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Background: The exact mechanisms of PD are unclear, but Parkin-mediated 
mitophagy dysfunction is believed to play a key role. We investigated whether 
blood levels of Parkin and other biomarkers are linked to the risk of developing 
PD.

Methods: Baseline blood measures of Parkin and other biomarkers, including 
Homocysteine, carcinoembryonic antigen, Urea, total proteins, total 
cholesterol, creatine kinase, and albumin, were collected from 197 clinically 
diagnosed Parkinson’s disease participants and 107 age-matched healthy 
controls in Wenzhou Parkinson’s Biomarkers and Living Characteristics study. 
We  conducted bioinformatics analysis using three datasets from the GEO 
database: GSE90514 (Cohort 1: PD = 4, HC = 4), GSE7621 (Cohort 2: PD = 16, 
HC = 9), and GSE205450 (Cohort 3: PD = 69, HC = 81).

Results: Using a bioinformatic approach, we identified dysregulated biological 
processes in PD patients with PRKN mutations. Compared to controls, significant 
abnormalities were observed in blood levels of Parkin, Hcy, total proteins, urea, 
albumin, and CEA in PD patients. A model incorporating Parkin, Hcy, total 
proteins, and urea effectively distinguished PD from healthy controls, achieving 
a higher accuracy (AUC 0.841) than other biomarker combinations. Gene set 
enrichment analysis suggested that pathways such as PINK1-Parkin-mediated 
mitophagy, urea cycle, cysteine degradation, and riboflavin metabolism may 
be involved in PRKN mutation. Additionally, the link between Parkin and PD was 
partially mediated by CEA and albumin, not by Hcy, total proteins, or urea.

Conclusion: Our findings indicate that blood Parkin levels may be a minimally 
invasive biomarker for PD diagnosis. The model, which included Parkin, Hcy, 
total proteins, and urea, effectively distinguished PD from HC with greater 
accuracy.
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Introduction

Two centuries have elapsed since James Parkinson announced his 
seminal work “An Essay on the Shaking Palsy” in 1817, describing the 
clinical characteristics of this disease that later came to endow his 
name (Parkinson, 2002; Bloem et al., 2021). But to now, there is still 
no precise and widely used laboratory testing for Parkinson’s disease 
(PD) diagnosis. Currently, the diagnosis of PD mainly relies on 
symptom-driven performance, which delays the detection of the 
earliest phases of the disease. Moreover, even when such criteria are 
rigorously executed, the proportion of misdiagnosis is still high 
resulting from substantial clinical overlap among Parkinsonian 
syndromes (Armstrong and Okun, 2020). Thus, reliable diagnostic 
biomarkers are urgently needed to efficiently manage PD. Evidence 
indicates the potential diagnostic and prognostic merit of 
cerebrospinal fluid (CSF) and blood biomarkers authentically 
mirroring the pathogenesis of PD, such as α-synuclein isoforms, 
lysosomal enzymes, amyloid and tau pathology markers, and 
neurofilament light chain (NFL) (Parnetti et al., 2019; Bouthour et al., 
2019; Ashton et al., 2020). Compared to the CSF fluid, blood-based 
biomarkers are also under far-ranging investigation because they 
would provide a minimally invasive option for early and differential 
diagnosis of PD versus atypical Parkinsonian disorders and 
disease monitoring.

Although the mechanisms of PD are unclear, mitochondrial 
dysfunction and quality control imbalance are thought to have key 
roles in this process (Malpartida et al., 2021). Notably, an early-onset 
form of PD is associated with mutations in the PINK1 kinase and 
Parkin ubiquitin ligase genes (Farrer, 2006; Valente et  al., 2004). 
Exploring the characteristics of genes mutated in hereditary PD type 
sheds light on disease etiology and reveals new pathways in cell 
biology (Blauwendraat et al., 2020). Among them, PINK1 and Parkin, 
which usually work together in the same pathway, are involved in the 
clearance of damaged mitochondria in PD-related cultured cells and 
animal models (Nguyen et  al., 2016; Pickrell and Youle, 2015). 
Moreover, the drop of dopaminergic neurons in the substantia nigra 
pars compacta (SNpc) and the motor defect observed in aged 
Parkin−/− mice indicate the Parkin-mediated biological pathway 
facilitates this phenotype (Sliter et  al., 2018). These findings 
highlighted the underlying value of considering the level of Parkin 
when implementing blood biomarkers in the diagnostic workup of PD.

The prevailing hypothesis for PD associated with PRKN mutations 
(also known as PARK2) is that a decrease in Parkin activity alters the 
mitophagy machinery and results in increased α-synuclein 
aggregation and accumulation in the lysosomes (Wang et al., 2022). 
Several studies suggest that loss of function mutations in the PRKN 
gene that encodes the Parkin may promote α-synuclein-mediated 
Lewy body inclusion formation, further suggesting the importance of 
studying this target as a biomarker of PD (Madsen et al., 2021; Yasuda 
and Mochizuki, 2010). However, it is still not a clinically helpful 
biomarker for PD, measurements of Parkin in biofluids from well-
clinically characterized subjects may provide additional insight into 
whether Parkin ubiquitin ligase may be deregulated in PD cases. Thus, 
it would be vital to carry out research to monitor Parkin levels and 
determine its utility as a biomarker of PD screening. In this study, 
we aimed to test whether Parkin levels were elevated in PD subjects 
and whether levels were associated with PD status. We hypothesized, 
based on the previous literature (Wang et  al., 2022; Yasuda and 

Mochizuki, 2010; Madsen et  al., 2021; Qian et  al., 2024) and our 
results, that blood Parkin would be a superior marker for PD diagnosis.

Methods

The cross-sectional study is rated Class III because of the case–
control design and the absence of diagnostic uncertainty of PD in the 
included patients.

Participants

The WPBLC cohort (Wenzhou Parkinson’s Biomarkers and Living 
Characteristics study, included 197 PD patients and 107 age-matched 
healthy controls from the First Affiliated Hospital of Wenzhou 
Medical University, March 2018–October 2022, details are available in 
Supple information 1) included two subsets: subset 1 with 55 
Parkinson’s disease (PD) patients (patients diagnosed with idiopathic 
Parkinson’s disease) and 50 healthy control (HC) participants, who 
were inpatients tested with 165 additional blood biomarkers, and 
subset 2 with 142 PD patients and 57 HC participants, who lacked 
these extra biomarkers.

