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The role of quantitative EEG
biomarkers in Alzheimer’s disease
and mild cognitive impairment:
applications and insights
Yue Yuan and Yang Zhao*

Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China

Alzheimer’s disease (AD) is characterized by the pathological accumulation of

amyloid plaques and hyperphosphorylated tau proteins, leading to disruptions

in synaptic transmission and neural circuit alterations. Despite advancements

in therapies to delay disease progression, there is a pressing need for

simple, non-invasive, and accessible biomarkers to evaluate their effectiveness.

Quantitative electroencephalography (qEEG), a computational method for

quantifying brain electrical activity, is increasingly applied in AD research. We

highlight the application of qEEG biomarkers, including power spectrum analysis

(oscillatory activity within frequency bands), functional connectivity (coherent

neural couplings) and effective connectivity (directional neural interactions),

microstates (brief, stable states of the brain network), and non-linear analyses

(e.g., entropy and EEG network analysis). These biomarkers can reflect real-

time neural dynamics, making them ideal tools for diagnosis and monitoring

the progression AD and mild cognitive impairment (MCI). It has been shown

that decreased α power and increased θ power within the qEEG spectrum

correlate with enhanced AD severity. Data from microstate analysis have

demonstrated significant variations in temporal dynamics in patients with AD.

Non-linear measures, such as entropy, have identified marked reductions in

neural complexity in AD and MCI patients, indicating that they may serve as

early diagnostic markers. Compared to traditional neuroimaging techniques,

such as magnetic resonance imaging (MRI) or positron emission tomography

(PET), qEEG is known to be cost-effective and facilitates real-time monitoring.

Overall, qEEG biomarkers are promising for advancing AD research due to

their non-invasive nature, affordability, and ability to capture real-time neural

activity. Integrating qEEG with multimodal neuroimaging and clinical profiles

may facilitate earlier identification and precision therapies. Future research

should focus on standardizing protocols, validating biomarkers across diverse

cohorts, and exploring their potential in large-scale clinical trials.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by memory impairment, cognitive function
decline, decline in daily living ability, and mental behavior
abnormalities (Knopman et al., 2019). As the most common
form of dementia, AD accounts for 60–80% of all dementia
cases worldwide (Lynch, 2020). According to the Alzheimer’s
Association International, every 3 s, a new case of AD is diagnosed
worldwide. Over 130 million AD patients exist worldwide as of
2050 (Alzheimer’s Disease International, 2013). Clinically, mild
cognitive impairment (MCI) presents a transitional state between
normal aging and dementia. It is classified into two types: the
amnestic MCI (aMCI), characterized by memory impairment,
and the non-amnestic MCI, affecting other cognitive domains.
Generally, the aMCI type is the most frequent, and 90% of patients
may progress to AD (Anderson, 2019). AD patients are more
likely to require extended care, imposing significant economic
and social burdens on patients. Therefore, early diagnosis and
implementation of appropriate interventions are recommended to
prevent disease progression and alleviate the burden and stress
on caregivers. The currently used early diagnostic procedures
for AD include techniques such as Magnetic resonance imaging
(MRI), positron emission tomography (PET-CT), cerebrospinal
fluid (CSF) biomarker analysis, and neuropsychological evaluation
tools. Notably, CSF analysis is an invasive procedure, while PET-
CT is expensive and inconvenient in certain clinical situations.
Therefore, it is crucial to identify low-cost, non-invasive,
sensitive, specific, and convenient biomarkers for AD diagnosis.
Electroencephalography (EEG) is a promising digital biomarker
model that is not only non-invasive, mobile, and convenient
compared to other detection techniques, but also exhibits low
spatial resolution (centimeters) and high temporal resolution
(milliseconds), and its abnormal changes are often earlier than
structural imaging changes.

Recently, many researchers have suggested regulatory
requirements and guidelines for including EEG biomarkers
in AD research and management (Babiloni et al., 2021). Unlike
event-related potentials (ERPs), qEEG does not require stimulus-
related devices or behavioral recordings, making it simpler to
implement in clinical settings. It is especially suitable for large-scale
screening and disease progression monitoring, and it has been
used to differentiate AD from other forms of dementia, such as
frontotemporal dementia or dementia with Lewy bodies (DLB)
(Caso et al., 2012; Engedal et al., 2015; Iannaccone et al., 2023).
Therefore, qEEG is a valuable marker for AD. In this paper, we
summarize the application and progress of qEEG in AD research,
highlighting its potential as a diagnostic and monitoring tool and
identifying gaps for future exploration.

2 Common analytical metrics of
qEEG in AD

QEEG recordings help clinicians to identify changes in
neuronal synaptic activity, topographic distribution, and synchrony
in AD patients (Smailovic and Jelic, 2019; Colom-Cadena et al.,
2020). Generally, neuronal synaptic activity is analyzed through

spectral analysis of EEG recordings to determine the frequency and
amplitude of brain wave patterns. On the other hand, topographic
distribution is explored using spatial mapping techniques, such
as topographical plots, which display the electrical activity in
various scalp regions. Synchrony, as measured using coherence and
phase-locking value (PLV) analysis, can indicate the correlation in
oscillatory activities among various brain areas.

Besides these conventional measurements, novel developments
underscore the significance of non-linear analysis, including
entropy measures (e.g., sample entropy, multiscale entropy) and
higher-order spectral analysis (e.g., bispectral analysis), which
capture the complexity, irregularity, and phase coupling of
EEG signals. Effective connectivity analysis applies methods like
Granger causality or dynamic causal modeling and is more
sophisticated than functional connectivity by modeling causal
influences between brain regions. Additionally, EEG connectivity
networks and graph-theory-based approaches analyze the brain as
a complex network by measuring network characteristics such as
node centrality and clustering coefficient. New approaches such as
Graph New approaches, such as graph neural networks (GNNs),
can also be employed by reconstructing spatiotemporal dynamics,
providing deeper insights into the disrupted network topology and
organization in AD. These approaches provide important insights
into the general effects of the disease on the brain’s functionality
and connectivity.

2.1 Frequency domain analysis

2.1.1 Power spectrum analysis
Power spectrum analysis applies computational techniques

such as the fast Fourier transform (FFT) to convert time-
domain EEG amplitude fluctuations into frequency-domain
power distributions. This approach is performed using the
following protocol: Firstly, EEG signals are recorded using
electroencephalography machines, which are then converted from
the time domain to the frequency domain through FFT. This allows
the measurement of brain waves of varying frequencies. The signals
are then divided into multiple frequency bands (e.g., δ, θ, α, β, and γ

waves), each reflecting the intensity of brain electrical activity under
a specific state.

Absolute power quantifies the magnitude of power in a specific
frequency band (e.g., α or β waves) within a specified duration. It
is the actual “energy” or amplitude of said frequency band in the
EEG. Higher absolute power indicates more vigorous brain activity
in that frequency range. Relative power is the proportion of power
in a particular frequency band relative to the total power in a given
brain region. Unlike absolute power, relative power offers a more
stable measure by accounting for global variations in overall brain
activity. Studies on cognitive impairment often use relative power
ratios, such as α/θ, θ/γ, α3/α2, and (δ+θ)/(α+β) relative power ratio
(DTABR) (Moretti et al., 2009; Schmidt et al., 2013; Moretti, 2018;
Niu et al., 2023).

Researchers have shown that AD patients present with a
generalized slowing of EEG activity, indicated by high power
of slow-frequency bands (δ and θ) and low power of high-
frequency bands (α and β) (Farina et al., 2020). Specific relative
power ratios reflecting changes in slow and fast waves, such
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as the α/θ ratio (Schmidt et al., 2013) and the DTABR (Niu
et al., 2023), have been shown to exhibit increasing values that
are helpful in the differentiation of AD and are considered
significant markers for the detection of early AD risk. In aMCI
patients, the most prominent EEG changes are decreased β

power and increased δ and θ power (Zawiślak-Fornagiel et al.,
2024), while α power tends to be less affected. The changes
are strongest in the temporal region (Meghdadi et al., 2021).
In relative power ratios (Moretti et al., 2009), increases in the
θ/γ and α3/α2 ratios have been demonstrated to contribute to
the detection of aMCI (Moretti, 2018). The underlying causes
of these changes remain unclear. These patterns of spectral
disorganization likely reflect a breakdown in thalamocortical
oscillatory coordination and synaptic efficiency, potentially driven
by Aβ/tau-mediated neurodegeneration, neuronal death, defective
synapses, or compensatory processes. However, further multimodal
studies integrating PET amyloid imaging and high-density EEG
are needed to disentangle these cascading pathophysiological
processes.

2.1.2 Global field power analysis
While power spectrum analysis provides valuable insights

into the distribution of brain activity across specific frequency
bands, it primarily focuses on localized or regional patterns. To
complement this, Global Field Power (GFP), derived from the
spatial standard deviation of voltage values across all electrodes at
a given time, measures global brain activity’s instantaneous spatial
synchronization strength. As a key qEEG metric, GFP provides
insights into brain activity’s overall strength and synchronization
across frequency bands, offering a broader perspective on the global
integration of neural dynamics.

