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Background: The insula is a critical node of the salience network responsible for

initiating network switching, and its dysfunctional connections are linked to the

mechanisms of mild cognitive impairment (MCI). This study aimed to explore

the changes in functional connectivity (FC) of insular subregions in MCI patients

with varying levels of cerebrospinal fluid (CSF) pathological proteins, and to

investigate the impact of these proteins on the brain network alterations in MCI.

Methods: Based on CSF Amyloid-beta (Aβ, A) and phosphorylated tau protein

(p-tau, T), MCI patients were classified into 54 A−T−, 28 A+T−, and 52

A+T+ groups. Seed-based FC analysis was employed to compare the FC

differences of insular subregions across the three groups. Correlation analysis

was further conducted to explore the relationship between altered FC and

cognitive function. Finally, ROC curve analysis was used to assess the diagnostic

value of altered FC of insular subregion in distinguishing between the groups.

Results: In the left ventral anterior insula, left dorsal anterior insula, and

bilateral posterior insular subnetworks, both the A+T− and A+T+ groups showed

increased FC compared to the A−T− group, with the A+T+ group showing

further increased FC compared to the A+T− group. Additionally, FC of the left

cerebellar posterior lobe was negatively correlated with RAVLT-learning, and

FC of the left middle frontal gyrus was negatively correlated with p-tau levels.

Finally, logistic regression analysis demonstrated that multivariable analysis had

high sensitivity and specificity in distinguishing between the groups.

Conclusion: This study showed that MCI patients with abnormal CSF

pathological protein levels exhibit compensatory increases in FC of insular
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subregions, which in turn affect cognitive function. Our findings contributed

to a better understanding of the pathophysiology and underlying neural

mechanisms of MCI.

KEYWORDS

mild cognitive impairment, Amyloid-beta, tau protein, insular subdivisions, functional
connectivity, functional magnetic resonance imaging

Introduction

The core symptom of mild cognitive impairment (MCI) is
cognitive decline, which often represents the prodromal stage of
Alzheimer’s disease (AD) (Jessen et al., 2014; Xue et al., 2019).
The progression rate from MCI to AD varies among studies,
with an average annual rate of 10%–15% (Petersen et al., 2001;
Guo et al., 2012). Over a span of 6 years, more than 80% of
individuals with MCI have been observed to eventually develop AD
(Busse et al., 2006). Understanding the pathological mechanisms
of MCI, along with early diagnosis and timely intervention, is
crucial for potentially reversing its progression (Kim et al., 2021).
Studies have shown that various biomarkers can predict the
development of MCI and AD, as well as the likelihood of MCI
converting to AD years before clinical symptoms appear (Lin
et al., 2020; Crystal et al., 2023). Consistent evidence indicates
that the hallmark pathologies, Amyloid-beta (Aβ) and tau protein,
are central to AD’s core pathology. Multiple studies have focused
on the development of Aβ and tau biomarkers to track the
progression of AD, revealing that Aβ deposition is one of the
earliest events, followed by tau accumulation (Jack et al., 2013;
Selkoe and Hardy, 2016; Jack et al., 2018). However, recent evidence
suggests tau pathology can emerge independently of Aβ and may
even precede Aβ deposition in certain brain regions (Silvestro et al.,
2022). These findings highlight the complex interplay between
Aβ and tau pathology in the progression of AD, suggesting that
their mechanisms may involve multiple interwoven pathological
pathways, thereby underscoring the need for further research.
Therefore, understanding the relationship between Aβ, tau, and
brain function is key to grasping the early functional changes in AD,
providing valuable strategies for the early diagnosis and treatment
of MCI.

Resting-state functional magnetic resonance imaging (fMRI)
has been proven to be an effective method for analyzing complex
neural networks by measuring intrinsic brain fluctuations in blood
oxygen level-dependent signals (Biswal et al., 1995; Zhang and
Raichle, 2010; Xue et al., 2020). The insula is a core region of
the salience network (SN), involved in higher-order cognition,
autonomic functions, emotional, and sensory processes (Naqvi
and Bechara, 2010). The insula consists of several heterogeneous
subregions, including the ventral anterior insula (vAI), dorsal
anterior insula (dAI), and posterior insula (PI) (Yang et al.,
2022; Zhao et al., 2023). The posterior insula is responsible for
collecting and integrating various interoceptive signals, which are
then relayed to the anterior insula for higher-order representation
and perception processing. The anterior insula is associated
with arousal, interoceptive awareness, and cognitive-emotional

processing, with the dorsal anterior insula being more involved
in higher cognitive functions. These distinct functional roles
suggest that different insular subregions may contribute uniquely to
cognitive, emotional, and sensory processing, making them critical
targets for investigating network alterations in MCI and AD.