Clinical neuropsychological evaluation

At the screening visit, standardized methods for the acquisition of 
study data included the Unified Parkinson’s Disease Rating Scale 
(UPDRS) (Fahn et al., 1987) and Hoehn-Yahr staging (Hoehn and 
Yahr, 1967) to evaluate the motor symptoms and progression stage of 
PD. The Chinese Mini-Mental State Examination (MMSE) was used 
for cognitive assessment, with cutoff scores adjusted to: ≤ 17 for 
illiterates, ≤ 20 for primary school graduates, and ≤ 24 for those with 
postsecondary education or higher (Katzman et al., 1988; Cui et al., 
2011). Emotional aspects were assessed using the Hamilton 
Depression Rating Scale-17 (HAMD) and Hamilton Anxiety Rating 
Scale (HAMA), with scores ≥7 indicating possible depression or 
anxiety. The REM Sleep Behavior Disorder Questionnaire-Hong Kong 
(RBDQ-HK) identified REM sleep behavior disorder (RBD) with a 
cutoff of >18 points (Li et al., 2010). The Activity of Daily Living Scale 
(ADL) is used to collectively assess fundamental skills required to 
independently care for oneself, such as eating, bathing, and mobility. 
All the examinations were done in the “on” state of the disease.

Blood Parkin and other biomarkers 
measurement

Figure 1A shows the flow chart of blood Parkin examination for 
every individual enrolled in the study. The detailed measurements of 
Parkin have been previously presented (Qian et al., 2024). Plasma 
samples were collected via venous blood centrifugation (3,000 × g for 
10 min) at 4°C and frozen at −80°C until analysis. Blood was drawn 
using an EDTA anticoagulant tube and centrifuged within 1 h. A total 
of 304 participants’ samples (197 PD and 107 HC) were analyzed for 
Parkin using an ELISA (Jianglai Biotechnology Company, Shanghai, 
China, No#. JL11195). Additionally, 234 of these samples (148 PD and 
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86 HC) were analyzed for α-syn oligomers (asy-no) and 
phosphorylated α-syn (p-asyn) using ELISA (Jianglai Biotechnology 
Company, Shanghai, China, No. JL12589 and JL41188). A blinded 
laboratory technician processed the samples according to the 
manufacturer’s instructions. Eighty microliters of standard solution 
and 20 microliters of 5× diluted samples were added to 96-well plates. 
Then, 100 microliters of antibody-horse radish peroxidase conjugate 

(MyBioSource, United States) was added to each well, covered with an 
adhesive strip, and incubated for 60 min at 37°C. After four washes, 
the plates were incubated with tetramethylbenzidine substrate for 
15 min at 37°C, then the reactions were stopped with H2SO4. 
Absorbance was measured at 450 nm, with all samples run in triplicate.

Inpatients were assessed for 165 blood biomarkers, sourced from 
the First Affiliated Hospital of Wenzhou Medical University. Of these, 

FIGURE 1

Recruitment of participants, blood sample processing, and the efficacy of Parkin protein levels in diagnosing and correlating with PD symptoms. (A) A 
flow chart outlines the blood Parkin examination process for study participants. (B) Eligibility assessments resulted in 197 PD and 107 HC subjects being 
included. (C) A mountain map illustrates the distribution of Parkin levels in PD and HC individuals. (D) ROC analysis evaluated Parkin levels’ ability to 
differentiate between PD and HC, with the AUC value reported. (E–N) Nonlinear correlation analyses were conducted between Parkin levels and 
neuropsychological assessment scores, with Spearman correlation coefficients calculated.
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66 biomarkers were selected for analysis, while 99 were excluded due 
to insufficient subjects. Details on the blood Parkin and other 66 blood 
biomarkers are available in Supplementary Table 1.

Statistical analyses

Continuous variables were evaluated for normality with the 
Kolmogorov–Smirnov test, histogram, and Q-Q plot. Normally 
distributed variables were reported as mean (Standardized deviation, 
SD) and analyzed with a two-sample t-test, while abnormally 
distributed variables were reported as median [interquartile range, 
IQR] and analyzed using the Mann–Whitney U test. Categorical 
variables were presented as counts (percentages) and compared with 
the Chi-square test. Associations between biomarkers and 
neuropsychological scales were assessed using Spearman rank 
correlation analysis. The Random Forest (RF) classifier and Least 
Absolute Shrinkage And Selection Operator (LASSO) regression were 
employed to identify effective blood biomarkers for distinguishing PD 
from HC participants. The RF classifier, utilizing the “randomForest” 
R package with 100 trees, ranked blood biomarkers based on their 
importance using the Gini index. LASSO regression was performed 
on standardized blood biomarker levels using the “glmnet” package. 
The predictive power of the biomarkers, both individually and 
together, was evaluated through the area under the curve (AUC) from 
ROC curves, with differences assessed using DeLong statistics. Some 
combined models were tested in Cohort 1 and validated in Cohort 2 
to assess their stability.

Blood biomarkers were divided into four quartiles (Q1-Q4) as 
categorical variables, and a trend test was conducted using the 
median values of each quartile. Weighted quantile sum (WQS) 
regression was used to assess the overall effects of these biomarkers 
on PD risk. The R package “gWQS” calculates the WQS index from 
the weighted sums of individual biomarkers. The WQS index (0 to 
1) indicated the combined levels of blood biomarkers, with 
significant components identified by their weights. To evaluate the 
joint effects and dose–response relationships of individual 
biomarkers on PD risk, while controlling for others, Bayesian kernel 
machine regression (BKMR) was utilized. Mediation analyses were 
conducted using the R package “mediation” with the quasi-Bayesian 
Monte Carlo method and 1,000 simulations based on normal 
approximation. The direct effect (DE) indicated the impact of blood 
biomarkers on PD risk without mediation, while the indirect effect 
(IE) reflected their impact through a mediator. The proportion of 
mediation was calculated as IE divided by the total effect (TE). 
Statistical analyses were performed in R version 4.3, with 
significance set at p < 0.05.