Compared to normal controls (NC), AD patients exhibit
increased GFP in the θ and δ bands and decreased GFP in
the α band. AD patients show reduced GFP in the α and β

bands compared to aMCI patients. However, no significant GFP
differences were observed between MCI patients and normal
controls (Huang et al., 2000), suggesting that GFP may not
effectively distinguish MCI from regular brain activity. Further
analysis dividing aMCI into single-domain aMCI and multiple-
domain aMCI revealed no significant group differences in GFP
(Smailovic et al., 2022), indicating that GFP may not be suitable
as a marker for differentiating these MCI subtypes. Nevertheless,
longitudinal follow-up of MCI patients demonstrated that those
who progressed to AD exhibited reduced α GFP and more
anteriorly localized θ, α, and β frequency sources compared to those
who remained stable (Huang et al., 2000). This suggests that the
anterior-posterior localization of α GFP may serve as a potential
predictor for MCI progression to AD.

These dynamic shifts in GFP topography—particularly the
anterior migration of α sources in progressive MCI—may
reflect compensatory recruitment of neural circuits network
disintegration. This suggests that GFP spatial evolution could serve
as a tractable biomarker for tracking network-level adaptations
during preclinical AD progression. Smaller sample sizes and
methodological differences limit the generalizability of results,
highlighting the necessity for standardized protocols and larger
cohorts. Meanwhile, its utility in MCI is constrained by the lack of
significant differences between MCI subtypes and normal controls,
emphasizing the need for multimodal approaches. Most studies

suffer from inadequate sample sizes and insufficient evidence
to endorse GFP’s application in early MCI diagnosis. Future
research should prioritize large-scale validation and investigate the
integration of GFP with other biomarkers to enhance diagnostic
accuracy and clinical applicability.

2.2 Functional connectivity analysis

GFP can reflect global changes in neural activity in patients
with AD and MCI, but information regarding interregional
communication is currently lacking. Functional connectivity
analysis complements by assessing temporal correlations and
network interactions, offering further insights into the network-
level disruptions underlying cognitive impairment.

A common approach is phase synchronization, which includes
coherence and phase-locking value (PLV) to measure how brain
regions coordinate their activity (Bastos and Schoffelen, 2015).
Studies show that AD patients have reduced coherence, especially
in the α frequency band (Jelic et al., 1996, 1997; Meghdadi et al.,
2021), with decreased coherence in the right central parietal lobe
potentially serving as an early biomarker for aMCI (Zawiślak-
Fornagiel et al., 2024). However, coherence measurements are only
calculated between channel pairs and are influenced by volume
conduction effects.

Synchronization likelihood (SL) is a quantitative measure of
brain connectivity that assesses the dynamic interdependence
between pairs or sets of EEG channels (Stam and van Dijk,
2002). In patients with AD, SL is reduced across all frequency
bands and has been associated with cognitive decline (Stam et al.,
2003; Stam et al., 2004; Babiloni et al., 2006). Phase lag index
(PLI), which quantifies the asymmetry of the distribution of
phase differences between signals to reduce the impact of volume
conduction (Stam et al., 2007), reveals reduced high-frequency
connectivity with increasing severity of AD but enhanced θ band
connectivity compared to healthy controls (Engels et al., 2015;
Briels et al., 2020). However, PLI only indexes synchronization
between signals in pairs but not on the instantaneous multi-
brain regions’ interactions (Smailovic and Jelic, 2019). To resolve
this challenge, global field synchronization (GFS), which estimates
functional synchronization for multi-channel EEG data, such
that decreased α and β band synchronization and increased δ

band activity characterize cognitive impairment (Koenig et al.,
2005). Abnormally low GFS in frequency bands (δ, θ) may
indicate AD-related synaptic dysfunction in its earlier stages
(Smailovic et al., 2022).

The graph theory analysis can reveal insights into the
pathology of the brain network in AD and MCI. By comparing
topological properties, like mean node degree, clustering
coefficient, characteristic path length, global efficiency, and
local efficiency, this approach allows systematic measurement
of abnormal brain network connectivity. Higher θ band node
degree in the occipital lobe and lower α band clustering coefficient
and local efficiency in AD patients reflect impaired information
transmission and processing (Wu et al., 2024). In contrast, MCI
patients show a higher average clustering coefficient than NC
and lower global efficiency, indicating more local connections
but less efficient global transmission (Youssef et al., 2021). These
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changes provide a neural network-level explanation of cognitive
impairment in AD and MCI.

2.3 Spatial source localization analysis

Although qEEG can reveal important insights into aspects such
as the spectral and connectivity of EEG signals, it has several
limitations. Specifically, it cannot identify the brain location where
the neural activity is generated. Low-resolution electromagnetic
Tomography (LORETA) is a functional neuroimaging method that
locates the sources of electrical activity in the brain through a
three-dimensional model. As a standardized method (sLORETA),
it precisely localizes altered neural activity and connectivity,
providing deeper insights into the mechanisms of cognitive
impairment in AD and MCI (Pascual-Marqui et al., 1994).

In AD patients, the parieto-occipital α source activity was
decreased, while δ and θ band source activity was increased
compared with healthy controls. Cortical sources of δ, θ, and α

activity were significantly correlated with neuropsychological test
scores (Babiloni et al., 2007; Kim et al., 2012; Babiloni et al., 2013b).
In patients with amnestic MCI, the cortical source of EEG rhythm
has been reported to be abnormal.

A previous study collected resting EEG data at baseline and
after about 1 year in MCI subjects and estimated EEG cortical
sources. They found that the posterior α1 source power on the
baseline EEG of MCI subjects was between NC and AD. Analysis
of EEG recordings from MCI patients at baseline and one-year
follow-up showed reduced α power in the parietal, occipital, and
temporal lobes at both low and high frequencies. This suggests that
resting EEG α sources could be a valuable marker for tracking the
cognitive decline in amnestic MCI over a year (Babiloni et al., 2014).
Therefore, researchers should test the application of LORETA to
estimate EEG cortical sources, thereby tract disease progression or
even evaluate the effectiveness of specific drugs designed to improve
cognitive impairment.

2.4 Microstates analysis

EEG microstate analysis detects the periodic activity of
neural networks by using stable electric field topographic maps.
These maps represent the two-dimensional distribution of EEG
potential values recorded at all electrode points at a specific time.
Spontaneous resting-state EEG recordings appear as a sequence
of alternating brief brain states known as functional microstates
(Smailovic and Jelic, 2019). The commonly analyzed microstate
characteristics include the average duration of each microstate,
incidence, coverage, and conversion rate between microstate types.
These microstates remain stable for prolonged periods (typically
60–120 ms) and exhibit organizational alterations over time
(Michel and Koenig, 2018), where duration is defined as the average
time (in milliseconds) that a given microstate remains stable each
time it occurs (Bejia et al., 2023).

Prior studies show that AD patients exhibit reduced microstate
duration, increased optimal window size, and anterior shifts
in the center of gravity, suggesting cognitive decline and
potential diagnostic utility (Dierks et al., 1997; Strik et al.,

1997). However, Schumacher et al. (2019) recently found no
significant changes in microstate duration in AD, though
topography alterations were observed. This discrepancy likely
arises from pathological heterogeneity, where distinct Aβ/tau
burden patterns differentially affect network stability, as well as
methodological differences: Schumacher’s 5-class spatial template
model prioritizes stable brain activity patterns, while Strik’s
duration-based classification (single/multiple/longest microstates)
focuses on temporal persistence (Strik et al., 1997). The
choice of template number (e.g., 5-class vs. traditional 4-class
methods) can affect timing metrics by changing state transitions.
These methodological variations underscore the importance
of standardized approaches in microstate analysis to achieve
consistent and reliable results.

2.5 Effective connectivity analysis

Effective connectivity describes the directed influence of
one neural region or network on another, whether direct or
indirect. It is commonly analyzed using causality-based methods
like Granger causality (GC) and directed transfer function
(DTF). These methods measure the direction and strength of
information flow within brain networks, offering insights into
how different regions interact during cognitive processes or
disease development.

Cai et al. (2017) investigated effective connectivity patterns
in the executive control network (ECN) of 85 MCI patients,
categorized by 24-month outcomes (reversion to normal, stable
MCI, or progression to AD) and 39 healthy controls. Through
independent component analysis to identify ECN nodes (e.g.,
dorsolateral prefrontal cortex and medial prefrontal cortex)
and Granger causality analysis, distinct effective connectivity
patterns were identified among MCI subgroups (Cai et al.,
2017). These findings suggest that ECN dynamic impairments
can differentiate MCI subtypes and serve as neuroimaging
markers for early AD prediction. In another study, researchers
used DTF and GC analyses to compare brain networks during
visual working memory tasks in 21 MCI patients and 20
NC. MCI patients showed reduced θ-band frontal-temporal
connectivity but increased frontal-occipital and parietal-occipital
θ/α connectivity, suggesting compensatory mechanisms. Key
regions (frontal [Fz] and parietal [Pz]) had reduced θ-band
information outflow, with α-band differences mainly in the
parietal lobe. These results highlight disrupted prefrontal-temporal
interactions in MCI and potential compensatory adaptations
(Jiang et al., 2024).