Previous studies have shown that different insular subregions
exhibit distinct resting-state functional connectivity (FC) patterns
and are part of different functional networks, which are
differentially affected across AD spectrum (Deen et al., 2011; Zhang
et al., 2016; Yang et al., 2022). Additionally, changes in the FC
of insular subregions have been suggested to contribute to the
cognitive, emotional, and sensory symptoms observed in the AD
spectrum (Liu et al., 2018; Li et al., 2024; Tian et al., 2024).
However, there is still a lack of systematic research on the role
of Aβ and tau pathology in the functional organization of insular
subregions in MCI patients. In particular, the specific impact of
early AD pathological burden on the FC patterns of different insular
subregions remains unclear. Therefore, investigating how Aβ and
tau burden levels influence changes in insular FC in MCI patients
will not only enhance our understanding of the role of pathological
burden in neural communication and information transmission
during the MCI stage but also provide potential neuroimaging
biomarkers for the early identification of AD.

Therefore, the purpose of this study was to investigate the
FC abnormalities of insular subregions in MCI patients with
different cerebrospinal fluid (CSF) pathological protein levels and
their correlation with cognitive function. We hypothesized that
the presence of pathological proteins affects the FC of insular
subregions and was associated with changes in cognitive function.
These alterations were crucial for understanding the pathological
mechanisms of MCI and predicting the levels of pathological
proteins in MCI.

Materials and methods

Subjects

The data utilized in this study were all sourced from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The ADNI database provided detailed inclusion and exclusion
criteria for MCI. The present study included all baseline MCI
patients with resting-state fMRI data from the ADNI-2 and ADNI-
3 phases, totaling 241 participants. Due to partial data loss, 225

1 http://adni.loni.usc.edu
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participants remained. After further excluding 13 participants
with excessive head motion (cumulative translation or rotation of
> 3.0 mm or 3.0◦), a final total of 212 participants were included in
the analysis. The specific MCI diagnostic and inclusion criteria can
be found in the SI Methods. Following previous studies, a threshold
of < 977 pg/ml was applied to identify abnormal CSF Aβ42, and
> 24 pg/ml was used to identify abnormal CSF phosphorylated tau
protein (p-tau) (Hansson et al., 2018; Vromen et al., 2023). Based
on these criteria, the MCI patients were categorized including
abnormal Aβ42 and p-tau (A+T+), abnormal Aβ42 and normal
p-tau (A+T−), normal Aβ42 and abnormal p-tau (A−T+), and
normal Aβ42 and p-tau (A−T−). The A−T+ group was excluded
due to their classification outside the AD spectrum according to
the A/T/N framework (Yoon et al., 2022). As a result, the present
study included 54 A−T− participants, 28 A+T− participants, and
52 A+T+ participants.

Ethical approval for the ADNI study was granted by the
institutional review committees of all participating institutions.
Written informed consent was obtained from participants or their
authorized representatives. Further information was available on
the ADNI website2.

Cognitive function

To evaluate cognitive function, we conducted comparisons
between groups using the composite scores for episodic memory
(EM) and executive function (EF). Additional information on EM
and EF were provided in SI Methods.

Pathological sample acquisition

The CSF samples were collected per the Alzheimer’s
Association Flow Chart for CSF biomarkers. The INNO-
BIAALZBio3 immunoassay kit was used to determine CSF
levels of Aβ42, total tau protein (t-tau), and p-tau. In subsequent
statistical processing, if the value of Aβ42 exceeds 1,700, it will be
treated as 1,700 for statistical purposes.

MRI data acquisition

Detailed scanning information can be obtained from
http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2
MRI Training-Manual-FINAL.pdf and http://adni.loni.usc.edu/
wp-content/uploads/2017/07/ADNI3-MRI-protocols.pdf.