Bioinformatics analysis

GEO datasets acquisition
We retrieved three datasets from the Gene Expression Omnibus 

(GEO) database: GSE90514 (Cohort 1: PD = 4, HC = 4), GSE7621 
(Cohort 2: PD = 16, HC = 9), and GSE205450 (Cohort 3: PD = 69, 
HC = 81). GSE90514 used the GPL11154 Illumina HiSeq  2000 
platform, GSE7621 used the GPL570 Affymetrix Human Genome 
U133 Plus 2.0 Array, and GSE205450 used the GPL24676 Illumina 

NovaSeq 6,000 platform. We downloaded the expression matrices and 
annotation data, then normalized and log2-transformed the matrices 
using R version 4.3.

Identification and visualization of DEGs
We merged Cohort 2 and Cohort 3 using 15,596 shared genes and 

performed batch correction using the “SVA” package to obtain Cohort 
C. We conducted the differential analysis using the “LIMMA” package 
on Cohort 1 and Cohort C and filtered for DEGs with p < 0.05 and 
|log FC| (fold change) > 1.5 (Law et al., 2014). We obtained 322 DEGs 
in Cohort 1 and 16 DEGs in Cohort C, which were visualized using 
volcano plots and heatmaps.

Enrichment analyses
For gene enrichment analyses, we  used the “ClusterProfiler” 

package to filter for relevant pathways with a threshold of p < 0.05 and 
False Discovery Rates (FDR) < 0.1 (Yu et al., 2012). In Cohort 1, 82 
significant gene ontology (GO) pathways were enriched (Gene 
Ontology Consortium, 2015), and we  have selected 10 pathways 
for presentation.

Gene set enrichment analysis (GSEA)
Gene Set Enrichment Analysis was conducted using the GSEA 

software (version 3.0) obtained from the GSEA website.1 GSEA was 
used to analyze the enrichment of all detected genes in Cohort 1 for 
KEGG and Reactome Pathways. Finally, we found 34 enriched KEGG 
pathways and 99 enriched Reactome Pathways (Wixon and Kell, 2000).

Gene set variation analysis (GSVA) of GO 
enrichment

GSVA was performed using the “GSVA” package to calculate the 
enrichment scores of each sample in Cohort 1 for KEGG pathways 
(Hänzelmann et  al., 2013). We  subsequently used the “LIMMA” 
package to identify 15 differential pathways (8 upregulated and 7 
downregulated) and generated volcano plots to visualize the 
differentially regulated pathways.

Analysis of key genes in the train cohort and the 
test cohort

We divided Cohort C into a Training set and a Test set. In the 
Training set, we  identified 16 genes with statistical significance 
(p < 0.05, |log FC| > 1.5). We used Lasso regression to select 6 key 
genes: NUP210L, SLCO4A1, AMBN, GPD1, NTRK1, and HBB, for 
modeling. We then validated the model in the test set and calculated 
the Area Under The Curve (AUC) value.

Results

This paper addressed three hypotheses: First, we evaluated blood 
Parkin levels in PD participants to assess its potential as a diagnostic 
biomarker. Second, we investigated whether other blood biomarkers 
may be  viable tools for distinguishing PD patients with PRKN 
mutations based on bioinformatic analysis. Third, we explored the 

1 http://software.broadinstitute.org/gsea/index.jsp
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relationship between Parkin levels and other blood biomarker profiles 
in PD by quantifying their associations in our cohort.

Baseline demographics, disease 
characteristics of the cohorts

Table  1 shows the demographic data for the WPBLC cohort 
investigated here with 197 PD and 107 HC subjects. For patients with 
PD and HC information, similar to previous reports of this cohort at 
baseline, mean age at onset, sex ratio, height, weight, BMI status, 
education level, disease duration, smoker proportion, drinker ratio, 
and frequency of diabetes mellitus were matched. By contrast, PD 
patients were characterized by much more serious UPDRS, HAMD, 
HAMA, RBDQ-HK, and ADL scores compared to the controls. 
Accordingly, the clinical phenotypes of advanced PD symptoms, i.e., 
falls, dyskinesia, on–off phenomenon, and cognitive impairment were 
also displayed in Table 1.

Parkin is elevated in the blood of PD 
patients

Three hundred and four participants met the inclusion criteria for 
the initial group analysis (Figure 1B): 100% provided samples for 
Parkin measurement from blood. Comparing blood Parkin levels 
across diagnostic groups, the median concentration was 21.458 ng/mL 
in PD subjects, and 17.789 ng/mL in HC (Figure 1C). Then, assessing 
the utility of Parkin levels to discriminate between clinically defined 
idiopathic PD and HC, we found an area under the ROC curve (AUC) 
of 0.736 (95% CI: 0.677 to 0.794) for Parkin (Figure 1D), indicating 
Parkin is a moderately suitable diagnosis marker for PD. To test 
whether Parkin levels are correlated with clinical motor features. In 
197 participants who had blood Parkin and motor evaluation drawn 
simultaneously, Parkin was not correlated with UPDRS part 
I (r = −0.083, p = 0.245), UPDRS part II (r = 0.025, p = 0.731), UPDRS 
part III (r = −0.030, p = 0.677), UPDRS part IV (r = 0.023, p = 0.751), 
total UPDRS (r = −0.009, p = 0.895), and H-Y stage (r = 0.073, 
p = 0.305) based on the Spearman correlation analysis (Figures 1E–J). 
Next, we  examined associations between Parkin and 
neuropsychological scales. We  found that Parkin concentrations 
correlated with baseline HAMD and RBDQ-HK, while not with 
baseline HAMA and MMSE (Figures 1K–N). Notably, the UPDRS 
part III score may be influenced by age, sex, disease duration, and 
LEDD. Hence, we evaluated associations between Parkin measures 
and motor performance in models adjusting for these variables and 
found the relationship remained not significant.