However, EEG-based effective connectivity analysis faces
inherent limitations due to its poor spatial resolution,
limiting its ability to localize neural generators and quantify
directional information flow precisely. EEG’s susceptibility to
noise contamination compounds this challenge. In contrast,
fMRI and MEG are prioritized in connectivity research
owing to their higher spatial resolution. Recent advances
in multimodal integration, particularly EEG-fMRI/MEG
integration, are overcoming these constraints by combining
the temporal resolution of EEG with the spatial fidelity of
complementary modalities.
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2.6 Other non-linear analysis techniques

While linear qEEG analyses, such as power spectral analysis,
GFP, and coherence analysis, capture certain aspects of brain
electrical activity, they are limited in their ability to characterize
the complex, non-linear dynamics of brain function fully. To
address this, recent research has increasingly focused on non-
linear EEG features, which offer deeper insights into the intricate
patterns of neural activity. In the context of AD diagnostics, non-
linear methods have proven particularly valuable, revealing that
AD is associated with reduced complexity and increased regularity
in spontaneous brain activity—findings that linear approaches
often fail to detect (Gómez et al., 2009a,b). These developments
emphasize the significance of non-linear analysis in identifying
hidden biomarkers and enhancing our understanding of brain
disorders.

2.6.1 Entropy
Entropy is a non-linear dynamic parameter that quantifies

the emergence of new information in a time series and measures
the complexity of system behavior. In AD research, sample
entropy (SampEn) and multiscale entropy (MSE) are the most
commonly used measures.

SampEn assesses signal complexity by evaluating sequence
similarity, where lower values indicate higher regularity and higher
values suggest more significant disorder. EEG studies have shown
a progressive decline in SampEn values with cognitive impairment
(AD < MCI < HC). In contrast, relative power spectral analysis
often fails to detect significant abnormalities in MCI (Tao et al.,
2024), underscoring SampEn’s unique ability to capture non-
linear dynamics that conventional spectral metrics miss. A recent
study used SampEn, permutation entropy (PE), and Lempel-Ziv
complexity (LZC) to evaluate brain entropy responses to music
therapy in AD patients with different levels of dementia severity.
The results showed that mild-to-moderate AD patients had higher
post-stimulation entropy compared to severe AD patients (Wu
et al., 2022). These findings offer valuable insights into disease
progression and inform personalized music-based interventions.

MSE builds on SampEn by incorporating time-scale variability,
uncovering changes in complexity across different time scales. The
short-scale MSE is sensitive to high-frequency signals (e.g., α/β),
while the long-scale MSE reflects low-frequency activity (e.g., θ/δ).
In AD patients, short-scale entropy decreases in frontal, temporal,
central, and occipital regions, while long-scale entropy increases,
reflecting spectral slowing (Zúñiga et al., 2024). Furthermore, MSE
and refined multiscale spectral entropy (rMSSE)—a combination
of spectral and multiscale analysis—were applied to EEG data from
NC, MCI, and mild/moderate/severe AD groups. Both metrics
demonstrated significant differences in complexity across disease
stages, especially between the transitions from NC to MCI, MCI
to mild AD, and from moderate to severe AD (Maturana-Candelas
et al., 2019). These findings underscore their potential for tracking
neurodegenerative changes and developing biomarkers for disease
progression.

2.6.2 High-order analysis
Although studies using Lempel-Ziv complexity, multiscale

entropy, and sample entropy have revealed reduced complexity

and irregularity in AD brains, these metrics fail to capture the
intrinsic high-order interactions between non-linear frequency
components in EEG signals. Bicoherence analysis—a statistical
method extending spectral analysis—quantifies non-linear phase
coupling across frequencies. In AD patients, bicoherence analysis
has revealed reduced bispectral peaks, diminished amplitudes, and
decreased phase-coupling complexity (reflected by lower bispectral
entropy), indicating pathological shifts toward simplified and
regularized dynamics (Wang et al., 2015).

Cross-Bispectrum (CBS) can reveal the inherent complexity
of a single signal and capture the interdependence and non-
linear interaction between two signals. By combining traditional
linear functional connections (based on cross-spectral analysis,
only analyzing signals within a single frequency band) and non-
linear cross-band functional connections (based on CBS analysis,
capturing interactions between different frequency bands), a brain
functional network is constructed, and two types of features are
fused for AD classification. Results demonstrated that while single-
band and cross-frequency networks achieved high diagnostic
accuracy, CBS-based non-linear cross-frequency connectivity
significantly outperformed linear methods (Klepl et al., 2022a).
This demonstrates that AD-related network disruptions extend
beyond linear intra-band abnormalities, including impaired cross-
frequency non-linear coupling. It underscores the pivotal role of
cross-frequency interactions in AD pathophysiology and proposes
high-order spectral features as promising novel biomarkers.

3 Significance and application of
qEEG in diagnosis and differential
diagnosis of AD

Different from the traditional EEG, which relies on visual
interpretation, qEEG provides objective indicators through linear
analysis (such as power spectrum and coherence analysis) and
non-linear dynamics (such as sample entropy and bispectrum
analysis) to evaluate brain function accurately in AD and
other cognitive disorders, qEEG can detect changes in neural
synchronization, disconnection, and abnormal oscillation. The
potential pathological mechanism reflected by these biomarkers
can help to diagnose AD not only accurately but also effectively
distinguish other types of cognitive impairment.

3.1 QEEG metrics and network analysis

QEEG is increasingly being applied in the diagnosis and
differentiation of cognitive impairments, including AD, MCI,
and other forms of dementia. Certain key qEEG measures, such
as spectral ratios, have high diagnostic accuracy. For instance,
Schmidt et al. (2013) reported that the α/θ ratio in the C3 and O1
channels could differentiate AD patients with a sensitivity of 76.4%
and specificity of 84.6%, achieving an ROC AUC of 0.92.

Additionally, the eLORETA-based analysis identified distinct
patterns in δ and α bands between AD-related mild cognitive
impairment (ADMCI) and dementia with Lewy bodies-related
mild cognitive impairment (DLBMCI). Moreover, ADMCI patients
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exhibited abnormalities in the posterior α band, while DLBMCI
patients had greater δ band abnormalities. Occipital α2 source
activity effectively distinguished ADMCI from NC (Babiloni et al.,
2018). The α reactivity, which reflects cholinergic integrity, was
significantly decreased in dementia with Lewy bodies (DLB)
compared with levels in AD (Schumacher et al., 2020). This finding
highlights its application value in distinguishing DLB from AD.

Mehram et al. (2019) applied EEG-based weighted network
measures to distinguish AD from DLB. They used the weighted
phase lag index and graph theory to analyze brain network
patterns in AD, DLB, and Parkinson’s disease dementia (PDD).
The study found that DLB showed weaker posterior-anterior
connectivity in the β band and greater network segregation in the
θ band, whereas AD had reduced α band functional connectivity
(Mehram et al., 2019).

In another study, Bejia et al. (2023) investigated and compared
AD with vasculopathy (AD+V), AD without vasculopathy (AD-V),
DLB, and vascular dementia (VaD) through qEEG spectral analysis
and functional connectivity. Their study revealed higher α band
power in VaD compared to AD+V and AD-V. Moreover, AD-
V demonstrated elevated β2 band power and stronger functional
connectivity in the β2 band relative to AD+V, DLB, VaD, and
healthy controls (Bejia et al., 2023).

Yu et al. (2016) compared the EEG functional connectivity
characteristics of AD patients, behavioral variant frontotemporal
dementia (bvFTD) patients, and subjective cognitive decline (SCD)
using PLI and minimum spanning tree (MST) methods. The
MST method constructs a simplified brain network model by
retaining the strongest connections and eliminating redundant
pathways. It was observed that bvFTD patients had significantly
higher δ-band PLI values, and AD patients had higher θ-
band PLI values than bvFTD but lower α-band PLI values.
Further analysis revealed that bvFTD patients had frontal
network abnormalities, whereas AD patients showed functional
connectivity disruption in parieto-occipital regions, suggesting
different pathophysiological mechanisms (Yu et al., 2016). Another
study showed that the functional connectivity-based classification
model was superior to neuropsychological tests in differentiating
bvFTD, AD, and NC, especially in identifying bvFTD from AD
(Dottori et al., 2017).