Functional data preprocessing

Preprocessing of resting-state fMRI data was performed using
Data Processing and Analysis for Brain Imaging (DPABI3) software
and its Data Processing Assistant for Resting-State fMRI (DPARSF)

2 www.adni-info.org

3 http://rfmri.org/DPABI

module in MATLAB 2021b4 (Yan et al., 2016). Details regarding
image preprocessing were provided in SI Methods.

FC analysis

Seed-based FC analysis was carried out to explore the
alternation of insula subdivisions using the DPABI software.
According to previous study, six 6 mm spherical region of interest
(ROI) were created, including left vAI (MNI space: −33, 13, −7),
right vAI (MNI space: 32, 10, −6), left dAI (MNI space: −38, 6,
2), right dAI (MNI space: 35, 7, 3), left PI (MNI space: −38, −6,
5) and right PI (MNI space: 35, −11, 6) (Lu et al., 2020). The
mean time series of each ROI was extracted as the reference time
course, and voxel-wise Pearson correlation analysis was performed
between each ROI and the entire brain within the gray matter mask.
Then, a Fisher’s r-to-z transformation was performed to improve
the normality. Finally, for each subject, we generated six z-score
maps that represented the intrinsic FC patterns of the six insular
subregions.

Statistical analysis

Statistical analyses were conducted using Statistical Package for
the Social Sciences (SPSS) software, version 25.0 (IBM, Armonk,
New York, NY, United States). ANOVA and chi-square tests were
applied to compare demographic characteristics, neurocognitive
scales, and CSF pathological protein levels across the three groups:
A−T−, A+T−, A+T+. Post hoc comparisons were adjusted using
Bonferroni correction, with statistical significance set at p < 0.05.

A one-way ANOVA analysis was performed to assess
differences in FC of each insular subregion after controlling
for the influence of age, gender, and years of education (GRF
corrected, voxel p < 0.005, cluster p < 0.05). Subsequently, post hoc
comparisons were conducted using two-sample t-tests, with the
resulting mask from the ANOVA analysis with age, gender, and
years of education as covariates (GRF corrected, voxel p < 0.005,
cluster p < 0.05).

Correlation analyses were carried out in SPSS to explore
relationships between altered FC of each insular subregion and
cognitive function, as well as CSF pathological proteins, while
adjusting for age, sex, and years of education as covariates
(p < 0.05).

Binary logistic regression analysis

Univariate and multivariable binary logistic regression were
performed using SPSS software to evaluate the diagnosis value of
altered FC of each insular subregion in A+T− and A+T+ groups.
Altered FCs identified in the univariate analysis were included in
the multivariable models through backward elimination, based on
the likelihood ratio with a variable selection criterion of p < 0.05.
The predictive performance of the univariate and multivariable

4 http://www.mathworks.com/products/matlab/
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TABLE 1 Demographics and clinical measures of three groups, including A−T−, A+T−, and A+T+.