Moreover, in patients with Parkinson’s disease, pathological 
accumulation of α-synuclein in the brain occurs prior to the onset of 
motor symptoms. Increased α-syn, such as asy-no and p-asyn in the 
blood has been proposed as biomarkers of PD diagnosis (Atik et al., 
2016). Spearman’s correlation analysis was performed to determine 
whether Parkin correlated to the asy-no and p-asyn concentrations. 
We found that Parkin was significantly positively correlated to asy-no 
(r = 0.453, p < 0.001, Supplementary Figure 1A) and p-asyn (r = 0.428, 
p < 0.001, Supplementary Figure  1B), indicating the probable 
interaction of Parkin and a-syn in the PD pathogenesis. The ROC 
analysis showed that a blood Parkin cutoff value of 19.141 ng/mL had 

a sensitivity of 78.6% and a specificity of 83.7% for distinguishing 
between PD and HC (Figure 1D). Next, all subjects were divided into 
Parkin positive (+) and negative (−) according to this cutoff value 
(Supplementary Figure  1C). Baseline levels of asy-no 
(Supplementary Figure 1D) and p-asyn (Supplementary Figure 1E) 
were higher in patients with Parkin-positive (+) subjects compared to 
the negative (−) groups. Whereas the scores of UPDRS part I-IV and 
total were similar between Parkin (+) and (−) groups 
(Supplementary Figures 1F–J), we did not find any association of 
Parkin status with motor scales. Then, to test the association of Parkin 
status with neuropsychological scales in PD subjects, we found higher 
HAMA, HAMD, RBDQ-HK, and ADL performance in the PD Parkin 
(+) groups (Supplementary Figures 1K–O).

Data mining of PD patients with PRKN 
mutations by bioinformatic analysis

We analyzed expression datasets from patients with PD with 
PRKN mutation (GSE90514, GSE7621, and GSE205450) archived in 
GEO datasets to define the omics features associated with the disease. 
A total of three cohorts comparing PD patients with PRKN mutations 
to healthy controls were found, which referred to changes in the 
transcriptional levels from the skin fibroblasts, substantia nigra, 
caudate, and putamen biospecimen, respectively. We  identified 
thousands of differentially expressed genes (DEGs) that were 
implicated in these three Cohorts (Figure 2A). For cohort 1 (González-
Casacuberta et  al., 2018), a similar analysis of DEGs using high-
quality bulk RNA sequencing (RNA-seq) data from the GSE90514. 
Heat map showing expression of DEGs in every sample (Figure 2B). 
Moreover, the volcano plot depicts the top upregulated and 
downregulated genes in PD subjects with PRKN mutations compared 
to controls (Figure 2C). Metabolism and Protein GO analyses revealed 
common perturbed pathways in PD subjects with PRKN mutations, 
including lysosome, Fatty acid degradation, Glycolysis, Tyrosine 
metabolism, and Cholesterol metabolism et al. (Figure 2D). Next, 
Gene Set Variation Analysis (GSVA) as a non-parametric, 
unsupervised method for estimating the variation of pathway activity 
through the samples of an expression data set (Hänzelmann et al., 
2013). In PD subjects with PRKN mutations, GSVA showed that a 
gradual increase in the Proteasome, Protein Export, Selenoamino acid 
metabolism, N-glycan biosynthesis pathways, et al (Figure 2E). These 
results suggested that the wide bioenergy metabolism turbulences 
were observed in PD subjects with PRKN mutations.

Next, the Venn diagram illustrates the overlap of genes between 
Cohort 2 and Cohort 3 (Figure 2F). As shown in Figure 2G, there was 
a mild separation of PD subjects from healthy controls on the PCA 
score plot, indicating the reasonable to pool Cohort 2 and Cohort 3. 
Notably, the volcano plot and heatmap displayed the primary 16 
upregulated and downregulated genes in PD patients when we pooled 
Cohort 2 and 3 (Figures 2H,I). Importantly, based on the RNA-seq 
analysis, the transcriptional levels of these 16 genes were changed in 
the PD groups, such as nup21ol, slca4a1, npc1l1, c7orf61, hspb1, 
serpinh1, and hspa6 et  al. (Figure  2J). Then, we  identified the 
promising 6 powerful genes (NUP210L, SLCO4A1, AMBN, GPD1, 
NTRK1, HBB) after the Lasso regression analysis. To test the selected 
6 genes’ capacity to discriminate between PD and controls, the AUC 
was 0.868 (Figure 2K). Finally, we aimed to assess the expression of a 
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TABLE 1 Basic characteristics of PD patients and healthy controls.

Characteristics HC (N = 107) PD (N = 197) p value

Age (years) 65.0 [59.0;69.0] 67.0 [61.0;72.0] 0.146

Sex 0.066

  Female 62 (57.9%) 91 (46.2%)

  Male 45 (42.1%) 106 (53.8%)

Height (cm) 161 (7.05) 161 (8.33) 0.579

Weight (kg) 63.5 (9.23) 61.7 (10.5) 0.124

BMI (kg/m2) 24.4 (2.86) 23.8 (3.22) 0.131

BMI Group 0.567

  <24 51 (47.7%) 105 (53.3%)

  24–28 12 (11.2%) 23 (11.7%)

  >28 44 (41.1%) 69 (35.0%)

Education (years) 5.00 [0.00;6.50] 4.00 [0.00;7.00] 0.837

Disease History (years) - 3.00 [2.00;7.00] -

Smoker 0.308

  Current 16 (15.0%) 25 (12.7%)

  Former 2 (1.87%) 11 (5.58%)

  Never 89 (83.2%) 161 (81.7%)

Drinker 0.846

  Current 17 (15.9%) 35 (17.8%)

  Former 4 (3.74%) 6 (3.05%)

  Never 86 (80.4%) 156 (79.2%)

HP 0.001

  No 52 (48.6%) 135 (68.5%)

  Yes 55 (51.4%) 62 (31.5%)

DM 0.807

  No 91 (85.0%) 164 (83.2%)

  Yes 16 (15.0%) 33 (16.8%)

LEDD - 375 [300;581] -

Related scales

UPDRS - 39.0 [28.0;53.0] -

I - 2.00 [1.00;4.00] -

II - 11.0 [8.00;16.0] -

III - 24.0 [15.0;34.0] -

IV - 2.00 [0.00;4.00] -

H-Y stage - 2.50 [1.50;3.00] -

MMSE 24.0 [20.5;26.0] 23.0 [18.0;27.0] 0.164

HAMD 3.00 [0.00;5.00] 5.00 [3.00;9.00] <0.001

HAMA 4.00 [1.00;7.00] 9.00 [5.00;13.0] <0.001

RBDQ-HK 4.00 [1.00;9.50] 15.0 [3.00;34.0] <0.001

ADL 20.0 [20.0;20.0] 26.0 [21.0;34.0] <0.001

Complications

Fall -

  No - 154 (84.6%)