Overall, the cumulative evidence underscores the considerable
potential of qEEG in AD, offering unique advantages across
early detection, differential diagnosis, and disease monitoring.
At the same time, qEEG improves the accuracy of differential
diagnosis by distinguishing AD from other types of dementia
and neurological disorders, thus providing a basis for developing
precise treatment plans. Longitudinal qEEG profiles further
correlate with cognitive decline rates, providing real-time insights
for therapeutic optimization.

Although qEEG has shown promising results, several
limitations must be addressed to improve its broader application.
For instance, the validity of qEEG in subtypes like frontotemporal
dementia (FTD) or mixed dementia requires further validation
through additional studies. Moreover, the absence of standardized
testing protocols and the need for larger, more diverse datasets
hinder its clinical adoption. Overcoming these challenges
would significantly enhance the reliability and utility of
qEEG in diagnosis, facilitating its integration into routine
clinical practice.

3.2 Traditional machine learning methods

Machine learning (ML) techniques have shown high potential
to improve the diagnosis power of qEEG in AD. Bairagi (2018)
combined spectral features with wavelet features and used support
vector machines (SVM) and K nearest neighbor (KNN) classifiers
to diagnose AD. The accuracy of the joint feature model was
94%, which is significantly better than the results of using spectral
features (90%) or wavelet features (88%) alone. In terms of
computational efficiency, SVM took 36.12 s in training and 1.28 s
in the testing tasks, exceeding the performance of KNN (Bairagi,
2018). This suggests that the combination of spectral and wavelet
features can improve the accuracy and reliability of early diagnosis
of AD, making it an ideal approach for clinical practice.

Youssef et al. (2021) constructed a machine learning
model based on brain functional network markers with an
accuracy of 87.2% in MCI diagnosis. However, the model’s
generalizability remains constrained by cohort size and inter-
site heterogeneity, necessitating validation in more extensive,
multi-center populations. Siuly et al. (2020) proposed an EEG
analysis method that combines features of arrangement entropy
and autoregressive model, and their Extreme Learning Machine
(ELM) model significantly outperforms SVM and KNN algorithms
in distinguishing MCI, with an overall improvement in accuracy,
sensitivity, and specificity and a single operation takes only
0.281 s. This dual integration of non-linear dynamics and
linear parametric features effectively captures alterations in
EEG complexity associated with MCI. Nonetheless, the method
necessitates a rigorous evaluation of its robustness in longitudinal
EEG recordings, and its diagnostic sensitivity to preclinical stages
of MCI. In addition, Mehram et al. (2019) compared the brain
network topology differences of AD, DLB, and PDD by WPLI and
graph theory methods, and the random forest analysis showed that
the AUC of the distinction between DLB and AD was 78%. This
study quantified the specificity of functional connectivity using
the Weighted Phase Lag Index (WPLI), underscoring the potential
of frequency-domain network properties in differentiating
neurodegenerative diseases. Integrating multimodal data, such
as structural MRI or biomarkers, could enhance classification
performance. Additionally, attention should be given to the impact
of graph theory metric selection on model interpretability. These
studies demonstrate the significant value of machine learning
methods based on brain network features for diagnosing mild
cognitive impairment (MCI). Ongoing opportunities exist to
address challenges such as algorithm interpretability, cross-
dataset robustness, and validating associations with pathological
mechanisms.

3.3 Deep learning models

Deep learning has demonstrated unique advantages in EEG
signal analysis through models such as convolutional neural
networks (CNN), recurrent neural networks (RNN), long short-
term memory networks (LSTM), and graph neural networks
(GNN). Among them, CNN excels at processing spectral or spatial
features of qEEG, RNN captures the temporal dynamics of the
signal, and GNN models brain functional connectivity networks (Jo
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et al., 2019; Abadal et al., 2025). Its automated feature extraction
capability with high classification accuracy is particularly suitable
for high-dimensional non-linear qEEG data analysis, providing
new ideas for diagnosing AD and MCI.

Based on the spectral-spatial feature extraction advantages
of CNN, Ieracitano et al. (2019) developed a customized CNN
model to transform multichannel EEG power spectrum data into
channel × frequency grayscale images for distinguishing between
AD, MCI, and NC. Through training, the model achieved an
AUC value of 0.94 in a triple-classification task, where two-by-two
comparisons significantly outperformed conventional methods like
SVM (Ieracitano et al., 2019). This study confirms the potential
of CNNs to extract discriminative features from EEG signals and
provides new ideas for staging the course of dementia.

While CNNs focus on spatial-spectral patterns, the temporal
dynamics of EEG require complementary approaches. Gkenios
et al. addressed this by integrating convolutional layers (to identify
abnormal frequency patterns) with an LSTM network (to analyze
temporal variations) for AD/MCI/NC classification. Although
temp model achieved 99% accuracy in segment-level validation,
its performance dropped to 67% on new patients, highlighting
generalization challenges. Nevertheless, the high sensitivity (88.9%)
for early cognitive impairment and specificity (88.9%) for AD
screening suggest clinical utility, pending larger datasets and
multimodal integration (e.g., neuroimaging) (Gkenios et al., 2022).

Recent advances in GNNs show promise for EEG-based
AD diagnosis. A study using PSD and functional connectivity
(FC) matrices as inputs demonstrated that GNNs achieve
superior performance (AUC = 0.984, accuracy = 92%) compared
to traditional models (e.g., CNNs with best AUC = 0.924).
Dynamically constructed FC-driven graph structures effectively
identified AD-related brain network abnormalities, with minimal
performance variation across FC methods, highlighting GNNs’
advantages for brain disorder classification (Klepl et al., 2022b).

However, conventional GNNs typically rely on pre-defined
graph structures (e.g., FC matrices), which may overlook local
spectral-spatial features. To address this limitation, an adaptive
gated graph convolutional network (AGGCN) was developed to
fuse CNN-extracted node features (from PSD) and connectivity
graphs derived from signal correlations. This integration of local
and global patterns enabled 89.1% accuracy in classifying AD using
eyes-closed EEG (Klepl et al., 2023).

Spatio-temporal integration has emerged as a pivotal frontier.
The Spatial-temporal Graph Convolutional Network (ST-GCN)
combines wavelet coherence-based functional connectivity
(spatial) with 1D convolutions (temporal), achieving 92.3%
accuracy in AD classification—surpassing purely temporal models
(T-CNN: 88.0%)—while revealing weakened posterior connectivity
in AD for mechanistic insights (Shan et al., 2022). However,
its reliance on static functional connectivity thresholds risks
overlooking subtle network disruptions in heterogeneous dementia
subtypes.

In contrast, Adebisi et al. developed a dynamic thresholding
method that adaptively optimizes PLI-based networks using
eigenvector centrality and healthy cohort references. This approach
identified frequency-regional biomarkers: elevated δ band occipital
PLI in AD (cortical hyperinhibition) and reduced θ band
temporal PLI in MCI (early memory network decline). Integrated
with GCNs, their model achieved 95.07% δ-band accuracy in

classifying AD, MCI, vascular dementia, and NC, demonstrating
robust diagnostic potential for complex neurological disorders
(Adebisi et al., 2024).

Current research faces several challenges, including limited
model generalizability, which is demonstrated by the sharp
accuracy degradation of LSTMs when applied to new patient
coorts requiring expanded multi-center datasets to enhance
adaptation. Overreliance on single-modality EEG data persists
without systematically integrating neuroimaging or biochemical
biomarkers, thereby restricting diagnostic comprehensiveness.
Dynamic network construction methods, such as dynamic
thresholding, are highly complex and require high computation
power, making them less applicable in clinical practice. Moreover,
limited interpretability, especially regarding the cross-frequency
interactions and spatial coupling mechanisms, hinders a deeper
understanding of the underlying mechanisms. Future research
should prioritize the development of efficient, multimodal-
adaptive frameworks that rigorously validate network features
about established pathological pathways. Additionally, advancing
prospective clinical trials is essential to enhance the practical
applicability and translational outcomes. For a summary of
published studies on the diagnostic performance of qEEG in AD
and MCI, refer to Table 1.

4 Multimodal integration of qEEG
with complementary biomarkers

Integrating qEEG with complementary biomarkers, such as
MRI, molecular markers like amyloid-beta (Aβ) and tau, genetic
factors, and clinical scales, offers a comprehensive approach
to understanding and diagnosing neurological disorders. By
combining the temporal resolution of qEEG with structural,
molecular, and genetic insights, this multimodal framework
enhances diagnostic precision, uncovers pathophysiological
relationships, and paves the way for non-invasive, holistic tools
in neurophysiological and neurodegenerative research. Refer to
Table 2 for a summary of the studies exploring the multimodal
integration of qEEG and biomarkers in differentiating Alzheimer’s
disease, mild cognitive impairment, and other dementias.

