRF (Nikitina 
et al., 2024). A study on the relationship between plasma inflammatory 
cytokines and fatigue in Parkinson’s disease showed that plasma levels 
of inflammatory cytokines, such as IL-1β, IL-18, TNF-α, and 
phosphorylated α-syn, were significantly increased in patients with 
Parkinson’s disease accompanied by fatigue compared to those 
without associated symptoms (Wang et  al., 2023). Abnormal 
aggregation of alpha-synuclein in Parkinson’s patients activates toll-
like receptor 4, releasing pro-inflammatory cytokines. The binding of 
pro-inflammatory cytokines to the endothelial cells of the blood–
brain barrier can disrupt the blood–brain barrier, and a large amount 
of pro-inflammatory cytokines enter the brain and inhibit the reuptake 
of glutamate by astrocytes, which may be a possible mechanism of 
Parkinson’s disease-associated fatigue (Wang et al., 2021). In addition 
to the above causes, autonomic dysfunction is associated with PDRF 
(Bansal et al., 2022; Zhao et al., 2021). Elevated serum homocysteine 
levels in Parkinson’s patients treated with levodopa can activate the 
sympathetic nervous system and lead to autonomic-related blood flow 
disorders (Mendes et al., 2014). In addition, abnormal vasodilation 
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and contraction due to autonomic dysfunction can affect blood 
pressure and blood distribution, resulting in decreased muscle 
function and fatigue (Nakamura et al., 2011). Low-intensity resistance 
training with blood flow restriction can improve autonomic 
dysfunction and may be an effective form of exercise for PDRF (Bane 
et al., 2024).

4 Treatment of PDRF

In recent years, the understanding and treatment of PDRF have 
attracted increasing attention, but related progress remains slow. 
Currently, the treatment of PDRF can be  categorized into 
pharmacological and non-pharmacological treatments, with the 
former including medications such as levodopa, dopamine agonists, 
rasagiline, and antidepressants, and the latter including non-invasive 
brain stimulation techniques, exercise therapy, acupuncture, and yoga. 
Since the efficacy of pharmacologic treatments is not conclusive, 
scholars are now turning to nonpharmacologic therapies as important 
interventions (Figure 1).

4.1 Non-invasive brain stimulation

As a non-pharmacological treatment, non-invasive brain 
stimulation techniques are increasingly used in neurodegenerative 
diseases (Kourosh-Arami et  al., 2021). As a non-invasive brain 
stimulation technique, transcranial direct current stimulation (tDCS) 
modulates cortical excitability and induces changes in synaptic 
plasticity in the cortex of the stimulated area. The current study found 
that impaired synchronization of interhemispheric resting-state 
functional connectivity may be one of the neural mechanisms of PDRF 
(Kourosh-Arami et al., 2021). According to this analysis, the therapeutic 
concept of modulating altered cortical excitability may help to alleviate 
patient-related symptoms. Different studies have suggested different 

sites of action. In addition to the motor cortex, the frontal lobes and the 
hippocampus may be potential targets for PDRF action. Frontal cortex 
dysfunction plays an important role in PDRF, and the frontal lobe was 
chosen as the site of action for tDCS. The efficacy of anodic tDCS 
stimulation of the frontal lobe in the treatment of fatigue in patients 
with neurological disorders has been demonstrated. Selecting the 
dorsolateral prefrontal cortex as the stimulation site may be a potential 
treatment option for PDRF in the future, and further studies are needed 
in terms of optimal stimulation parameters and specific efficacy 
evaluation (Enciu et al., 2011; Azevedo et al., 2022). In addition, the 
application of anodic tDCS to the hippocampal region, which promotes 
long-term potentiation and brain-derived neurotrophic factor 
expression in this region, maybe another option for treating PDRF 
(Azman and Zakaria, 2022). Simonetta et  al. (2023) targeted the 
primary left motor cortex and gave anodal tDCS stimulation with a 
stimulation current intensity of 2.0 mA every 20 min and continuous 
intervention for 10 days to observe the efficacy. The results showed that 
the NMSS total score and “item 2” (sleep/fatigue) score were 
significantly reduced in Parkinson’s patients, and the investigators 
suggested that anodic tDCS stimulation in the M1 region induced 
changes in cortical neuroplasticity as a potential mechanism for 
improving PDRF. Other scholars have suggested that high-frequency 
repetitive transcranial magnetic stimulation also has potential 
application to promote Parkinson’s disease patients neuroplasticity. 
Giving high-frequency magnetic stimulation to the corresponding 
functional brain areas can improve the motor symptoms of patients, as 
well as the non-motor symptoms such as depression and bad mood, but 
the selection of the target area and the related parameter settings still 
need to be further researched (Chen and Chen, 2019; Bougea, 2024).