  Yes - 28 (15.4%)

(Continued)
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priori identified gene sets and biological pathways associated with PD 
using Gene Set Enrichment Analysis (GSEA) in pooled cohorts 2 
and 3. We adopted the Reactome analysis to describe human biological 
processes in PD background, and by mapping disease-associated 
pathways (Figures  2L,M). Notably, PINK1-PRKN MEDIATED 
MITOPHAGY, UREA CYCLE, DEGRADATION OF CYSTEINE 
AND HOMOCYSTEINE, MITOPHAGY and SIGNALING BY EGFR 
IN CANCER were enriched in PD, suggesting mitochondrial 
dysfunction and metabolic abnormalities (Figure 2L). Additionally, 
FATTY ACID METABOLISM, LIPOIC ACID METABOLSIM, 
PROTEASOM, and MAPK SIGNALING PATHWAY showed 
dysregulation, highlighting metabolic imbalances in PD (Figure 2M). 
These findings provide new insights into the molecular mechanisms 
underlying PD and may aid in the identification of potential 
biomarkers and the development of targeted therapeutic strategies.

Discriminative accuracy of blood 
biomarkers for PD patients

Extract from the WPBLC cohort, 105 blood samples (subset 1: 
PD: 55, HC: 50) test the 66 common biomarkers (Figure  3A and 
Supplementary Table 1). Details for the basic characteristics of these 
sunsets are provided in Supplementary Table  2. Least absolute 
shrinkage and selection operator (LASSO) regression is an adaptation 
of the popular and widely used linear regression algorithm as a new 
mathematical prediction model to select variables in disease diagnosis 
(Li et al., 2022). In our study, since we have many blood biomarkers 
and relatively few cases, the LASSO regression analysis was applied to 
pick out the biomarkers most associated with PD, and the top  9 
powerful variables were identified (Figures 3B–D). Moreover, we used 
the random forest (RF) analysis, a machine learning approach that 
aids in identifying several model components and quantifiable 
pre-simulation (Zhao et al., 2018). We trained a RF, tested its predictive 
accuracy and established the following 8 most promising factors in the 

PD diagnosis set (Figure 3E). The overlapping parts of LASSO and RF 
selected biomarkers were chosen for further analyses. These included 
Parkin, Homocysteine (Hcy), carcinoembryonic antigen (CEA), Urea, 
Total proteins, total cholesterol (TC), and Albumin.

As seen in Figures 3F–K and Supplementary Table 3 in supporting 
information, higher levels of Hcy, CEA, Urea, total proteins, and 
albumin were observed in PD participants; only TC displayed the 
opposite direction. Moreover, we used ROC analyses to assess the 
utility of these selected blood biomarker levels to discriminate 
between PD and controls (Figure 3L and Supplementary Table 4). The 
AUCs were 0.749 for Hcy (sensitivity = 0.84, specificity = 0.582), 0.668 
for Total proteins (sensitivity = 0.86, specificity = 0.455), and 0.665 for 
Urea (sensitivity = 0.68, specificity = 0.636). By contrast, the 
discrepancy between the control and PD groups was low in the CEA 
(AUC: 0.654, sensitivity = 0.38, specificity = 0.873), albumin (AUC: 
0.643, sensitivity = 0.62, specificity = 0.636), and TC (AUC: 0.620, 
sensitivity = 0.60, specificity = 0.673). Of note, there was a strong 
trend toward improved diagnostic accuracy for PD patients when 
these blood biomarkers were combined with Homocysteine and Urea 
(AUC: 0.779, Figures 3M, N), indicating that these selected blood 
biomarkers may be promising factors to differentiate PD from HC.

Associations between blood biomarkers 
measure and progression to PD

The analysis of the Binary logistic regression after adjusting for 
age, sex, education, BMI, hypertension, and diabetes mellitus revealed 
an increased odds ratio (OR) associated with interquartile range (IQR) 
increases in Parkin levels among PD participants (Q4/Q1 = 8.07, p for 
trend = 0.017, Figure 4A and Supplementary Table 5). Each quartile 
augment in IQR was associated with an obvious increase in the odds 
of incident PD (Q2/Q1 = 1.32, Q3/Q1 = 4.74, Figure 4A). Moreover, 
the IQR increment in Hcy, total proteins, and albumin levels were also 
significantly associated with the risk of subsequent PD diagnosis: the 

TABLE 1 (Continued)

Characteristics HC (N = 107) PD (N = 197) p value

Dyskinesia -

  No - 170 (92.9%)

  Yes - 13 (7.10%)

On–off -

  No - 137 (74.9%)

  Yes - 46 (25.1%)

Cognitive impaired 0.161

  No 72 (67.3%) 115 (58.4%)

  Yes 35 (32.7%) 82 (41.6%)

Continuous variables were assessed for normality using Kolmogorov–Smirnov test, to variables on normal distribution, results were expressed as the mean ± standard deviation (SD) and 
compared using the student’s t-test; while data on non-normal distribution, variables were exhibited as median [IQR] and compared using the Mann–Whitney U-test. Categorical variables 
were listed as number (percentage) and compared using the chi-squared test.
HC: Healthy Control; PD: Parkinson’s disease; BMI: Body Mass Index; Smoker (Current: people who have smoked continuously or cumulatively for 6 months or more and still smoke at the 
time of the survey; Former: people who have smoked for more than 6 months and did not smoke at the time of the survey; Never: people who have smoked for less than 6 months throughout 
their lives); Drinker (Current: people who have drunk alcohol continuously or cumulatively for 6 months or more and still drink at the time of the survey; Former: people who have drunk 
alcohol for more than 6 months and did not drink at the time of the survey; Never: people who have drunk alcohol for less than 6 months throughout their lives); HP: hyper blood pressure; 
DM: diabetes mellitus; LEDD: Levodopa Equivalents. UPDRS: unified Parkinson’s disease rating scale; MMSE: Mini-Mental State Examination; HAMD: Hamilton Depression Scale; HAMA: 
Hamilton Anxiety Scale; RBDQ-HK: REM sleep behavior Disorder questionnaire-Hong Kong; ADL: Activity of Daily Living Scale; Fall: subjects had a fall within a year; Dyskinesia: subjects 
with abnormally increased involuntary movements; On–off: subjects with drug effect fluctuation after long-term use of levodopa. Cognitive impaired: subjects with MMSE scores lower than 
cutoff value.
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FIGURE 2