4.1 Integration of quantitative EEG and
magnetic resonance imaging

Abnormal EEG rhythm has been linked to cortical gray matter
atrophy and cognitive function (Babiloni et al., 2013a). Studies
using LORETA source models reported a significant correlation
between decreased hippocampal and occipital gray matter volume
and density levels and decreased cortical α power in patients with
MCI and AD (Babiloni et al., 2009, 2014). Notably, MCI patients
approaching AD conversion showed elevated α3/α2 power ratios,
with higher ratios associated with more significant cortical loss in
the inferior parietal lobule (exceptionally superior limbic gyrus and
bilateral precuneus) (Moretti, 2018). These findings demonstrate
a strong correlation between EEG abnormalities and MRI-derived
structural changes, such as gray matter atrophy, suggesting that
EEG and neuroimaging data can be integrated to provide a more

Frontiers in Aging Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1522552
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1522552
A

pril16,2025
Tim

e:17:15
#

8

Y
u

an
an

d
Z

h
ao

10
.3

3
8

9
/fn

ag
i.2

0
2

5
.15

2
2

5
5

2

TABLE 1 Diagnostic performance of qEEG in Alzheimer’s disease and mild cognitive impairment.

Population qEEG parameters AI-model/method Performance metrics References

AD 50, NC 57 α/θ ROC AD vs. NC: AUC = 0.92, Sen = 76.4%, Spe = 84.6% Schmidt et al., 2013

AD 50, NC 50 Spectral SVM AD vs. NC: Acc = 90%, Sen = 92%, Spe = 88% Bairagi, 2018

Wavelet AD vs. NC: Acc = 88%, Sen = 92%, Spe = 84%

Spectral and wavelet AD vs. NC: Acc = 94%, Sen = 96%, Spe = 92%

MCI 11, NC 16 Permutation entropy and auto-regressive ELM MCI vs. NC: AUC = 0.98, Acc = 98.8%, Sen = 98.3%, Spe = 99.7% Siuly et al., 2020

SVM MCI vs. NC: AUC = 0.95, Acc = 97.4%, Sen = 95.1%, Spe = 100%

KNN MCI vs. NC: AUC = 0.96, Acc = 98.2%, Sen = 100%, Spe = 95.7%

AD 330, NC 246 Spectral features, Hjorth parameters, sample
entropy, microstates

LDA, SVM AD vs. NC: Acc = 85% Jiao et al., 2023

MCI 189, NC 246 MCI vs. NC: Acc = 80% Jiao et al., 2023

AD 330, MCI 189, NC 246 AD vs. MCI vs. NC: Acc = 70% Jiao et al., 2023

ADMCI 30, DLBMCI 23 eLORETA ROC ADMCI vs. DLBMCI: AUC = 0.72, Acc = 72.5%, Sen = 78.3%, Spe = 66.75% Babiloni et al., 2018

ADMCI 30, NC 30 ADMCI vs. NC: AUC = 0.86, Acc = 81.7%, Sen = 90.0%, Spe = 73.3% Babiloni et al., 2018

DLBMCI 23, NC 30 DLBMCI vs. NC: AUC = 0.89, Acc = 81.3%, Sen = 82.6%, Spe = 80.0% Babiloni et al., 2018

AD 13, NC 18 Functional connectivity analysis SVM AD vs. NC: AUC = 0.54, Acc = 44.9% Dottori et al., 2017

AD 13, bvFTD 13 Functional connectivity analysis SVM AD vs. bvFTD: AUC = 0.73, Acc = 72.9% Dottori et al., 2017

DLB 25, AD 32 WPLI and network feature-based approaches Random forest DLB vs. AD: AUC = 0.78, Acc = 66%, Sen = 47%, Spe = 100% Mehram et al., 2019

NC 18, DLB/PDD 46 NC vs. DLB/PDD: AUC = 0.82, Acc = 76%, Sen = 59%, Spe = 100% Mehram et al., 2019

AD 63, NC 63 PSD-image CNN AD vs. NC: AUC = 0.97, Acc = 92.95% Ieracitano et al., 2019

Spectral features SVM AD vs. NC: AUC = 0.95, Acc = 82.69%

AD 63, MCI 63 PSD-image CNN AD vs. MCI: AUC = 0.93, Acc = 84.62% Ieracitano et al., 2019

Spectral features SVM AD vs. MCI: AUC = 0.83, Acc = 60.47%

MCI 63, NC 63 PSD-image CNN MCI vs. NC: AUC = 0.97, Acc = 91.88% Ieracitano et al., 2019

Spectral features SVM MCI vs. NC: AUC = 0.95, Acc = 71.37%

AD 63, MCI 63, NC 63 PSD-image CNN AD vs. MCI vs. NC: AUC = 0.94, Acc = 83.33% Ieracitano et al., 2019

Spectral features SVM AD vs. MCI vs. NC: AUC = 0.88, Acc = 56.84%

AD 20, NC 20 AE, PSD GNN AD vs. NC: AUC = 0.98, Acc = 91.9%, Sen = 97.4%, Spe = 86.7% Klepl et al., 2022b

AD 20, NC 20 Mutual information CNN AD vs. NC: AUC = 0.92, Acc = 84.7%, Sen = 86.2%, Spe = 83.2% Klepl et al., 2022b

AD 20, NC 20 Mutual information SVM AD vs. NC: AUC = 0.81, Acc = 73.9%, Sen = 73.5%, Spe = 74.4% Klepl et al., 2022b

AD 18, NC 18 Frequency domain features LSTM AD vs. NC: Acc = 83.4% Gkenios et al., 2022
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comprehensive understanding of neurodegenerative processes in
MCI and AD.

To evaluate the diagnostic utility of MRI-EEG markers, Waser
et al. (2019) integrated volumetric data (frontal, parietal, temporal,
occipital, entorhinal cortex, hippocampus, and amygdala) with
EEG spectral power/coherence measures through machine
learning. In AD patients, reduced parietal lobe volume and
cortical thickness correlated with elevated delta power and lower
β power. This multimodal approach achieved 84.7% accuracy
in distinguishing MMSE ≥ 24 from MMSE < 24 patients
(Waser et al., 2019). This result highlights the advantages of a
multimodal approach, whereby combined structural (e.g., cortical
thickness) and functional (e.g., slow-wave activity enhancement)
analyses can be more sensitive to capturing early pathological
features of AD and compensate for the shortcomings of a single
modality.

Memory dysfunction subtypes in MCI show distinct profiles:
the encoding dysfunction (EF) group displays increased frontal
θ power, decreased β2 power, and enhanced θ connectivity,
alongside reduced left thalamic and bilateral hippocampal
gray matter volumes. These structural-functional changes
align with AD prodromal characteristics compared to retrieval
dysfunction (RF) groups (Han et al., 2021). However, the
clinical prognostic significance of differentiating EF and
RF subtypes, particularly regarding AD conversion rates,
is unclear and requires validation through longitudinal
studies.

The study by Schumacher et al. (2020) further reveals
the potential for differential diagnosis of AD from other
disorders based on EEG source activity analysis. Compared to
the normal control group, DLB and AD patients exhibited
higher δ source activity (DLB > AD) and lower α source
activity (AD > DLB), with DLB patients experiencing rapid
eye movement (REM) sleep behavior disorder showing reduced
central α source activity. As cognitive impairment progresses,
increased θ source activity in the parietal and central regions
was noted, alongside enhanced α source activity in the central,
parietal, and occipital regions. Visual hallucinations were associated
with elevated parietal δ source activity, suggesting these features
are key markers for distinguishing AD and DLB (Schumacher
et al., 2020). Furthermore, researchers developed an EEG-MRI
model combining EEG spectral and coherence features with medial
temporal lobe atrophy (MTA) scores, achieving a classification
accuracy of 90%, outperforming single-modality models (Colloby
et al., 2016). This indicates that the EEG-MRI combination
enhances diagnostic performance and could potentially replace
dopaminergic imaging.

Nevertheless, the generalizability of this model requires
cautious evaluation. The high heterogeneity of DLB (e.g., AD co-
pathology, REM sleep behavior disorder, or autonomic failure)
may compromise the stability of EEG-MRI fusion features.
Furthermore, unresolved discrepancies in MRI scanner parameters
and EEG preprocessing methods across multicenter studies pose
additional challenges. Future research needs to validate the
predictive efficacy of these biomarkers for disease progression
(e.g., from MCI to DLB/AD) in longitudinal cohorts and
elucidate the mechanistic contribution of key features and
their causal relationship with pathological mechanisms, thereby
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TABLE 2 Multimodal integration of qEEG and biomarkers for differentiating AD, MCI, and other dementias.