4.2 Exercise therapy

Exercise therapy is an important component of Parkinson’s disease 
management. Exercise elevates the level of neurotrophic factors, 

FIGURE 1

Summary of studies of non-pharmacological therapy for Parkinson’s disease-related fatigue.
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promotes the expression of anti-inflammatory cytokines, activates 
microglia, and decreases the level of pro-inflammatory cytokines 
(Svensson et al., 2015). It has been suggested that exercise therapy 
increases the level of brain-derived neurotrophic factor (BDNF) to 
regulate neuroplasticity, an important mechanism to improve the 
clinical outcome of Parkinson’s disease patients (Kaagman et  al., 
2024). A range of exercise therapies are applied to the treatment of 
PDRF. di Cagno et  al. (2023) observed the effect of whole-body 
electromyographic stimulation on fatigue in Parkinson’s patients and 
found that the increase of exercise endurance and coordination was 
more obvious in patients of the low-frequency whole-body 
electromyographic stimulation aerobic training group, and its 
improvement of central fatigue was more significant. They suggested 
that the elevated serum BDNF levels in patients after aerobic exercise 
may be an important reason. They also concluded that whole-body 
electromyographic stimulation can rapidly activate motor units and 
alter muscle physiological recruitment patterns, effectively improving 
sarcopenia. Lin et al. (2022) found that Lower Limb Cycling Training 
significantly improved central fatigue in Parkinson’s patients, and that 
exercise elevated BDNF levels and improved dopaminergic 
neurotransmission, as well as altered cortical excitability, maybe the 
underlying mechanisms. Wu et  al. (2021) observed the effects of 
home-based exercise on motor and non-motor symptoms in 
Parkinson’s patients and found that low- to moderate-intensity aerobic 
exercise can significantly improve non-motor symptoms such as 
fatigue. Home-based exercise is safe and easily accepted by patients. 
Abasi et  al. (2020) found that Vestibular rehabilitation exercise 
improved fatigue and activities of daily living in Parkinson’s patients, 
and they identified neuroplastic changes and neuromuscular 
reorganization as the underlying mechanisms. Atan et  al. (2019) 
concluded that body weight-supported treadmill training stimulates 
activity-dependent neuroplasticity, reduces exercise resistance, and 
increases aerobic exercise intensity, which may improve fatigue 
symptoms in Parkinson’s patients. Another study on the effects of tai 
chi on non-motor symptoms of Parkinson’s disease and related 
mechanisms showed enhanced brain network function, down-
regulation of inflammation, and enhanced energy metabolism in 
Parkinson’s patients after tai chi training (Li et al., 2024). Tai chi can 
be one of the optional forms of exercise for PDRF.

5 Targeting neuroplasticity: a new idea 
for the treatment of 
Parkinson’s-related fatigue

Neuroplasticity is a fundamental characteristic of the brain. As a 
self-adjustment mechanism of the human body to cope with changes 
in the internal and external environments, neuroplasticity is of great 
significance for neural development and injury repair (Johansson 
et al., 2020). As a fundamental property of the human brain to adapt 
to internal pathological damage and external environmental changes, 
neuroplasticity changes involve different molecular, cellular, and 
cortical tissue reorganization levels. The essence of neuroplasticity is 
the self-regulatory mechanism of the brain through structural and 
functional changes in response to chronic stress, injury, etc. (Zhang 
et al., 2018). Neuroplasticity is fundamental in neurodegenerative 
diseases such as Parkinson’s. In the face of the death of related neurons, 
how the surviving neurons adapt to this change, and compensate the 

neural network by adding new connections or accelerating 
neurotransmitter transmission, is significant for delaying the 
progression of the disease, and improving the related symptoms (Chen 
and Zhang, 2023). Non-invasive brain stimulation technology and 
exercise therapy are important therapies for regulating neuroplasticity. 
Among the non-invasive brain stimulation techniques, tDCS is mostly 
applied to PDRF treatment, and its specific action targets and 
parameters, etc. need to be  continued to be  researched to realize 
precise rehabilitation. Currently, the theory of exercise-induced 
neuroplasticity is attracting the attention of scholars. Summarizing the 
current relevant studies, exercise-induced neuroplasticity may be an 
important mechanism for the improvement of PDRF in patients.

