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Background: Vascular cognitive impairment (VCI) is a prevalent form of

cognitive dysfunction. Resting-state functional magnetic resonance imaging

(rs-fMRI) could serve as a potential biomarker for early detection. This study

employed activation likelihood estimation (ALE) meta-analysis to investigate

specific neural abnormalities in VCI patients.

Methods: We systematically searched PubMed, Embase, and Web of Science

for rs-fMRI studies on VCI that reported amplitude of low-frequency fluctuation

(ALFF), regional homogeneity (ReHo), or functional connectivity (FC). Sixteen

eligible fMRI studies were included in the ALE meta-analysis.

Results: Compared to healthy controls (HCs), VCI patients exhibited the

following rs-fMRI alterations. For ALFF, there was an increase in the left anterior

cingulate (AC) and left inferior frontal gyrus, possibly a compensatory over -

activation. Decreases were seen in regions like the bilateral precuneus and

medial frontal gyri (mFG), linked to cognitive deficits. ReHo increased in the left

claustrum and insula, suggesting enhanced local synchronization, but decreased

in the right sub - gyral region and middle temporal gyru (MTG), which may

relate to language issues. FC was enhanced in areas related to complex cognitive

processes, yet reduced in regions crucial for memory.

Conclusion: VCI patients exhibited distinct functional abnormalities in specific

brain regions, reflecting their diverse cognitive impairments. These region-

specific alterations may serve as potential biomarkers for early diagnosis and

targeted intervention in VCI.

KEYWORDS

cognitive impairment, resting state functional magnetic resonance imaging, meta-
analysis, amplitude of low-frequency fluctuation, regional homogeneity, functional
connectivity

Introduction

Vascular cognitive impairment (VCI) encompasses a spectrum of cognitive deficits
resulting from cerebrovascular diseases, ranging from mild vascular cognitive impairment
(mVCI) and vascular dementia (VaD) (Skrobot et al., 2018; van der Flier et al., 2018). As
the second most common cause of dementia, VCI accounts 20%–40% of all diagnoses
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(Rundek et al., 2022). Early identification and diagnosis of VCI are
critically important and have garnered increasing attention. Early
identification and diagnosis of VCI are critically important and
have garnered increasing attention.

VCI involves complex mechanisms associated both
macrostructural and microstructural levels (Badji et al., 2023).
Cerebral small vessel disease (CSVD) is widely regarded as the
primary driver of VCI pathogenesis, even in the absence of stroke
(Inoue et al., 2023; Zanon Zotin et al., 2021). Neuroimaging
markers of CSVD include small subcortical infarcts, lacunae,
white matter hyperintensities (WMH), enlarged perivascular
spaces (EPVS), microbleeds and brain atrophy (Litak et al., 2020).
However, the underlying mechanisms linking VCI and CSVD
remain highly intricate, posing challenges in identifying consistent
pathological patterns across cases.

Disruptions in both structural and functional networks play a
key mediating role in how vascular lesions affect cognitive function
(Dichgans and Leys, 2017). Resting state functional magnetic
resonance imaging (rs-fMRI) leverages spontaneous fluctuations
of blood oxygen level dependent (BOLD) signal fluctuations to
map functional brain activity, providing a highly reliable and
reproducible method for investigating functional connectivity (FC)
networks.

Amplitude of low-frequency fluctuation (ALFF), regional
homogeneity (ReHo), and FC are widely used rs-fMRI metrics
for whole-brain analysis. ALFF measures spontaneous regional
neuronal activity, reflecting the brain’s physiological state, while
ReHo assesses the synchronization of local neural activity (Jiang
and Zuo, 2016; Xi et al., 2012). Higher ALFF values correlate
with enhanced cognitive function, indicating increased neuronal
excitability (Wang et al., 2020). Conversely, reduced ReHo suggests
impaired local neural synchronization, implying abnormal activity
in affected brain regions (Wang et al., 2020). FC quantifies temporal
correlations in BOLD signals across distinct brain regions or
voxels, mapping inter-regional communication (Lin et al., 2018).
Together, these metrics provide valuable insights into functional
brain variations.