Population Analysis/parameters AI-model/method Performance metrics References

AD13, NC 18 Functional connectivity analysis SVM AD vs. NC: AUC = 0.54, Acc = 44.9% Dottori et al., 2017

Functional connectivity analysis+neuropsychological tests AD vs. NC: AUC = 0.77, Acc = 88.0%

bvFTD 13, NC 25 Functional connectivity analysis SVM bvFTD vs. NC: AUC = 0.73, Acc = 72.7% Dottori et al., 2017

Functional connectivity analysis+neuropsychological tests bvFTD vs. NC: AUC = 0.78, Acc = 87.4%

AD 13, bvFTD 13 Functional connectivity analysis SVM AD vs. bvFTD: AUC = 0.73, Acc = 72.9% Dottori et al., 2017

Functional connectivity analysis+neuropsychological tests AD vs. bvFTD: AUC = 0.70, Acc = 72.9%

AD 111 Spectral features, Functional connectivity analysis+MRI SVM MMSE ≥ 24 vs. MMSE < 24: Acc = 84.7%, Sen = 92.1%, Spe = 75.0% Waser et al., 2019

MRI MMSE ≥ 24 vs. MMSE < 24: Acc = 66.7%, Sen = 77.8%, Spe = 52.1%

Spectral features, functional connectivity analysis MMSE ≥ 24 vs. MMSE < 24: Acc = 79.3%, Sen = 87.3%, Spe = 68.8%

AD 60, aMCI 60 MRI Penalized logistic regression AD vs. aMCI: AUC = 0.99 Farina et al., 2020

wPLI AD vs. aMCI: AUC = 0.62

MMSE+global theta AD vs. aMCI: AUC = 0.86

AD 60, NC 60 MRI AD vs. NC: AUC = 0.99 Farina et al., 2020

wPLI AD vs. NC: AUC = 0.76

MMSE+global theta AD vs. NC: AUC = 0.98

aMCI 60, NC 60 MRI aMCI vs. NC: AUC = 0.72 Farina et al., 2020

wPLI aMCI vs. NC: AUC = 0.61

MMSE+global theta aMCI vs. NC: AUC = 0.80

MCI pos 51, MCI neg 35 fMRI, eLORETA Binomial logistic regression models MCI pos vs. MCI neg: Acc = 76.8%, Sen = 71.4%, Spe = 70.6% Cecchetti et al., 2021

AD28, NC 28 DTABR ROC AD vs. NC: AUC = 0.782 Niu et al., 2023

APOA-I, AD vs. NC: AUC = 0.713

APOE4 AD vs. NC: AUC = 0.679

DTABR, APOA-I, APOE4 AD vs. NC: AUC = 0.889

aMCI 29, NC 28 DTABR ROC aMCI vs. NC: AUC = 0.833 Niu et al., 2023

APOA-I aMCI vs. NC: AUC = 0.669

APOE4 aMCI vs. NC: AUC = 0.584

DTABR, APOA-I, APOE4 aMCI vs. NC: AUC = 0.855

AD 30, DLB 21 Spectral features, functional connectivity analysis SVM AD vs. DLB: Acc = 77% Colloby et al., 2016

MTA AD vs. DLB: Acc = 67%

Spectral features, functional connectivity analysis+MTA AD vs. DLB: Acc = 90%

MMSE, mini-mental state examination, a cognitive assessment tool; aMCI, amnestic mild cognitive impairment; DTABR, (δ+θ)/(α+β) relative power ratio; APOA-I, apolipoprotein A-I; APOE4, apolipoprotein E4; MRI, magnetic resonance imaging; MTA, medial
temporal atrophy.
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advancing multimodal diagnostic tools toward personalized
therapeutic strategies.

4.2 Unveiling the relationship between
qEEG, Aβ, and tau: toward a non-invasive
diagnostic tool

Currently, it is particularly important to gain a deeper
understanding of the correlation between qEEG and Aβ and
tau proteins and their underlying mechanisms. QEEG reflects
changes in brain electrical activity patterns, which may be closely
related to the accumulation of Aβ and tau. By exploring these
relationships, we can reveal the pathological mechanisms of
neurodegenerative diseases and provide new perspectives for
early diagnosis.

In AD patients, CSF analysis reveals significantly decreased
Aβ42 levels and increased total tau (t-tau) and phosphorylated
tau (p-tau) levels (Blennow et al., 2010). Smailovic et al. (2018)
reported a negative correlation between CSF Aβ42 levels and
slow-frequency power (θ and δ), as well as between p-tau
and t-tau levels and fast-frequency power (α and β). Reduced
CSF Aβ42 and elevated p-tau and t-tau were also associated
with decreased α and β GFS levels. Mechanistically, amyloid
pathology may cause slow-frequency interference through the
cholinergic system, while tau pathology, akin to neuronal
loss and degeneration, affects fast frequencies in the cortex
(Smailovic and Jelic, 2019).

Rochart et al. (2020) investigated gamma activity in cognitively
normal patients with abnormal CSF amyloid and tau ratios.
They found impaired γ-band power in individuals with positive
AD biomarkers (Rochart et al., 2020). Similarly, (Kim et al.,
2021) categorized subjective cognitive decline (SCD) and MCI
patients into amyloid-positive and amyloid-negative groups using
PET-CT. The amyloid-positive group exhibited higher δ absolute
power and δ relative power, as well as higher β1 relative power.
Conversely, γ absolute power, α relative power, and γ relative
power were lower in the amyloid-positive group (Kim et al., 2021).
Cecchetti et al. (2021) grouped MCI patients based on CSF tau
and Aβ42 ratios (MCIpos ≥ 0.13, MCIneg < 0.13). AD and
MCIpos patients showed higher θ density in the central, parietal,
and occipital lobes compared to MCIneg and healthy individuals
(Cecchetti et al., 2021).

QEEG parameters, particularly δ and θ GFS, provide critical
insights into AD pathology. Studies reveal that reduced δ/θ
GFS in patients with single-domain amnestic mild cognitive
impairment (sd-aMCI) mirrors neurophysiological changes
seen in AD, including synaptic damage, amyloid pathology,
and neurodegeneration. These qEEG patterns further highlight
impaired slow-band functional connectivity, which is strongly
associated with early AD manifestations (Smailovic et al., 2022).
However, the cross-sectional nature of existing studies has limited
the ability to fully investigate the dynamic relationship between
qEEG features and the progression of Aβ/Tau pathology. To
address this, future research should prioritize longitudinal cohort
studies to systematically track changes in qEEG parameters
alongside biomarker evolution and cognitive decline. Integrating
multimodal data, such as structural MRI, plasma biomarkers,

and tau-PET imaging, will further enhance diagnostic accuracy
and deepen our understanding of the underlying pathological
mechanisms, ultimately advancing precision medicine approaches
for neurodegenerative diseases.

4.3 Integration of qEEG and other
examinations

Apolipoprotein A-I (APOA-I) modulates AD occurrence
and progression by binding to Aβ (Zuin et al., 2021), while
the apolipoprotein E (APOE4) allele serves as a potential AD
biomarker (Corder et al., 1993). Combining DTABR with APOA-I
and APOE4 optimizes aMCI diagnostic accuracy (Niu et al., 2023).
While APOE4 does not directly drive AD-related EEG slowing,
it is linked to selective reductions in EEG coherence (Jelic et al.,
1997). However, a large-scale study observed more severe EEG
slowing in AD patients without the APOE4 allele, particularly
in parieto-occipital regions (de Waal et al., 2013). Additionally,
APOE4 carriers with amyloid pathology exhibit higher β band GFP
and lower θ and β band GFS than non-carriers (Smailovic et al.,
2021). The increased β band GFP in APOE4 carriers may reflect
compensatory mechanisms to counteract global EEG slowing,
while reduced θ and β band GFS indicate brain functional deficits
linked to the APOE4 genotype.

Farina et al. (2020) demonstrated that magnetic resonance
imaging (MRI) achieved superior accuracy in distinguishing AD
patients from NC (AUC = 0.99) and AD from MCI (AUC = 0.99)
but showed lower performance in differentiating MCI patients
from NC (AUC = 0.73). Standalone EEG showed limited
discrimination between MCI and NC groups (AUC = 0.61), yet
integration with the Mini-Mental State Examination (MMSE)
improved AUC to 0.80, confirming the augmentative value of
behavioral metrics in EEG-based diagnosis (Farina et al., 2020).
Dottori et al. (2017) revealed context-dependent benefits of
neuropsychological variables (NPVs): NPVs enhanced EEG
connectivity models for distinguishing behavioral variant
frontotemporal dementia (bvFTD) patients from healthy
controls (87.4% vs. 72.7% accuracy) but provided no advantage
for differentiating bvFTD from AD. Connectivity variables
alone achieved 88.3% accuracy in distinguishing AD patients
from healthy controls unaffected by NPV integration (Dottori
et al., 2017). This demonstrates that connectivity biomarkers
have higher disease-specific discriminative capacity than
behaviorally-enhanced models.