5.1 Exercise protects dopaminergic 
neurons through activation of astrocytes

The pathophysiologic mechanisms of PDRF are not clear, and 
dopamine dysfunction may be one of them. Elevating dopamine levels 
in the central nervous system by dopaminergic drugs may be  an 
important strategy for treating PDRF (Lazcano-Ocampo et al., 2020; 
Fu et al., 2016). In addition, the use of certain treatments to delay the 
degeneration of dopaminergic neurons in the substantia nigra is also 
one of the therapeutic ideas for PDRF. Physiologically, nigrostriatal 
dopaminergic neurons degenerate slowly with age, and Parkinson’s 
disease can develop if more than 50% of the neurons degenerate 
rapidly, with a prevalence of approximately 2–5% according to studies 
(Morales et al., 2021). Degeneration of nigrostriatal dopaminergic 
neurons usually begins at striatal synapses, and the resulting proteins 
and organelles accumulate in degenerating axons and are stored in the 
globus pallidus, which produces autophagosomes with some 
autophagy but cannot completely remove the associated cellular 
debris, which needs to be further engulfed and degraded by astrocytes 
(Morales et  al., 2020). Astrocytes provide the optimal 
microenvironment for maintaining neuronal function and survival 
(Valori et  al., 2019; Kuter et  al., 2020). Studies have shown that 
dysregulation of glial cell phagocytosis and degradation and altered 
microenvironment of dopamine neurons is one of the pathological 
mechanisms of Parkinson’s disease (Tremblay et  al., 2019). In the 
central nervous system, astrocytes can actively participate in the 
construction of synaptic homeostasis by phagocytosis of synapses, 
neuronal fragments, axonal mitochondria, and pathological protein 
aggregates. In addition, astrocytes may also regulate microglia 
phagocytosis by secreting molecules such as IL-33 and C3 (Lee and 
Chung, 2021). If astrocytes do not provide the lysosomes required to 
complete the degradation of dopaminergic neuronal fragments, the 
degenerated fragments may activate microglia in the medial forebrain 
tract near the dopaminergic axons, leading to neuroinflammation and 
the spread of retrograde axonal degeneration to dopaminergic 
neurons in the substantia nigra (Tagliaferro and Burke, 2016). Thus, 
the phagocytosis of astrocytes is essential to stop the activation of 
microglia and the spread of retrograde axonal degeneration in 
Parkinson’s pathological process (Ho, 2019). Therefore, enhancing the 
phagocytosis of astrocytes through exercise activation can effectively 
delay the progression of the disease, which is a possible mechanism 
for the rehabilitative efficacy of exercise therapy when applied to 
Parkinson’s disease. Other studies have suggested that the dysfunction 
of astrocyte homeostasis leading to neuronal excitotoxicity in patients 
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with Parkinson’s disease is the key to its progression, and the main 
mechanism lies in the impaired ability of glial cells to reuptake 
glutamate. Increased levels of glutamate, an excitatory 
neurotransmitter, in the central nervous system lead to abnormal 
synaptic signaling, causing neuronal excitotoxicity and death (Iovino 
et al., 2020). After exercise, astrocytes have an increased capacity to 
take up glutamate and further convert glutamate and γ-aminobutyric 
acid to glutamine, which both eliminates the continued adverse effects 
of the relevant neurotransmitters and provides material support for 
neuronal synthesis of the relevant transmitters (Zhou et al., 2019). In 
addition, astrocytes secrete antioxidant factors (glutathione and 
ascorbic acid) during exercise to protect neurons in the central 
nervous system of patients with Parkinson’s disease (Isooka 
et al., 2021).

5.2 Exercise elevates BDNF levels to 
regulate neuroplasticity

Nigrostriatal neuronal degeneration and altered striatal plasticity 
are important pathogenetic mechanisms in Parkinson’s disease. BDNF 
is a key factor in neuronal development, survival, and is essential for 
the maintenance of neuronal function in the striatum and substantia 
nigra. Studies have shown that BDNF promotes the survival of 
dopaminergic neurons, maintains the functional activity of striatal 
neurons, and improves dopamine production and uptake through the 
BDNF/TrkB signaling pathway (Ali et al., 2024; Urbina-Varela et al., 
2020; Hernández-Vara et al., 2020). In addition, BDNF is involved in 
the regulation of neuroplasticity by activating the tropomyosin 
receptor kinase B (TrkB) and inducing long-term potentiation effects 
in the striatum (Wolf et al., 2024). BDNF has neuroprotective effects 
and is involved in the regulation of neuroplasticity, so it is closely 
related to the onset and development of neurodegenerative diseases 
(Koyya et al., 2024). Relevant studies have found that BDNF synthesis 
is affected by a variety of factors, and neurodegenerative diseases, 
aging, as well as chronic inflammatory and stressful stimuli can lead 
to a decrease in its synthesis (Molinari et al., 2020). A meta-analysis 
showed that BDNF levels were significantly lower in PD patients 
compared to healthy controls (Chen and Zhang, 2023). From 
neuropathological analysis, BDNF is involved in the regulation of 
neuropathological processes such as apoptosis, mitochondrial 
dysfunction, and oxidative stress injury, so it may be a potential target 
of action for PD management.