The Vascular Impairment of Cognition Classification
Consensus Study (VICCCS) established standardized diagnostic
criteria and operational guidelines for VCI (Skrobot et al.,
2017; Skrobot et al., 2018). However, the heterogeneous clinical
manifestations of CSVD continue to pose significant diagnostic
and management challenges (Badji et al., 2023).

Activation likelihood estimation (ALE) is a widely used
coordinate-based meta-analysis method that models reported
activation foci as spatial probability distributions centered at given
coordinates. By computing the union of these probabilities for each
voxel, ALE generates statistical maps (thresholded at p < 0.05) to
identify consistent brain activation patterns across studies (Eickhoff
et al., 2009; Turkeltaub et al., 2002). This approach has been
extensively applied in rs-fMRI research and holds promise for
identifying neuroimaging biomarkers (Xu et al., 2020).

Despite its utility, current VCI research faces several
limitations, including small sample sizes, inconsistent inclusion
criteria, conflicting findings, and ongoing debate regarding
functional network alterations in VCI patients. Although
ALE meta-analyses have been conducted in broader cognitive
impairment populations, few studies have specifically focused on
VCI. Moreover, existing ALE syntheses in this field have primarily

examined isolated VCI subtypes (e.g., subcortical vascular
cognitive impairment or vascular mild cognitive impairment),
leaving a critical gap in comprehensive, spectrum-wide analyses
(Xu et al., 2021; Zhang X. et al., 2021).

To address this, our study aimed to perform a systematic
ALE meta-analysis of VCI, with three key objectives: (1) Identify
rs-fMRI differences between VCI patients and healthy controls
(HCs) to assess its diagnostic biomarker potential;(2) Investigate
the relationship between altered brain regions and cognitive deficits
in VCI;(3) Provide an integrative synthesis of functional network
disruptions across the VCI spectrum.

Methods

The meta-analysis of neuroimaging studies was conducted
according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement and recorded using the
PRISMA 2020 Checklist (Page et al., 2021).

Literature search and article selection

Database search
A systematic literature search was conducted in PubMed, Web

of Science, and Embase (accessed on 13 September 2024) using
the following key terms: VCI-related terms:("vascular cognitive
impairment" OR "vascular dementia" OR "vascular cognitive
disorder" OR "VCI" OR "VD" OR "VaD"). Neuroimaging markers:
AND ("amplitude of low-frequency fluctuation" OR "ALFF" OR
"regional homogeneity" OR "ReHo" OR "functional connectivity"
OR "FC"). Given the broad spectrum of VCI, additional terms
were included to capture relevant subtypes and etiologies:("small
vessel disease" OR "vascular cognitive impairment-no dementia"
OR "vascular cognitive impairment not dementia" OR "subcortical
ischemic vascular disease" OR "recent small subcortical infarct"
OR "white matter hyperintensity" OR "cerebral microbleed" OR
"Leukoaraiosis" OR "leukodystrophy" OR "CADASIL"). Searches
were limited to English-language publications.

Literature screening process
Two independent researchers conducted the literature search

and screening. Discrepancies were resolved through discussion
with a third reviewer. The screening process consisted of four
sequential steps: (1) Title/Abstract Screening: Initial exclusion of
irrelevant studies; (2) Full-Text Review: Further assessment of
potentially eligible articles; (3) Final Eligibility Check: Detailed
evaluation of remaining studies; (4) Cross-Verification: Ensured no
relevant studies were omitted. After this rigorous selection process,
16 articles met the inclusion criteria. The PRISMA flow diagram
(Figure 1) illustrates the search and screening process.