A−T− (54) A+T− (28) A+T+ (52) F values (χ2) P=values

Age (years) 68.97 (7.65) 71.68 (7.30) 73.16 (5.79)** 4.982 0.008a

Gender (F/M) 20/34 13/15 20/32 0.723 0.697

Years of education 15.91 (2.64) 16.46 (2.57) 16.33 (2.65) 0.534 0.588

MMSE 28.06 (1.89) 28.18 (1.74) 27.38 (2.18) 2.100 0.127

MoCA 23.79 (3.06) 23.04 (2.52) 22.76 (3.61) 1.402 0.250

RAVLT-immediate 38.43 (9.42) 34.68 (9.21) 33.10 (8.94)* 4.620 0.012a

RAVLT-learning 4.91 (2.24) 4.36 (2.09) 3.73 (2.39)* 3.559 0.031a

RAVLT-forgetting 4.43 (3.93) 4.57 (2.17) 5.10 (2.51) 0.654 0.522

RAVLT-prec-forgetting 46.08 (56.25) 57.15 (29.42) 65.50 (30.51) 2.757 0.067

EM 0.49 (5.20) 0.30 (1.05) 0.05 (0.65)** 5.113 0.007a

EF 0.65 (0.91) 0.23 (1.05) 0.24 (0.84) 3.310 0.040

Aβ42 1484.25 (255.03) 726.19 (199.64)*** 622.09 (159.11)*** 249.840 < 0.001ab

T-tau 201.89 (44.35) 178.88 (46.61) 383.71
(130.72)***/***

73.112 < 0.001ac

P-tau 17.36 (3.98) 16.30 (4.68) 40.58 (16.54)***/*** 75.415 < 0.001ac

aPost hoc analyses showed a significantly group difference between A+T+and A−T−. bPost hoc analyses showed a significantly group difference between A+T− and A−T−. cPost hoc analyses
showed a significantly group difference between A+T+ and A+T−. *p < 0.05; **p < 0.01; ***p < 0.001; A+T+, abnormal Aβ42 and p-tau; A+T−, abnormal Aβ42 and normal p-tau; A−T−,
normal Aβ42 and p-tau; Aβ, Amyloid-beta protein; p-tau, phosphorylated tau protein; t-tau, total tau protein. Numbers are given as means (standard deviation, SD) unless stated otherwise.
MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment; RAVLT, Rey Auditory Verbal Learning Test; EM, episodic memory; EF, executive function.

models was assessed using the receiver operating characteristic
(ROC) curve and the area under the ROC curve (AUC), with results
presented in terms of accuracy, sensitivity, and specificity.

Results

Demographic and neurocognitive
characteristics

As shown in Table 1, the A+T+ group was older than both
A−T− and A+T− groups. As expected, compared to the A−T−

group, the A+T+ group showed lower scores in the immediate
recall and learning components of Rey Auditory Verbal Learning
Test (RAVLT), and the composite EM score (Bonferroni corrected,
p < 0.05).

FC analysis

In the left vAI subnetwork, the ANOVA analysis showed
significant alterations in FC across three groups, including the
right cerebellum posterior lobe (CPL), and bilateral superior frontal
gyrus (SFG). Compared to A-T- group, A+T− group showed
increased FC in the right CPL and left SFG while A+T+ showed
increased FC in the right CPL and left SFT. Compared to A+T−

group, the A+T+ group showed increased FC in the left SFG (GRF
corrected, voxel p < 0.005, cluster p < 0.05). These results were
obtained while accounting for age, sex, and years of education
(Figure 1 and Table 2).

In the left dAI subnetwork, the ANOVA analysis showed
significant alternations in FC across three groups, including the

right CPL, left SFG and left middle frontal gyrus (MFG). Compared
to A−T− group, the A+T− group showed increased FC in the right
CPL while A+T+ group showed increased FC in the right CPL, left
SFG, and left MFG. Compared to A+T− group, the A+T+ group
showed increased FC in the SFG (GRF corrected, voxel p < 0.005,
cluster p < 0.05). These results were obtained while accounting for
age, sex, and years of education (Figure 2 and Table 3).

In the left PI subnetwork, the ANOVA analysis showed
significant alternations in FC across three groups, including
bilateral CPL and left MFG. Compared to A−T− group, the
A+T− group showed increased right CPL and the A+T+ group
showed increased FC in the bilateral CPL and left MFG. Compared
to A+T− group, the A+T+ group showed increased FC in the
bilateral CPL and left MFG (GRF corrected, voxel p< 0.005, cluster
p< 0.05). These results were obtained while accounting for age, sex,
and years of education (Figure 3 and Table 4).

In the right PI subnetwork, the ANOVA analysis showed
significant alternations in FC across three groups, including
bilateral MFG and SFG. Compared to the A−T− group, the A+T−

group showed increased FC in the right SFG while the A+T+ group
showed increased FC in the bilateral MFG. Compared to the A+T−

group, the A+T+ group showed increased FC in the left MFG and
left SFG (GRF corrected, voxel p < 0.005, cluster p < 0.05). These
results were obtained while accounting for age, sex, and years of
education (Figure 4 and Table 5).

Correlation analysis

The value of FC of the left CPL was negatively associated with
RAVLT-immediate (r = −0.237, p = 0.044) and p-tau (r = −0.246,
p = 0.036) (Figure 5).
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FIGURE 1

Brain regions exhibiting significant differences in functional connectivity of the left ventral anterior insula. (A) Significant differences in functional
connectivity of the left ventral anterior insula among three groups, including A−T−, A+T−, and A+T+ (GRF corrected, voxel p < 0.005, cluster
p < 0.05); (B–D) Results of post hoc analysis in voxel-wise analysis (GRF corrected, voxel p < 0.005, cluster p < 0.05). A+T+, abnormal Aβ42 and
p-tau; A+T−, abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau.