Integrating qEEG with other data types is undoubtedly set to
become a key trend in future research. However, the heterogeneity
of multimodal data, including the static nature of genetic or
molecular biomarkers (e.g., APOE4 genotype or Aβ/Tau protein
concentrations), the spatial specificity of MRI, the subjectivity
of scale assessments, and the high temporal resolution dynamic
characteristics of EEG, significantly increases the complexity of
algorithmic integration, limiting the development of individualized
predictive models. Future efforts must focus on developing cross-
scale fusion algorithms to integrate multimodal data, analyze time-
space-functional relationships, and construct precise, interpretable,
individualized predictive models.
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5 Application value of qEEG in the
prediction of AD progression

Multiple studies underscore the growing utility of qEEG
in predicting AD progression, particularly in individuals with
MCI (Engedal et al., 2020; Hamilton et al., 2021; Kim et al.,
2021). Hamilton et al. (2021) demonstrated that an elevated
θ/α ratio on qEEG was associated with a higher annual risk
of dementia in both MCI patients and normal controls over
an average follow-up period of 1.5 years, highlighting qEEG’s
potential as a dynamic biomarker for early risk stratification.
To enhance prediction accuracy, Hatz et al. (2015) tracked 35
aMCI and mild dementia patients over 30 months, identifying
significant θ-band PLI differences between left centro-lateral
and parieto-occipital brain regions via EEG microstate analysis.
Combined with verbal memory scores, this approach achieved
100% specificity and 77% sensitivity in distinguishing AD
progressors from stable aMCI (Hatz et al., 2015). This demonstrates
that cognitive testing can help to clarify the predictive power
of qEEG, although it has a relatively lower sensitivity. This
necessitates the use of several biomarkers to reduce false
negatives.

The integration of machine learning (ML) has further
refined predictive models. One study evaluated qEEG using
the statistical pattern recognition (SPR) method to predict
dementia conversion in SCD and MCI patients. Over 5 years,
70 of 213 participants developed dementia. The EEG-derived
dementia index (DI) showed moderate predictive power
(AUC 0.78, 71% sensitivity, 69% accuracy), improving with
cognitive tests. qEEG can aid in identifying high-risk patients but
should supplement standard diagnostics (Engedal et al., 2020).
Multimodal approaches have shown even more tremendous
promise in overcoming the limitations of single-modality
predictors. Jiao et al. (2023) developed a Random Forest regression
model integrating EEG biomarkers, cerebrospinal fluid (CSF)
biomarkers, APOE genotype, and demographic data, which
outperformed traditional CSF+APOE models in predicting disease
onset and progression, particularly for cognitive assessments
like MMSE and MoCA. Similarly, while MRI features alone
surpassed EEG in predicting AD severity, a study by Jesus
et al. (2021) highlighted enhanced accuracy when combining
MRI and EEG.

Importantly, recent advances have addressed the need for
validation against gold-standard biomarkers. Kim et al. (2021)
developed an EEG-ML algorithm for detecting Aβ pathology
in SCD and MCI patients, validating its performance against
Aβ-PET with 88.6% accuracy in SCD and 84.6% accuracy
in MCI amyloid classification, thereby proving the standalone
utility of quantitative EEG in identifying Aβ accumulation.
Although integrating qEEG with neuropsychological testing,
multimodal biomarkers, and machine learning has shown great
potential to improve personalized AD prediction, critical challenges
remain to be solved, as shown in Table 3. Most previous
studies focused on short-term outcomes; thus, the long-term
prognostic value is poorly understood. Moreover, the high
heterogeneity of EEG feature selection and machine learning
methodologies limits cross-study comparisons. Future longitudinal

multimodal cohorts, standardized analytical frameworks, and
translational studies are needed to resolve and address the current
limitations.

6 Application of qEEG in monitoring
disease treatment in patients with
MCI and AD

QEEG biomarkers have demonstrated promise in managing
neurodegenerative diseases, particularly AD, by providing
real-time, non-invasive insights into synaptic dysfunction and
neurochemical imbalances associated with disease progression.

Decreased acetylcholine synthesis or increased acetylcholine
breakdown may contribute to the development of AD
(Bartus et al., 1982). A potential strategy to enhance
cholinergic neurotransmission is to increase the availability
of acetylcholine by inhibiting acetylcholinesterase (AChEI).
Several acetylcholinesterase inhibitors, such as Donepezil and
Galantamine, have been approved for treating AD (Blennow et al.,
2006). Recent studies have shown that AChEI decreases the β, θ,
and δ bands in patients with AD. At the same time, conflicting
results have been reported in the α band, where Donepezil and
Galantamine decrease the α band power, while Rivastigmine
increases the α band power (Arjmandi-Rad et al., 2023). This
limitation may stem from the fact that most studies investigating
the effects of AChEI are based on small samples and lack uniformity
in the use of qEEG-related parameters and methods. Therefore,
in the future, it is necessary to conduct further studies with a
larger number of participants and compare the application of
different qEEG parameters to assess the effects of AChEI more
comprehensively, thus improving the reliability and validity of the
studies.

Other pharmacological interventions have shown beneficial
effects on qEEG profiles in AD patients. In a 12-week randomized
trial by Scheltens et al. (2018), cognitively impaired patients
(n = 120) received either PQ912, a glutamine cyclase inhibitor
that reduces neurotoxic pyroglutamate-Aβ oligomers, or a placebo
beverage. PQ912-treated patients exhibited improved memory
function and decreased θ band power, highlighting qEEG’s role
in monitoring Aβ-related network modulation (Scheltens et al.,
2018). Despite these promising results, the study faced limitations,
including unstratified baseline qEEG characteristics and the
absence of long-term follow-up beyond 6 months.

Fosgonimeton, a neurotrophic agent that reverses synaptic
discontinuity and neuronal loss, has demonstrated the potential
to alleviate dementia symptoms and slow disease progression.
Clinical studies have shown that Fosgonimeton induces dose-
dependent increases in γ power (20–90 mg dose range), correlating
with improvements in cognitive function. These findings highlight
the effectiveness of qEEG signals in guiding dose optimization
in human clinical trials (Hua et al., 2022). However, there are
methodological gaps, and the changes in γ power were not validated
against synaptic density biomarkers, which reduces the reliability of
the results.

In animal studies, the Trk receptor modulator ACD856
enhanced cognitive function and induced dose-dependent
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TABLE 3 QEEG-based unimodal and multimodal approaches for predicting Alzheimer’s disease progression.

Population Prediction target Analysis/parameters AI-model/method Performance metrics References

SCD 180 Aβ+ vs. Aβ− EEG SVM Acc = 88.6%, Sen = 85.7%, Spe = 89.3% Kim et al., 2021

MCI 63 Aβ+ vs. Aβ− SVM Acc = 84.6%, Sen = 83.3%, Spe = 85.7% Kim et al., 2021

SCD 47, MCI 99, NC 67 conversion to AD EEG SPR AUC = 0.78, Acc = 69%, Sen = 71%, Spe = 69% Engedal et al., 2020

AD 330, MCI 189, NC 246 MMSE EEG Random forest regression MAE = 2.67, R2 = 0.82 Jiao et al., 2023

CSF+APOE MAE = 2.09, R2 = 0.87

EEG+CSF+APOE MAE = 1.69, R2 = 0.93

AD 330, MCI 189, NC 246 MoCA EEG Random forest regression MAE = 2.32, R2 = 0.85 Jiao et al., 2023

CSF+APOE MAE = 1.44, R2 = 0.94

EEG+CSF+APOE MAE = 0.88, R2 = 0.98

AD 330, MCI 189, NC 246 Age of onset EEG Random forest regression MAE = 2.95 year, R2 = 0.87

CSF+APOE MAE = 4.36 year, R2 = 0.65

EEG+CSF+APOE MAE = 1.53 year, R2 = 0.95

AD 330, MCI 189, NC 246 Course of disease EEG Random forest regression MAE = 0.87

CSF+APOE MAE = 1.12

EEG+CSF+APOE MAE = 0.89

minimal-mild AD 89 MMSE EEG Random forest regression RMSE = 1.798 ± 0.176 Jesus et al., 2021

MRI RMSE = 1.715 ± 0.186

EEG+MRI RMSE = 1.682 ± 0.177

aMCI 35 MCI-stable (n = 9), AD (n = 26) EEG+verbal learning memory score binary logistic regression AUC = 0.90, Sen = 77%, Spe = 100%, Positive predictive
value = 100%, Negative predictive value = 60%

Hatz et al., 2015

SCD, subjective cognitive decline; Aβ+, amyloid beta positive; Aβ−, amyloid beta negative; SPR, statistical pattern recognition; MoCA, Montreal cognitive assessment; MAE, mean absolute error; R2 , coefficient of determination; RMSE, root mean squared error.
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TABLE 4 Summary table of studies on the application of qEEG in monitoring disease treatment across populations and models.

Study population Intervention
measures

qEEG
parameters

EEG assessment time
points

Results Main conclusions References

AD (n = 50) Galantamine α, β and θ power 5 h Decrease in frontal α, β and θ power The acute pharmacodynamic effects
(reduction in α, β and θ power) following a
single dose of 16 mg galantamine are
associated with long-term therapeutic
outcomes.