Inclusion criteria
• Studies were included if they met all of the following criteria:
• Study Design: Resting-state fMRI (rs-fMRI)

investigations of VCI.
• Participants: Included both VCI patients and HCs, with

baseline data comparisons between groups.
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FIGURE 1

Flowchart shows study selection process.

• Analysis Method: Whole-brain analysis (not restricted to
ROI-based approaches).
• Reporting Standards: Provided Talairach or MNI coordinates

for group-level comparisons (VCI vs. HCs).
• Outcome Measures: Reported differences in ALFFs, ReHo, or

FC.

Exclusion criteria
Studies were excluded if they met any of the following

conditions:

• Publication Type: Reviews, meta-analyses, case reports,
animal studies, letters, protocols, theoretical models,
conference abstracts, commentaries, or books.
• Patient Population: Included individuals with Parkinson’s

disease, Alzheimer’s disease (AD), frontotemporal
dementia, psychiatric disorders, or acute cerebral
infarction/intracerebral hemorrhage with a disease duration
of less than 6 months.
• Etiological Confounders: Enrolled patients with

leukoencephalopathy due to immune, toxic, metabolic,
or neoplastic causes.
• Unclear Classification: Studies that could not be definitively

classified as VCI-related research.

Quality assessment and data extraction

Given the lack of standardized tools for evaluating
methodological quality in fMRI meta-analyses, we adapted

the Newcastle-Ottawa Scale (mNOS) (Costa et al., 2021; Gentili
et al., 2019; Wells et al., 2000) to assess study quality and risk of
bias. The mNOS scoring system (range: 0–11) categorized studies
as: High risk (0–3), Intermediate risk (4–7), and Low risk (8–11)
(Costa et al., 2021). Two independent researchers performed the
assessments, with inter-rater reliability evaluated using Cohen’s
Kappa statistic. Discrepancies were resolved through consensus or
consultation with a third reviewer.

Data extraction
The following variables were systematically extracted: (1)

Demographics: Sample size, sex distribution, mean age; (2)
Cognitive measures: Mini-Mental State Examination (MMSE),
Montreal Cognitive Assessment (MoCA); (3) Imaging data:
Group contrasts, peak coordinates (focus), significance thresholds
(p-values); (4) Subgroup classification (if applicable).

Meta-analysis procedures

Spatial convergence analysis was performed using GingerALE
3.0.21 (Eickhoff et al., 2009; Eickhoff et al., 2012; Turkeltaub et al.,
2012). All included studies reported coordinates in MNI space,
eliminating the need for spatial normalization.

The ALE algorithm models each reported focus as a
3D Gaussian probability distribution (accounting for spatial
uncertainty), then computes the union of these distributions
across studies to identify statistically convergent activation
patterns. This approach inherently controls for methodological
heterogeneity (e.g., varying preprocessing pipelines, statistical

1 http://www.brainmap.org/ale
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TABLE 1 Demographic data and clinical information.

Study Group N Age Sex (male/
female)

MMSE MocA Group
contrasts

Foci Correction for
multiple

comparisons

ALFF

Li et al., 2021b VaMCI 31 62.87± 7.07 20-Nov – 23 (20, 24) – – –

HCs 31 59.35± 8.15 14/17 – 28 (26, 30) VaMCI < HC 4 p < 0.05 (cor)

Ding et al., 2018 VCIND 14 67.9± 8.7 08-Jun 26.87± 0.32 20.32± 3.72 VCIND < HC 2 p < 0.05 (cor)

HCs 15 65.8± 7.9 07-Aug 28.51± 0.28 26.33± 2.98 VCIND < HC 7 p < 0.05 (cor)

Zhang et al., 2023 CSVD-M 19 67.89± 8.01 10-Sep 26.63± 1.61 23.47± 2.01 CSVD-M < HC 1 p < 0.05 (cor)

HCs 18 61.67± 7.62 06-Dec 27.71± 1.57 26.53± 0.62 CSVD-M < HC 2 p < 0.05 (cor)