TABLE 2 The differences of functional connectivity (FC) of left ventral anterior insula across three groups.

Region(aal) Peak MNI coordinate F/t Cluster number

x y z

ANOVA

R cerebellum posterior lobe 36 −72 −45 8.2293 55

B superior frontal gyrus −18 33 57 11.5676 171

A+T− vs A−T−

R cerebellum posterior lobe 42 −78 −42 3.5904 23

L superior frontal gyrus −18 33 57 3.9076 20

A+T+ vs A−T−

R cerebellum posterior lobe 36 −72 −45 3.9446 55

L superior frontal gyrus −18 33 57 4.4324 138

A+T+ vs A−T−

L superior frontal gyrus −18 48 27 3.6113 31

The x, y, z coordinates is the primary peak locations in the MNI space. Cluster size > 10 voxels in ANOVA analysis, GRF corrected, voxel p < 0.005, cluster p < 0.05; Cluster size > 10 voxels
in post-hoc test, GRF corrected, voxel p < 0.005, cluster p < 0.05; A+T+, abnormal Aβ42 and p-tau; A+T−, abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau; B, bilateral;
L, left; R, right.

Binary logistic regression analysis

The ROC curves of each altered index were presented in
Figure 6. Obviously, the best-fitting model was the multivariable
models (red line), which combined altered FC of each insular

subregion. The AUC for distinguishing A+T− from A−T− using
the multivariable model was 0.837, with 79.6% sensitivity, and
75.0% specificity (p < 0.001). In the group of A+T+ and A−T−,
the AUC using the multivariable model was 0.857, with 83.3%
sensitivity, and 79.8% specificity (p < 0.001). Lastly, the AUC for
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FIGURE 2

Brain regions exhibiting significant differences in functional connectivity of the left dorsal anterior insula. (A) Significant differences in functional
connectivity of the left dorsal anterior insula among three groups, including A−T−, A+T−, and A+T+ (GRF corrected, voxel p < 0.005, cluster
p < 0.05); (B–D) Results of post hoc analysis in voxel-wise analysis (GRF corrected, voxel p < 0.005, cluster p < 0.05). A+T+, abnormal Aβ42 and
p-tau; A+T−, abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau.

TABLE 3 The difference of functional connectivity (FC) of left dorsal anterior insula across three groups.

Region(aal) Peak MNI coordinate F/t Cluster number

x y z

ANOVA

R cerebellum posterior lobe 21 −78 −27 9.3634 177

L superior frontal gyrus −18 45 30 7.791 44

L middle frontal gyrus −42 15 45 9.6399 63

2 vs 1

R cerebellum posterior lobe 39 −75 −42 3.1519 12

3 vs 1

R cerebellum posterior lobe 21 −78 −27 4.2211 176

L superior frontal gyrus −21 48 36 3.6149 35

L middle frontal gyrus −39 15 45 3.965 60

3 vs 2

L superior frontal gyrus −15 39 42 2.9677 18

The x, y, z coordinates is the primary peak locations in the MNI space. Cluster size > 10 voxels in ANOVA analysis, GRF corrected, voxel p < 0.005, cluster p < 0.05; Cluster size > 10 voxels
in post-hoc test, GRF corrected, voxel p < 0.005, cluster p < 0.05; A+T+, abnormal Aβ42 and p-tau; A+T−, abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau; L, left; R, right.
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FIGURE 3

Brain regions exhibiting significant differences in functional connectivity of the left posterior insula. (A) Significant differences in functional
connectivity of the left posterior insula among three groups, including A−T−, A+T−, and A+T+ (GRF corrected, voxel p < 0.005, cluster p < 0.05);
(B–D) Results of post hoc analysis in voxel-wise analysis (GRF corrected, voxel p < 0.005, cluster p < 0.05). A+T+, abnormal Aβ42 and p-tau; A+T−,
abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau.

TABLE 4 The difference of functional connectivity (FC) of left posterior insula across three groups.