In Parkinson’s patients, exercise can be  neuroprotective by 
promoting the release of growth factors (Schaeffer et al., 2022) and it 
is an effective way to induce changes in neuroplasticity (El-Sayes et al., 
2019). Clinical studies have found that aerobic exercise increases 
volume and functional activity in the hippocampal areas of the 
prefrontal and temporal cortex, the latter two of which are strongly 
associated with fatigue in patients with Parkinson’s disease (Abe et al., 
2000; Zhang et  al., 2018; Chou et  al., 2016). In addition, aerobic 
exercise may slow down the progression of Parkinson’s disease and 
Improve fatigue and related symptoms in patients through BDNF and 
its signaling pathway (Johansson et al., 2020). Both prolonged aerobic 
exercise and a single session of light to moderate intensity exercise 
increase serum levels of BDNF in patients with PD (Azevedo et al., 
2022; El-Sayes et al., 2019). BDNF plays an important role in the 
process of neurogenesis, neuron survival, proliferation, and 

differentiation (Azman and Zakaria, 2022). The main mechanism is 
that mature BDNF can bind to the TrKB receptor, activate signaling 
pathways such as MAPK, PLC-γ, PI3K/Akt, and then activate 
transcription factor cAMP response element-binding protein, playing 
roles in anti-apoptosis and synthesis of cytoskeletal proteins (Palasz 
et al., 2020). Another study found that BDNF also protects neurons 
and delays the progression of Parkinson’s disease by promoting Signal 
transducer and activator of transcription 3 (STAT3) phosphorylation 
and regulating neuronal autophagy (Geng et al., 2023). In conclusion, 
aerobic exercise induces structural and functional changes in relevant 
brain regions through BDNF and its signaling pathways (Kim et al., 
2021; Dou et al., 2022), thus serving to improve the symptoms of 
Parkinson’s patients. In addition, aerobic exercise induces the release 
of BDNF, enhances synaptic GABA clearance, promotes the 
development of neuromyelin and damage repair, and thus alleviates 
central fatigue in Parkinson’s patients. In addition, inhibition of 
oxidative stress, promotion of growth factor release, and repair of 
mitochondria to regulate energy metabolism may also be mechanisms 
by which aerobic exercise improves fatigue.

6 Summary and outlook

As one of the common non-motor symptoms of Parkinson’s 
disease, PDRF has many adverse effects on patients. A related study 
found that more than half of PD patients in Turkey had problems with 
sleep, fatigue, mood, cognition, and urinary tract (Onder and 
Comoglu, 2024). PDRF is a multidimensional clinical condition 
associated with factors such as physical sensations, emotional changes, 
and cognition, and patients present with subjective high levels of 
distress. PDRF significantly impacts patients’ daily lives, and exploring 
its underlying pathophysiological mechanisms for targeted 
interventions is a direction for future research (Tinazzi et al., 2025). 
The specific etiology and pathogenesis are still in the exploratory 
stage, but it is imperative to understand PDRF based on biological, 
psychological, and social models (Weis, 2024). In recent years, studies 
on PDRF have attracted increasing attention from scholars. In the 
early recognition and diagnosis of PDRF, there are many problems 
with the current subjective scale assessment, and exploring possible 
biomarkers has become a hot research topic (Stocchi et  al., 2024; 
Popescu et  al., 2024). Mass spectrometry imaging (MSI), a novel 
molecular imaging technique that visualizes the distribution and 
content of molecular compounds, may be an early screening tool for 
non-motor symptoms in PD patients (Lai et al., 2024). In addition, 
exploring changes in serum biomarker levels with the help of relevant 
techniques may provide clinical implications for the early diagnosis of 
PDRF. It has been suggested that serum insulin-like growth factor 1 is 
correlated with non-motor symptoms in patients with Parkinson’s 
disease and may be a potential biomarker for PDRF (Gu et al., 2025). 
Treatment for PDRF is another topic of current research. 
Pharmacologic therapy is based on levodopa, dopamine agonists, 
rasagiline, and antidepressants, and the efficacy is not exact. 
Non-pharmacologic therapies have some potential to improve PDRF 
and deserve further in-depth study. From the current study, 
modulating functional cortical excitability and inducing changes in 
neuroplasticity may be  important therapeutic concepts for PDRF 
(Andica and Kamagata, 2024; Jahan et al., 2024). In the future, in 
addition to continuing to study the pathomechanisms of PDRF, 
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targeted development of non-pharmacological therapies that target 
neuroplasticity and functional cortex from the center may be the key 
to improving PDRF (Popescu et al., 2024; Sharbafshaaer et al., 2024).
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