Liu et al., 2014 SIVD 30 69.0± 7.8 19-Nov 16.1± 5.1 9.4± 3.8 SIVD < HC 3 p < 0.01 (cor)

HCs 35 68.0± 5.8 22/13 28.4± 1.1 27.2± 1.5 SIVD < HC 1 p < 0.01 (cor)

Song Z. et al., 2023 SIVD-CI 32 75.09± 8.68 15/17 20.91± 4.19 17.91± 4.50 SIVD-CI < HC 1 p < 0.05 (cor)

HCs 32 73.36± 7.26 17/15 28.00± 2.32 27.61± 1.86 SIVD-CI < HC 1 p < 0.05 (cor)

Zhang X. et al., 2021 VaMCI 32 69.54± 7.23 18/14 24.11± 1.01 20.78± 1.52 VaMCI < HC 5 p < 0.05

HCs 30 65.3± 9.38 17/13 27.46± 1.23 27.01± 1.12 – – –

Song J. et al., 2023 CSVD-CI 52 69.63± 5.75 31/21 22.58± 4.19 – CSVD-CI < HC 7 p < 0.001 (cor)

HCs 63 67.62± 5.56 30/32 27.92± 1.56 – CSVD-CI < HC 4 p < 0.001 (cor)

Wang et al., 2019 LA-VaMCI 28 59.28± 6.12 14/14 24.96± 1.48 21.68± 2.74 LA-CI < HC 1 p < 0.05 (cor)

LA-VaD 18 60.28± 11.65 08-Oct 20.53± 1.77 17.17± 2.09

HCs 28 58.35± 6.82 13/15 29.46± 1.07 28.64± 1.66 LA-CI < HC 1 p < 0.05 (cor)

ReHO

Zuo et al., 2018 VaMCI 31 63.84± 14.1 18/13 26.32± 2.06 23.32± 1.33 – – –

HCs 32 62.72± 8.22 18/14 26.32± 2.06 27.75± 1.72 VaMCI < HC 2 p < 0.05 (cor)

Liu et al., 2021 SIVD-MCI 28 70.73± 5.58 16-Dec 23.93± 1.90 – – p < 0.05 (cor)

HCs 24 68.43± 8.02 Oct-14 28.00± 1.06 – SIVD-MCI < HC 3 p < 0.05 (cor)

Zhang X. et al., 2021 VaMCI 32 69.54± 7.23 18/14 24.11± 1.01 20.78± 1.52 VaMCI < HC 4 p < 0.05

HCs 30 65.3± 9.38 17/13 27.46± 1.23 27.01± 1.12 VaMCI < HC 3 p < 0.05

Tu et al., 2020 SIVD 20 75.8± 7.67 13-Jul – – SIVD < HC – –

HCs 23 65.1± 6.97 11-Dec – – SIVD < HC 1 p < 0.001

(Continued)
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TABLE 1 (Continued)

Study Group N Age Sex (male/
female)

MMSE MocA Group
contrasts

Foci Correction for
multiple

comparisons

Ye et al., 2019 WMH-CI 14 66.00± 5.13 07-Jul 26.86± 2.66 20.43± 2.71 WMH-CI < HC 2 p < 0.001

HCs 33 62.03± 7.53 16/17 28.47± 1.49 26.41± 2.30 WMH-CI < HC 1 p < 0.001

Cai et al., 2023 VCI 24 63.75± 4.27 Nov-13 21.12± 0.33 20.37± 1.24 VCI < HC 2 p < 0.05 (cor)

HCs 25 60.60± 3.95 Dec-13 29.76± 0.43 29.00± 0.64 VCI < HC 5 p < 0.05 (cor)

FC

Ding et al., 2018 VCIND 14 67.9± 8.7 08-Jun 26.87± 0.32 20.32± 3.72 VCIND < HC 4 p < 0.05 (cor)