Region(aal) Peak MNI coordinate F/t Cluster number

x y z

ANOVA

L cerebellum posterior lobe −12 −60 −51 8.927 57

R cerebellum posterior lobe 9 −63 −48 10.6711 114

R cerebellum posterior lobe 42 −78 −42 11.6532 110

L middle frontal gyrus −36 18 45 8.355 57

2 vs 1

R cerebellum posterior lobe 42 −75 −42 5.3702 83

R cerebellum posterior lobe 9 −48 −36 3.2984 16

3 vs 1

L cerebellum posterior lobe −12 −60 −51 3.8807 56

R cerebellum posterior lobe 9 −63 −48 4.3974 114

R cerebellum posterior lobe 42 −78 −42 4.2264 110

L middle frontal gyrus −27 33 48 3.4567 39

3 vs 2

L cerebellum posterior lobe −9 −66 −39 3.6638 39

R cerebellum posterior lobe 3 −66 −42 3.3305 11

L middle frontal gyrus −33 24 42 3.7286 37

The x, y, z coordinates is the primary peak locations in the MNI space. Cluster size > 10 voxels in ANOVA analysis, GRF corrected, voxel p < 0.005, cluster p < 0.05; Cluster size > 10 voxels
in post-hoc test, GRF corrected, voxel p < 0.005, cluster p < 0.05; A+T+, abnormal Aβ42 and p-tau; A+T−, abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau; L, left; R, right.
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FIGURE 4

Brain regions exhibiting significant differences in functional connectivity of the right posterior insula. (A) Significant differences in functional
connectivity of the right posterior insula among three groups, including A−T−, A+T−, and A+T+ (GRF corrected, voxel p <0.005, cluster p < 0.05);
(B–D) Results of post hoc analysis in voxel-wise analysis (GRF corrected, voxel p < 0.005, cluster p < 0.05). A+T+, abnormal Aβ42 and p-tau; A+T−,
abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau.

TABLE 5 The difference of functional connectivity (FC) of right posterior insula across three groups.

Region(aal) Peak MNI coordinate F/t Cluster number

x y z

ANOVA

B middle frontal gyrus/superior
frontal gyrus

−3 30 36 11.8022 571

2 vs 1

R superior frontal gyrus 12 30 63 3.7761 21

3 vs 1

B middle frontal gyrus −36 21 45 4.2427 469

3 vs 2

L middle frontal gyrus −27 45 27 3.9375 210

L middle frontal gyrus −33 18 51 3.1767 31

L superior frontal gyrus −9 45 48 3.7378 15

The x, y, z coordinates is the primary peak locations in the MNI space. Cluster size > 10 voxels in ANOVA analysis, GRF corrected, voxel p < 0.005, cluster p < 0.05; Cluster size > 10 voxels
in post-hoc test, GRF corrected, voxel p < 0.005, cluster p < 0.05; A+T+, abnormal Aβ42 and p-tau; A+T−, abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau; B, bilateral;
L, left; R, right.

differentiating A+T+ from A+T− using the multivariable model
was 0.882, with 89.3% sensitivity, and 75.0% specificity (p < 0.001).

Discussion

This study aimed to investigate the FC abnormalities of insular
subregions in MCI patients with different CSF pathological protein

levels and their correlation with cognitive function. The findings
revealed that as Aβ42 and p-tau abnormalities increased, the
FC of insular subregions showed compensatory enhancement,
which was associated with cognitive function. Moreover, these
abnormalities had significant value in distinguishing between
the groups. These discoveries may offer new insights into the
pathophysiology of MCI. Clinically, features that provide more
accurate and comprehensive information could serve as objective
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FIGURE 5

Significant associations between altered functional connectivity of each insula subnetwork and cognitive function. (A,B) Age, gender, and years of
education were included as covariates of results. CPL.L, left cerebellum posterior lobe; MFG.L, left middle frontal gyrus; A+T+, abnormal Aβ42 and
p-tau; A+T−, abnormal Aβ42 and normal p-tau.

FIGURE 6

Diagnosis and differentiation of A+T− and A+T+ based on ROC analysis. (A) ROC curve showing the classification between A+T− and A−T−;
(B) ROC curve showing the classification between A+T+ and A−T−; (C) ROC curve showing the classification between A+T+ and A+T−. A+T+,
abnormal Aβ42 and p-tau; A+T−, abnormal Aβ42 and normal p-tau; A−T−, normal Aβ42 and p-tau. RAVLT, Rey Auditory Verbal Learning Test; p-tau,
phosphorylated tau protein.

biomarkers, enhancing the ability to diagnose and treat MCI,
ultimately improving patient outcomes.