Data mining of PD patients with PRKN mutations by bioinformatic analysis. (A) UPSet plot showing unique and shared genes across Cohorts 1, 2, and 3. 
(B) Heatmap of the top 464 differentially expressed genes (DEGs) in PD vs. HC for Cohort 1, selected with p < 0.05 and |logFC| > 1.5, including 4 PD 

(Continued)
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ORs were 20.19 (95% CI: 4.05–100.68, p for trend = 0.017) for Hcy, 
11.66 (95% CI: 2.33–58.28, p for trend = 0.013) for total proteins, 3.87 
(95% CI: 0.99–15.18, p for trend = 0.044) for albumin. By contrast, 
we did not find any statistical significance in the trend of PD risk for 
Urea (Q4/Q1 = 2.28, p = 0.439), CEA (Q4/Q1 = 3.08, p for 
trend = 0.232), and TC (Q4/Q1 = 0.42, p for trend = 0.177). Using 
locally weighted regression (LOESS) to examine the relationship 
among these selected blood biomarkers in PD and HC participants 
(Figure 4B), we found that Hcy showed a strong relationship with total 
proteins in HC subjects (ρ = 0.380; p < 0.001). We then analyzed the 
correlation of total proteins and other blood biomarkers in both 
groups and found that total proteins were positively associated with 
albumin (ρ =  0.652, p < 0.0001). No significant correlation was 
observed among Urea, CEA, TC and other biomarkers.

Next, to evaluate the association of selected blood biomarkers 
with PD risk evaluation. Notably, the Weighted Quantile Sum (WQS), 
a statistical model for multivariate regression in the high-dimensional 
dataset that operates in a supervised framework, was used to calculate 
a single score to evaluate the individual effect of the blood biomarkers 
on PD risk (Eggers et  al., 2022). In this study, results from WQS 
analyses suggested that increased levels of albumin, Hcy, Parkin, and 
CEA were the highest four factors resulting in PD (Figure 4C and 
Supplementary Table 6). The same pattern of findings was observed 
by Bayesian kernel machine regression (BKMR). As represented in 
Figures  4D,E, the plots were applied to delineate the individual 
exposure-response functions for each blood biomarker and joint 
effects of blood biomarkers mixture on PD risk, after adjusting for age, 
sex, education, BMI, hypertension, and diabetes mellitus. Both BKMR 
and WQS models clearly demonstrated a positive dose–response 
trajectory in the association of Hcy, total proteins, Urea, CEA, and 
albumin and an increased risk of subsequent PD.

Relationship with Parkin and blood 
biomarkers profile

To determine whether the levels of these blood biomarkers 
could be  impacted by Parkin status, we  constructed the groups 
divided into Parkin positive (+) and negative (−) according to the 
cutoff value. However, most blood biomarkers, such as albumin, 
Hcy, total proteins, and TC were similar between Parkin (+) and (−) 
groups (Supplementary Figures 2A–F), indicating that these blood 
markers were not associated with Parkin levels. Next, we compared 
the individuals with Parkin (+) to those with Parkin (−) at baseline 
and found higher Urea levels in the PD Parkin (+), and lower CEA 
concentrations in the PD Parkin (−) groups. We next sought to 
assess whether combining Parkin with these selected blood 
biomarkers could further improve the accuracy of PD diagnosis. 

Parkin and these blood biomarkers were included and removed step 
by step to assess their contribution to the model. The best model 
included blood Parkin, Hcy, total proteins, and Urea, with an 
accuracy of 0.841 (Supplementary Figure  2H). Moreover, it is 
notable that the model only incorporated measures of blood Parkin, 
total proteins, and Urea displayed a similar accuracy to that of the 
best model (AUC: 0.829). Of interest, when the model was 
constructed again to include two biomarkers, such as Parkin plus 
Hcy also provided a relatively high AUC of 0.817 
(Supplementary Figure  2G). In summary, blood Parkin, in 
combination with Hcy, total proteins, and Urea, might significantly 
improve the diagnostic value of PD.

The above results indicated that Parkin was a significant risk factor 
for PD and associated with blood biomarkers including Hcy, CEA, 
Urea, total proteins, TC, and Albumin, especially Hcy, total proteins, 
and Urea. Therefore, we  further explored whether these blood 
biomarkers could mediate the influences of Parkin on PD diagnosis 
(Supplementary Figures  2I–N). Mediation analyses with 10,000 
bootstrapped iterations were carried out to examine the mediation 
effects of Parkin on PD. The results demonstrated that the relationship 
between Parkin and PD was partially mediated by CEA and albumin 
with the approximate proportion of mediation of 22.68% (p = 0.04) 
and 25.83% (p = 0.02), respectively, rather than Hcy (proportion: 
7.62%, p = 0.36), total proteins (proportion: 6.55%, p = 0.06), Urea 
(proportion: 12.58%, p = 0.10), and TC (proportion: −23.47%, 
p = 0.18).

Discussion

This cross-sectional study analyzed Parkin and various blood 
biomarkers in a large sample of idiopathic Parkinson’s disease (PD) 
patients and matched healthy controls. Key findings include: (1) PD 
patients had higher levels of blood Parkin, Hcy, total proteins, urea, 
albumin, and CEA compared to controls. Additionally, a model 
incorporating blood Parkin, Hcy, total proteins, and urea effectively 
distinguished PD from healthy controls, achieving a higher accuracy 
(AUC 0.841) than other biomarker combinations. (2) Gene set 
enrichment analysis suggested that pathways such as PINK1-Parkin-
mediated mitophagy, urea cycle, cysteine degradation, and riboflavin 
metabolism may be  involved in the Parkin mutation process. (3) 
Hazard models showed a positive dose–response relationship between 
Parkin, Hcy, CEA, and urea levels and the risk of developing PD, 
although Parkin levels did not significantly correlate with motor 
characteristics. The link between Parkin and PD was partially 
mediated by CEA and albumin, but not by Hcy, total proteins, or urea, 
which were unaffected by Parkin status. These results highlight the 
potential of blood biomarkers in the WBPLC cohort and suggest an 