HCs 15 65.8± 7.9 07-Aug 28.51± 0.28 26.33± 2.98 VCIND < HC 4 p < 0.05 (cor)

Wang et al., 2022 PS 47 57.75± 7.40 26/21 – – – – –

HCs 55 55.77± 8.03 33/23 – – PS < HC 8 p < 0.01

Liu et al., 2019 SVCI 29 70.48± 5.76 16/13 24.00± 1.91 – SVCI < NC 1 p < 0.05 (cor)

HCs 27 67.63± 8.19 Oct-17 27.93± 1.03 – – – –

Li et al., 2021a VaMCI 31 64.93± 10.11 18/13 – 23.32± 1.32 – –

HCs 36 64.22± 6.97 17/19 – 25.22± 2.89 VaMCI < HC 1 p < 0.05 (cor)

VaMCI, vascular mild cognitive impairment; HCs, healthy controls; VCIND, vascular cognitive impairment, no dementia; CSVD-M, CSVD with mild cognitive impairment; SIVD, subcortical ischemic vascular dementia; SIVD-CI, subcortical ischemic vascular disease with
cognitive impairment; CSVD-CI, CSVD with cognitive impairment; LA-VaMCI, leukoaraiosis with vascular mild-cognitive impairment; LA-VaD, leukoaraiosis with vascular-dementia; SIVD-MCI, subcortical ischemic vascular disease with mild cognitive impairment;
WMH-CI, white matter hyperintensities with cognitive impairment; PS, pontine stroke.
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FIGURE 2

Brain regions showing increased/decreassed ALFF in VCI patients compared to HCs. Red indicates regions of increased ALFF values. Green indicates
regions of decreased ALFF values. AC, anterior cingulate; IFG, inferior frontal gyrus; mFG, medial frontal gyrus; MTG, middle temporal gyrus; SOG,
superior occipital gyrus.

thresholds, or cohort characteristics) by: (1) Weighting voxels
based on cross-study consistency; (2) Applying cluster-level
inference (primary threshold: p < 0.05, FWE-corrected via 1000
permutations. Resulting ALE maps were visualized on the MNI152
template using Mango V4.12, with anatomical labeling according
to the AAL3 atlas.

Results

Research results

Following literature screening, 16 studies were included in the
meta-analysis. VCI patients were categorized into the following
subgroups based on diagnostic criteria: "VCI", "vascular mild

2 https://mangoviewer.com/mango

cognitive impairment (VaMCI)", "vascular cognitive impairment,
no dementia (VCIND)", "CSVD with mild cognitive impairment
(CSVD-M)", "pontine stroke (PS)", "subcortical ischemic vascular
dementia (SIVD)", "subcortical ischemic vascular disease with
CI (SIVD-CI)", "subcortical ischemic vascular disease with mild
cognitive impairment (SIVD-MCI)", "subcortical ischemic vascular
disease with cognitive impairment (SIVD-CI)", "CSVD with
cognitive impairment (CSVD-CI)", " white matter hyperintensities
with CI (WMH-CI)", "leukoaraiosis with vascular mild-cognitive
impairment (LA-VaMCI)", " leukoaraiosis with vascular-dementia
(LA-VaD)". For the ALFF analysis, 8 studies (involving 508
participants: 256 VCI patients and 252 HCs) revealed that VCI
patients had increased ALFF in 20 foci and decreased ALFF in 20
foci compared to HCs. The ReHo analysis included 6 studies (316
participants: 149 VCI patients, 167 HCs), showing increased ReHo
in 8 foci and decreased ReHo in 15 foci in VCI patients versus
HCs. The FC analysis, comprising 4 studies (254 participants: 121
VCI patients, 133 HCs), demonstrated enhanced FC in 5 foci and
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FIGURE 3

Brain regions showing increased/decreassed ReHo in VCI patients compared to HCs. Red indicates regions of increased ReHo values. Green
indicates regions of decreased ReHo values. MTG, middle temporal gyrus; mFG, medial frontal gyrus;

reduced FC in 13 foci in VCI patients relative to HCs, with detailed
data presented in Table 1.