The results of this study indicated that the changes in FC
across different insular subregions were similar. As Aβ and tau
abnormalities increased, the FC of insular subregions gradually
strengthened, which was surprising. According to previous
literature, a negative correlation typically existed between tau
deposition and FC (Sepulcre et al., 2017; Berron et al., 2020).
Previous studies suggested that the loss of connectivity was related
to tau-induced progressive structural damage and neuronal death,
as tau pathology disrupted axonal stability and impaired axonal
transport (Iqbal et al., 2005; Wales and Leung, 2021). Tau-PET
studies showed that tau neurofibrillary tangles had adverse effects
on brain connectivity in older adults and AD patients, with
elevated tau levels linked to weakened intra-network connectivity,
a reduction in strongly connected nodes, and decreased global and
local network efficiency (Cope et al., 2018; Wisch et al., 2020).
However, as research progressed, Quevenco et al. (2020) found

that tau pathology was associated with increased activity in more
extensive brain regions. They observed that enhanced connectivity
between the posterior default mode network (DMN) and areas
outside the DMN was positively correlated with overall Aβ levels
and local tau accumulation. Moreover, studies proposed that in the
preclinical AD process, an initial stage of hyperconnectivity may
precede a subsequent stage of diminished connectivity (Schultz
et al., 2017). In conclusion, this study revealed a pattern of increased
FC in insular subregions as tau pathological burden increased.
This phenomenon may involve compensatory neural regulation,
early network hyperconnectivity, and potential functional network
impairments (Penalba-Sanchez et al., 2022). Future research should
further investigate whether these changes represent a transient
adaptive adjustment or an early indicator of AD progression,
providing new insights for early diagnosis and intervention
strategies in the MCI stage.

The results showed a significant increase in the FC between
the insula and both the MFG and SFG. The frontal lobe played
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a critical role in cognitive function, especially in its involvement
in the fronto-subcortical circuits (Iaria et al., 2008). Additionally,
the MFG and SFG were key regions of the executive control
network (ECN) and the DMN, respectively (Liu et al., 2021; Zheng
et al., 2024). Notably, the insula is a core region of the salience
network (SN) (Xue et al., 2021). The enhanced FC between the
insula and these frontal regions also reflected increased FC between
the SN and both the ECN and DMN. SN plays a crucial role in
responding to biologically and cognitively relevant environmental
pressures or events, and it is linked to working memory and
higher-order cognitive management (Menon and Uddin, 2010).
Within brain networks, the SN is not only an important hub
and starting point but also plays a key role in activating brain
networks and facilitating the switch between the ECN and DMN
during cognitively demanding tasks (Menon and Uddin, 2010;
Goulden et al., 2014). In healthy individuals, there was a dynamic
balance between the SN and DMN, often showing an inverse
relationship (Fox et al., 2005; Sridharan et al., 2008). Although
the exact nature of this increased SN connectivity was unclear,
one possibility was that diminished inhibitory control may drive
the commonly reported lack of task-related DMN suppression
associated with Aβ pathology (Sperling et al., 2009; Elman
et al., 2016). This disrupted balance may partially explain why
hyperconnectivity between the SN and frontal regions was observed
in this study. Rather than reflecting a purely compensatory
mechanism, this increased FC may indicate reduced network
specificity and a breakdown in functional segregation. Thus, the
observed hyperconnectivity may represent a compensatory effort
by the SN to maintain cognitive functions in the early stages
of neurodegeneration, but as pathological burden increases, this
mechanism may become inefficient and contribute to cognitive
decline. Future studies should investigate whether these FC changes
persist or diminish over time and explore their relationship with
cognitive performance trajectories.