and 4 HC samples. (C) Volcano plot of the top 464 DEGs in PD vs. HC for Cohort 1. (D) GO analyses revealed common perturbed pathways in PD 
subjects with PRKN mutations. (E) GSVA of Cohort 1 shows upregulation in 8 metabolic pathways, such as proteolysis and protein export, and 
downregulation in 7 pathways. (F) A Venn plot reveals 15,193 genes common to Cohort 2 and 3. (G) Cohorts 2 and 3 were combined and batch-
corrected with the “SVA” package, resulting in Cohort C, comprising 85 PD and 90 HC samples. (H) Heatmap of average expression levels for 16 
significant DEGs in Cohort C’s training set. (I) Volcano plot illustrating DEGs between PD and HC in the same training set, highlighting 16 significant 
DEGs. (J,K) Bar graph of the 16 DEGs’ expression levels in the training set, confirming observed expression patterns. Lasso regression identified 6 genes 
(NUP210L, SLCO4A1, AMBN, GPD1, NTRK1, HBB) from 16 DEGs, resulting in a model with an AUC of 0.868 in the test set. (L,M) GSEA in Cohort C 
showed enrichment in 186 KEGG pathways and 1,586 Reactome pathways, highlighting the top 5 Reactome and 4 KEGG pathways.

FIGURE 2 (Continued)
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FIGURE 3

Discriminative Accuracy of blood parkin and additional blood biomarkers for PD patients. (A) Subjects were split into two cohorts based on extra blood 
tests: Subset 1 included 55 PD and 50 HC subjects with additional biomarkers, while Subset 2 comprised the remaining 142 PD and 57 HC subjects. 
(B) Blood parkin levels and biomarkers were standardized, and z-scores were used for LASSO regression analysis, with diagnosis as the dependent 
variable, resulting in coefficient profiles for 67 variables. (C) The optimal λ value for LASSO regression was determined using 10-fold cross-validation, 
with dotted vertical lines indicating values from the minimum criteria (left) and the “one standard error” criteria (right). (D) Nine biomarkers were 
selected based on the minimum λ criteria, and their LASSO coefficients are shown in the bar graph. (E) Feature importance for HC/PD classification 
was assessed using a Random Forest model with 100 decision trees, ranking the top 8 blood biomarkers displayed in a bar graph. (F–K) Six biomarkers 
were common between LASSO and Random Forest selections, while boxplots illustrated levels of six additional biomarkers in PD and HC subjects. 
(L) ROC analysis results for the six biomarkers were presented individually. (M) ROC analysis results for models combining blood CEA, HCY, and urea 
levels were presented. (N) ROC analysis results for models with nutrition-related biomarkers, including total protein, TC, and albumin levels, were also 
shown. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4

Associations between blood biomarkers and progression to PD. (A) Forest plots show binary logistic regression results for seven biomarkers, adjusted 
for age, sex, education, BMI, smoking, alcohol consumption, and histories of HP and DM. Subjects were categorized into four groups (Q1, Q2, Q3, Q4) 
based on biomarker quartiles, with individual levels replaced by group medians. (B) A multivariate correlation scatter matrix with LOESS analysis was 
used to assess relationships among blood biomarkers in PD and HC participants. (C) Weighted values for PD biomarkers were calculated using WQS 
models. (D) Associations between blood biomarkers and PD risk were estimated using BKMR. This figure illustrates the combined effects of blood 
biomarkers on PD risk. The plot shows the difference in PD risk and the 95% confidence interval (CI) when blood biomarkers are set at specific 
percentiles versus their medians. (E) Exposure-response functions illustrate the relationship between each blood biomarker and PD risk, with other 
biomarkers held at median values.
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effective PD diagnostic model using blood Parkin, Hcy, total proteins, 
and urea.

This study is the first to evaluate blood Parkin as a clinical 
biomarker for Parkinson’s disease (PD). We found that higher blood 
Parkin levels were linked to an increased risk of developing PD 
(Figure 4A). This finding was robust in a various analysis ways and 
models (WQS and BKMR), indicating minimal influence from 
confounding factors or reverse causation (Figures 4C–E). Additionally, 
only one prior study in a Japanese cohort indicated that blood Parkin 
levels could differentiate multiple sclerosis from neuromyelitis optica 
spectrum disorders (Cossu et al., 2021). PD has a long latency between 
biological onset and clinical symptoms, meaning some sporadic cases 
may be biologically active but not yet clinically evident at recruitment 
(Das and Ramteke, 2024). It’s unclear if blood Parkin is an early 
marker for preclinical PD or if the correlation is due to shared genetic 
factors. Previous studies have demonstrated that impaired mitophagy 
in PD triggers a cellular stress response, activating mitophagy-related 
genes, including Parkin (Liu et  al., 2019). As the dysfunctional 
mitochondria accumulate in neurons, the demand for mitophagy 
increases, resulting in an upregulation of Parkin production (Joselin 
et  al., 2012). Reactive oxygen species (ROS) may regulate Parkin 
expression, as ROS inhibitors can block Parkin recruitment in mouse 
embryonic fibroblasts and deleting the DJ-1 gene, which regulates 
ROS, increases stress-induced Parkin recruitment and mitophagy 
(Joselin et al., 2012).

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a 
transcription factor that orchestrates the cellular response to oxidative 
stress, has been documented to enhance the expression of PINK1 
under conditions of oxidative stress (Bonello et al., 2019; Chung et al., 
2020), potentially facilitating the subsequent recruitment of Parkin 
and the upregulation of Parkin expression at the transcriptional level. 
Previous studies indicate that extracellular vesicles (EVs) contain all 
components of mitochondria (Zorova et al., 2022). Meanwhile, PRKN 
mutations are associated with an increased presence of extracellular 
mitochondria compared to control subjects, as evidenced by a clinical 
study (Choong et  al., 2021). Consequently, the overproduction of 
Parkin and increased extracellular mitochondria leads to an excess 
release of Parkin into the bloodstream.