Meta-analysis results

Altered ALFF in VCI patients
Compared to HCs, VCI patients demonstrated significant

ALFF alterations, characterized by increased ALFF (4 clusters), left
anterior cingulate cortex (ACC), left inferior frontal gyrus (IFG),
decreased ALFF (11 clusters),left ACC (distinct subregion from
increased cluster), bilateral medial frontal gyrus (mFG), bilateral
precuneus, left middle temporal gyrus (MTG) and left superior
occipital gyrus (SOG). Detailed spatial distributions and statistical
thresholds are presented in Figure 2 and Table 1.

Altered ReHo in VCI patients
Compared to HCs, VCI patients exhibited significant ReHo

differences. Increased ReHo (8 clusters): left claustrum, left insula,

left sub-gyral region, left mFG and left precuneus; Decreased ReHo
(2 clusters): right sub-gyral and right MTG (Figure 3 and Table 1).

Altered FC in VCI patients
Compared to HCs, VCI patients exhibited significant FC

differences. Increased FC (4 clusters): right precentral gyrus
(PreCG), left MTG, left precuneus, right superior temporal gyrus
(STG); Decreased FC (9 clusters): left cingulate gyrus (CG),
both posterior cingulate, right precuneus, right lingual gyrus
(LING), right pyramis, right PreCG, and right MFG (Figure 4
and Table 1).

Discussion

This study investigated resting-state network alterations in
VCI patients compared to HCs, focusing on amplitude of ALFF,
ReHo, and FC. These metrics capture distinct yet complementary
aspects of neural activity (ALFF), local synchronization (ReHo),
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FIGURE 4

Brain regions showing increased/decreassed FC in VCI patients compared to HCs. Red indicates regions of increased FC values. Green indicates
regions of decreased FC values. PreCG, precentral gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; CG,
cingulate gyrus; LING, lingual gyrus.

and inter-regional communication (FC), offering a comprehensive
view of VCI-related dysfunction. By identifying aberrant functional
signatures, our findings may contribute to the development of
probabilistic biomarkers for early VCI detection, facilitating timely
and targeted interventions.

ALFF Abnormalities: ALFF alterations were predominantly
localized in prefrontal, precuneus, and temporal regions. Increased
ALFF in the left AC and IFG suggests enhanced neuronal
excitability, potentially reflecting compensatory mechanisms for
cognitive control, emotional processing, and multitasking in
response to cerebral ischemia (Briggs et al., 2019; Kolling et al.,
2016; Monosov et al., 2020; Sato et al., 2023; Shinozaki et al., 2016;
Shu et al., 2022). Conversely, decreased ALFF in mFG, bilateral
precuneus, and other default mode network (DMN) hubs indicates
resting-state dysfunction, likely contributing to episodic memory
decline, executive dysfunction, and emotional dysregulation in

VCI (Dadario and Sughrue, 2023; Frascarelli et al., 2015;
Myung et al., 2016).

ReHo Alterations: ReHo analysis revealed increased local
synchronization in the left claustrum and mFG, suggesting adaptive
changes in decision-making and executive control networks. In
contrast, decreased ReHo in the right MTG implies disrupted
language network coordination, aligning with semantic deficits in
VCI (Briggs et al., 2021; Cui et al., 2020; Frascarelli et al., 2015;
Jackson et al., 2020; Madden et al., 2022).

FC Changes: Enhanced FC in the right STG, MTG, and
left precuneus may reflect enhancements in speech perception,
auditory word comprehension, and language processing, as
complex cognitive processes that require neural integration
across multiple brain regions (Bhaya-Grossman and Chang, 2022;
Dadario and Sughrue, 2023; Liu et al., 2023; Sugimoto et al.,
2023). Conversely, reduced FC in the cingulate gyrus (CG),
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posterior cingulate, and precuneus reflects DMN disintegration,
correlating with impaired self-referential processing and memory
consolidation (Bubb et al., 2018; Dadario and Sughrue, 2023; Foster
et al., 2023; Leech and Sharp, 2014).