Additionally, the FC between the insula and the CPL was
enhanced and showed a significant association with cognitive
function. Specifically, as FC within the cerebellar hemisphere
increased, RAVLT-learning scores progressively decreased,
indicating that changes in cerebellar FC may be closely linked
to declines in learning and memory abilities. This finding was
consistent with the study by Aschenbrenner et al., who identified
tau pathology as a strong predictor of overall cognitive decline
(Aschenbrenner et al., 2018). Other studies similarly showed that
patients who were positive for both Aβ and tau experience more
severe cognitive decline, aligning with our findings and suggesting
that the accumulation of pathological proteins had a significant
impact on cognitive function (Kim et al., 2021; Ge et al., 2022). In
recent years, researchers have increasingly focused on the role of
the cerebellum in cognitive functions. Traditionally viewed as a key
regulator of motor coordination, recent studies have demonstrated
that the cerebellum also plays a critical role in cognition, emotional
regulation, and autonomic nervous system function (Cutando
et al., 2022). Numerous prior studies have revealed altered FC in
the CPL of MCI/AD patients, underscoring the critical role this
region plays in the AD spectrum (Yuan et al., 2023; Xue et al.,
2024). These findings highlight the importance of FC between the
insula and the CPL, particularly in understanding the pathological
mechanisms underlying the AD spectrum. The increased FC
between the insula and the CPL may reflect a compensatory

response, where heightened connectivity helps maintain cognitive
function despite accumulating pathology. This may indicate
that the cerebellum and insula work together to compensate for
declining cortical efficiency, particularly in memory and executive
function tasks. However, as Aβ and tau burden continues to
increase, this compensatory mechanism may become insufficient,
ultimately leading to network breakdown and severe cognitive
impairment. The observed negative correlation between FC of CPL
and cognitive performance suggested that, rather than being purely
compensatory, hyperconnectivity in these regions may reflect
inefficient or maladaptive neural processing. Similar maladaptive
hyperconnectivity was reported in other brain networks during
the progression from MCI to AD, and excessive connectivity
may eventually lead to loss of connectivity as neurodegeneration
advances (Xue et al., 2019; Chen et al., 2022; Shu et al., 2022).
Thus, investigating the FC between insular subregions and the
CPL not only deepens our understanding of the progression of AD
but also provides new potential targets for future diagnosis and
intervention.

More importantly, the ROC analysis demonstrated the
potential of FC-based diagnostic models in early detection and
risk stratification of AD pathology in MCI patients. The high
AUC values suggested that altered FC in insular subregions
could serve as a sensitive neuroimaging biomarker, aiding in the
differentiation of MCI subtypes with varying levels of Aβ and tau
burden. This is particularly relevant in clinical practice, as early
identification of A+T+ individuals is crucial for timely intervention
and disease-modifying therapies. Additionally, the multivariable
model’s superior performance suggested that combining multiple
FC alterations enhances diagnostic accuracy compared to single-
region approaches, emphasizing the importance of network-level
analyses in AD research. Integrating FC-based diagnostic models
with other biomarkers, such as PET imaging and structural MRI,
could enhance diagnostic accuracy and reduce reliance on invasive
CSF testing. Furthermore, understanding FC alterations may
provide insights into disease progression and potential therapeutic
targets, paving the way for early interventions that could slow
cognitive decline and improve patient outcomes.

Limitations

Our study had some limitations. Firstly, the study was based on
CSF pathological biomarkers, which resulted in a relatively small
sample size. However, we applied strict criteria in data processing,
which increased the reliability of the results. Future studies should
consider validating these findings using a larger sample size.
Secondly, CSF pathological proteins in AD lack regional specificity,
so we cannot definitively determine whether our findings are driven
by localized or whole-brain effects of AD pathology. This limitation
may affect the interpretation of how pathological burden influences
specific brain regions. In future studies, we plan to incorporate Aβ

and tau PET imaging to further investigate the spatial distribution
of AD pathology and elucidate its impact on different insular
subregions. Thirdly, this study focused only on resting-state fMRI
data. In the future, integrating multimodal MRI techniques such
as fMRI, DTI, and sMRI may provide deeper insights into the
neuroimaging mechanisms of MCI at different pathological protein
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levels. Additionally, incorporating more dynamic FC analysis
methods, such as sliding window correlation analysis, along with
task-based fMRI to investigate the dynamic functional changes of
insular subregions, may further elucidate their critical role in the
progression of MCI.

Conclusion

This study demonstrated that as Aβ42 and p-tau abnormalities
increased in MCI patients, cognitive function declines, while
compensatory increased in FC of insular subregions occur,
indicating enhanced control of the SN over the ECN and DMN.
Investigating the changes in FC of insular subregions in MCI
patients with different CSF pathological protein levels can provide
deeper insights into the neuroimaging mechanisms of MCI.
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