Notably, several preclinical studies have assessed changes in 
Parkin function in PD pathogenesis (Pickrell and Youle, 2015; Norris 
et al., 2015; Moskal et al., 2020). Established PD animal models are 
associated with abnormal Parkin-mediated mitophagy (Malpartida 
et  al., 2021; Clark et  al., 2021), driven by absolute impairment in 
mitochondria. Loss-of-function mutations in Parkin of Drosophila 
represent a grievous flight muscle defect resulting in  locomotive 
behavioral problems and reduced lifespan (Pesah et  al., 2004). 
Moreover, flies with Parkin mutations are more susceptible to 
oxidative stress and some dopamine neurons display abnormal 
shrinkage and morphology (Cha et  al., 2005). However, the first 
Parkin-KO mouse models showed only mild phenotypes, such as the 
disruption of fine motor skills, slight abnormalities in dopamine 
metabolism and release, and no dopaminergic neuron loss (Goldberg 
et al., 2003). Another Parkin-null mouse model also did not cause 
motor behavioral phenotypes and DA neurodegeneration (Von Coelln 
et al., 2004). These results indicate that mice compensate for the loss 
of Parkin in DA neurons or that the neurons in mice do not reach a 
threshold of mitochondrial dysfunction necessary to cause detrimental 
phenotypes (Goldberg et al., 2003; Von Coelln et al., 2004).

In this cohort, higher baseline levels of Hcy, total proteins, urea, 
CEA, and albumin were linked to an increased risk of incident PD 
(Figures 4A,C–E). However, pre-existing health conditions that could 
affect these biomarkers were not accounted for, leaving potential 
residual confounding. To mitigate bias, we employed multiple risk 
models in our observational study. Taken together, the blood Hcy, 
CEA, and albumin levels could be used as indicators for reflecting the 
higher risk of subsequent PD diagnosis, which was supported by 
previous studies (Wang et al., 2017; Akil et al., 2015; Zhou, 2024; Fan 
et al., 2020). In a previous cohort study from China (Fan et al., 2020), 
blood Hcy levels in PD patients were elevated compared to those of 
HC. High Hcy drives PD development and progression while 
aggregating the clinical symptoms of PD patients (Zhou, 2024). That 
finding suggested that Hcy might be involved in the process of PD 
occurrence. Regarding the CEA, consistent with our results 
(Figure 3H), one cross-sectional study (Akil et al., 2015) including 51 
PD patients and 50 healthy controls reported that the CEA was 
significantly higher in PD relative to the control group (mean 
2.40 ± 1.51 vs. 1.72 ± 0.87 (ng/mL), p = 0.015). In contrast, one study 
noted that the levels of serum albumin were significantly lower in PD 
patients than those in controls (Wang et  al., 2017). Multivariable 
logistic regression indicated that serum albumin is an independent 
risk factor for PD, with an AUC of 0.883 (95% CI 0.835–0.931) (Wang 
et al., 2017). Further research is needed to clarify the role of albumin 
in PD. Nonetheless, these results support the direct association 
between PD and blood levels of Hcy, CEA, and albumin.

This study’s key advantages include enrolling well-defined “typical” 
PD patients of varying severity and healthy controls, collecting detailed 
clinical and biospecimen data, and measuring multiple blood 
biomarkers simultaneously. We explored the relationships between 
blood Parkin and both motor and nonmotor variables, such as 
RBDQ-HK and UPDRS factors, which have been less studied.

Limitations of the study

However, our study had limitations, including its cross-sectional 
design and lack of prospective follow-up. Blood levels of Parkin and 
other biomarkers were measured only at enrollment. Future research 
should track these biomarkers over time to better understand their 
changes in Parkinson’s disease. Moreover, the patients included in this 
study did not have genetic assessments. PD has many distinct 
pathophysiological pathways, the inclusion details clinically diagnosed 
PD, which could be highly heterogeneous. Second, the diagnosis of 
PD was not confirmed by postmortem pathological tests and may 
be susceptible to misclassification. Hence, there is a lack of comparison 
to any gold standard such as neuropathology limiting the validity of 
the “biomarker” application presented. Moreover, we  assessed 
memory function only with MMSE, a simple measurement of global 
cognitive function. Third, although the blood Parkin level is 
significantly increased in patients with PD compared to controls in the 
cross-sectional design of comparison, the Binary logistic regression 
analysis revealed no correlation between disease severity and 
neuropsychological assessment. The possible reason may come from 
the relatively incomprehensive scales and inaccuracy evaluation. A 
future cohort with a larger sample size of participants and 
comprehensive assessment is warranted to confirm our findings and 
validate the role of blood Parkin in predicting disease features.
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Conclusion

Our results suggested that the blood Parkin level could serve as a 
minimally invasive, easily accessible biomarker for PD diagnosis. The 
model included blood Parkin, Hcy, total proteins, and Urea efficiently 
discriminated PD from HC with significantly higher accuracy.
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Glossary

WPBLC - Wenzhou Parkinson’s Biomarkers and Living 
Characteristics study;

PD - Parkinson’s disease

HC - Healthy Control

BMI - Body Mass Index

HP - Hyper blood pressure

DM - Diabetes mellitus

LEDD - Levodopa Equivalents

UPDRS - Unified Parkinson’s disease rating scale

MMSE - Mini-Mental State Examination

HAMD - Hamilton Depression Scale

HAMA - Hamilton Anxiety Scale

RBDQ-HK - REM sleep behavior Disorder questionnaire-
Hong Kong

ADL - Activity of Daily Living Scale

CSF - cerebrospinal fluid

NFL - neurofilament light chain

SNpc - substantia nigra pars compacta

CEA - Carcinoembryonic antigen

T_protein - Serum total protein

TC - Serum total cholesterol

Hcy - Homocysteine

asy-no - α-syn oligomers

p-asyn - phosphorylated α-syn

SD - Standardized deviation

IQR - interquartile range

RF - random forest

LASSO - Least Absolute Shrinkage And Selection Operator

AUC - Area under roc curve

OR - Odds ratios

WQS - Weighted quantile sum

BKMR - Bayesian kernel machine Regression

DE - direct effect

IE - indirect effect

TE - total effect

GEO - Gene Expression Omnibus

DEGs - differentially expressed genes

FC - Fold change

GO - Gene Ontology

GSVA - Gene Set Variation Analysis

GSEA - Gene Set Enrichment Analysis

KEGG - Kyoto Encyclopedia of Genes and Genomes

NRF2 - erythroid-derived 2)-like 2

EVs - extracellular vesicles
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