The findings strongly support CSVD as the principal
pathological basis of VCI. CSVD-related structural damage—
including WMH and lacunar infarcts—likely disrupts critical
neural pathways, leading to widespread functional network
dysfunction (Chen et al., 2018; Zanon Zotin et al., 2021).
This disorganization particularly affects hub regions such as the
precuneus, a key node in the default mode network (DMN) that
is highly vulnerable to hypoperfusion in CSVD (Dadario and
Sughrue, 2023; Love and Miners, 2016). In VCI patients, reduced
ALFF and FC in the precuneus may underlie diverse cognitive
deficits, particularly in spatial processing and navigation (Cavanna
and Trimble, 2006), manifesting clinically as disorientation
and impaired spatial cognition. Notably, our meta-analysis—
encompassing multiple VCI subtypes (VaMCI, VaD, CSVD-
related cognitive impairment) —revealed consistent functional
abnormalities across the VCI spectrum, aligning with VICCCS
guidelines that advocate for multidimensional neuroimaging
markers in VCI diagnosis (Skrobot et al., 2017; Skrobot et al., 2018).
By integrating ALFF, ReHo, and FC across the VCI continuum,
this study provides preliminary evidence for their utility as
complementary diagnostic biomarkers, potentially enhancing early
detection and stratification of VCI.

Multimodal neuroimaging reveals a dynamic inter play in VCI,
characterized by regional hyperactivity (↑ALFF/ReHo) alongside
network disconnection (↓FC) —reflecting concurrent neuroplastic
adaptation and pathological decompensation (Fornito et al., 2015).
While the brain exhibits compensatory mechanisms to preserve
homeostasis, these processes are complex and multifaceted, with
VCI patients demonstrating more pronounced structural and
functional alterations than typical aging (Jin et al., 2025).

Current limitations—such as heterogeneous datasets and
inconsistent VCI subtyping—highlight the need for large-scale,
prospective studies integrating multimodal neuroimaging (rs-
fMRI, DTI, structural MRI) with detailed clinical profiles. Such
efforts should: (1) Validate subtype-specific abnormalities across
diverse VCI cohorts (e.g., VaMCI, VaD, CSVD-related cognitive
impairment); (2) Clarify mechanistic links between functional
disruptions (ALFF/ReHo/FC) and structural/metabolic changes;
(3) Build upon this meta-analysis as an exploratory foundation for
personalized diagnostic and therapeutic strategies.

This study has several limitations that warrant
consideration. First, heterogeneity in meta-analysis, despite
strict inclusion/exclusion criteria, variability in data sources,
preprocessing methods, statistical thresholds, and imaging
protocols was unavoidable, potentially influencing the results.
Second, in whole-Brain Approach vs. Network-Specific Focus,
the whole-brain ALE analysis—rather than targeting specific
networks—limited the depth of investigation and may have
excluded relevant studies. Third, subtype analysis challenges,
the broad and heterogeneous nature of VCI, combined with
the limited number of eligible studies, precluded meaningful
subgroup analyses (e.g., VaMCI vs. VaD). Finally, in ALE
methodological constraints, the ALE technique lacks significance
testing for individual contributing studies, restricting quantitative
interpretation of regional findings.

Conclusion

This ALE meta-analysis identified consistent rs-fMRI
abnormalities (ALFF/ReHo/FC) in key cognitive hubs—including
the cingulate gyrus (CG), precuneus, and anterior cingulate
(AC)—providing mechanistic insights into VCI-related functional
impairments. These disruptions may serve as early diagnostic
biomarkers, enabling targeted interventions for at-risk patients
before overt cognitive decline manifests.
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