Baakman et al., 2022

AD (n = 20) Rivastigmine High α band and low
α band power

Baseline and 18 months
post-intervention

Percentage of patients with increased
α power at P3 electrode: RV-TDP
group 80%, RV-CP group 30%

Compared to RV-CP treatment, RV-TDP led
to increased posterior α power in more
patients and significantly improved cognitive
function at 18 months.

Moretti et al., 2014

AD (n = 20) Rivastigmine θ power 1 week Reduction in θ power Reduction in θ power during treatment is a
strong predictor of therapeutic response.

Adler et al., 2004

AD (n = 18) Donepezil Spectral analysis 2 months and 4 months Temporal δ power decreased, other
frequencies increased

Donepezil positively impacted the brain
activity of AD patients by reducing δ activity
and increasingα and β activity. The
post-treatment increase in θ activity may
reflect a therapeutic shift fromδ to θ activity.

Balkan et al., 2003

AD (n = 12) Donepezil Spectral analysis 1 month A reduction in α band activity across
the bilateral frontal-central-temporal
cortex and δ band activity over the
bilateral frontal region.

Donepezil influences EEG changes related to
cognition in AD patients.

Reeves et al., 2002

MCI/AD (n = 120) Glutaminyl cyclase
inhibitor PQ912

α and θ power 12 weeks PQ912 group θ power decreased,
placebo group θ power increased.

PQ912 significantly reduced θ band relative
power in EEG, indicating its modulatory effect
on brain electrical activity.

Scheltens et al., 2018

Healthy young (n = 48),
elderly volunteers (n = 29).

Fosgonimeton Spectral analysis Single-dose: Pre and 1 h
post-administration (healthy young).
Multiple-dose: Pre, 1 h, 3 h on Days 1,
4, 8 (elderly).

Acute and sustained increase in γ

power
The effectiveness of qEEG signals in guiding
dose optimization in human clinical trials.

Hua et al., 2022

Healthy subjects (n = 24) in
three groups: 10, 30,
90 mg/day.

ACD856 Spectral analysis Baseline, 1.5, 6, and 24 h after the first
dose, and 1.5 h after the last dose on
day 7.

Increased θ power, decreased α and β

power, and increased θ/β ratio.
The qEEG parameters demonstrated
dose-dependent changes with variations in
CD856 dosage.

Önnestam et al., 2023

Mice (7–8 months) tDCS Spectral analysis Spontaneous EEG recorded pre-tDCS
and twice post-tDCS; task-related
EEG during Y-maze.

atDCS increased PFC α during
spontaneous states; ctDCS enhanced
α and β during tasks.
Improved memory retrieval
correlated with PFC δ reduction and γ

increase.

tDCS reverses sluggish brain activity in AD
mice, leading to further cognitive
improvement.

Duan et al., 2022

(Continued)
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qEEG changes, including an increased θ/β ratio, elevated θ

power, and reduced α and β power. Importantly, ACD856 has
been demonstrated to effectively cross the blood-brain barrier,
achieving relevant exposure levels in the central nervous system
(CNS) (Önnestam et al., 2023). These findings collectively
suggest that its CNS penetration and modulation of qEEG
parameters may underlie its cognitive-enhancing effects, making it
a promising candidate for developing therapeutic interventions for
neuropsychiatric and cognitive disorders.

Transcranial direct current stimulation (tDCS), a non-invasive,
non-pharmacological intervention, has been found to improve
cognitive function. When left prefrontal cortex (PFC) anodic
stimulation (atDCS) and cathodic stimulation (ctDCS) were
administered to 7–8 month-old APP/PS1 transgenic AD mice
for five consecutive days (20 min per day), memory function
was significantly improved and correlated with the decrease
of δ-wave and the increase of γ-wave in the EEG activity of
the PFC (Duan et al., 2022). This result indicates that tDCS
can alleviate brain activity retardation and enhance cognitive
performance in AD model animals, suggesting that it may be a
robust intervention for restoring neural network activity and AD
treatment (Duan et al., 2022). These findings demonstrate that
tDCS can restore aberrant neural oscillations in AD mouse models,
improve cognitive performance, and underscore its therapeutic
potential for normalizing network-level neural dynamics in AD.

Several machine learning algorithms have been used to predict
the neurophysiological response of AD patients to tDCS and
cognitive interventions. Among them, the machine learning model
constructed by Andrade et al. (2023) screened five brain regions,
including FC1, F8, CP5, Oz, and F7, for electrical activity as the
best predictors of response to tDCS treatment, suggesting that
these regions may become biomarkers for treatment prediction.
Marceglia et al. (2016) further explored the mechanism of tDCS
action by recording EEG before eye closure and 30 min after
receiving anodic/cathodic tDCS stimulation and assessing working
memory changes in conjunction with a word recognition task
(WRT). Spectral power and EEG coherence across frequency bands
were analyzed. Baseline results showed reduced high-frequency
power correlated with lower MMSE scores. After atDCS, high-
frequency power and coherence increased in the temporoparietal
and temporoparietal-occipital regions, respectively, aligning with
improved WRT performance. In contrast, ctDCS reduced theta
power across the scalp without clinical correlation. These findings
suggest that atDCS reverses abnormal brain activity in AD,
improving working memory through cortical regulation (Marceglia
et al., 2016). Although tDCS can improve cognitive performance in
AD, its clinical application is limited by the lack of standardized
protocols, long-term data, and constraints of translating findings
from animal models to humans.

In summary, qEEG performs well in monitoring treatments
for MCI and AD, but further research is needed to address
the various gaps shown in Table 4. In the future, large-scale
multicenter clinical trials should test the reliability of qEEG in
different populations. In addition, the intervention plan for qEEG
should be adjusted using real-time treatment monitoring, thereby
improving individualized efficacy. Researchers should develop
standard data acquisition methods and biomarker interpretation
protocols. Future research should focus on integrating qEEG with
advanced neuroimaging modalities such as MRI and PET to enable
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a more comprehensive analysis of disease mechanisms and the
identification of potential therapeutic targets. Moreover, further
exploration of emerging computational approaches, particularly
machine learning, could facilitate the discovery of novel biomarkers
within qEEG data, revealing neural activity patterns that may be
difficult to capture using traditional methods. Moreover, applying
machine learning for biomarker identification could enhance
the understanding of treatment response dynamics and disease
progression, ultimately contributing to developing more effective
and personalized therapeutic strategies for MCI and AD.

7 Conclusion

Compared with existing review papers in this field (Cassani
et al., 2018; Sanchez-Reyes et al., 2021; Chetty et al., 2024),
this manuscript explores qEEG-related parameters in AD and
MCI diagnosis, treatment monitoring, and multimodal data
fusion, while highlighting advancements in machine learning and
deep learning for EEG analysis. These contributions provide a
comprehensive reference for AD research, addressing gaps in the
field. However, variability in EEG data collection—such as the
number of electrodes, sampling time, and recording conditions—
and the reliance on manual artifact removal methods, like visual
examination, introduce subjectivity and hinder comparability
across studies. Automated artifact removal techniques, such as
independent component analysis (ICA) or wavelet-based methods,
could address these limitations by providing more standardized
and reproducible results. To establish qEEG as an indicative
biomarker—a marker that provides direct diagnostic evidence
rather than supplementary information—further comprehensive
studies and standardizing EEG data collection and experimental
protocols are essential.

Incorporating ML into qEEG studies is critical for identifying
specific data features. Deep learning models such as CNN and
GNN in machine learning can efficiently extract spatiotemporal
and topological features of EEG signals, while SVM is good at high-
dimensional data classification, and these techniques have been
successful in epilepsy detection and Parkinson’s disease diagnosis,
which are worthwhile for qEEG research. Based on this, high-
precision classification models can be developed to distinguish NC,
MCI, AD, and other dementia subtypes. In addition, qEEG can
directly reflect the impairment of early synaptic activity in AD,
which should be incorporated into the design of new drug clinical
trials to enhance the efficiency of drug development.

In recent studies, multimodal fusion is increasingly applied,
demonstrating that combining qEEG with other biomarkers, such
as MRI, PET-CT, and CSF analysis, may yield better results. In
addition, it has been shown that multimodal approaches provide
better diagnostic accuracy, specificity, and overall performance
compared to unimodal approaches. However, current studies often
suffer from tiny sample sizes and short follow-up durations, which
limit the generalizability and robustness of findings. Future trials
should aim for sample sizes exceeding 300 participants and more
than one-year follow-up durations to address these limitations.
Such large-scale, longitudinal studies are essential to evaluate the
stability and predictive power of qEEG biomarkers in a multimodal
framework and to ensure reliable and clinically meaningful results.

Finally, numerous prospective studies have demonstrated the
potential of qEEG in improving disease diagnosis and monitoring
prognosis. However, the consistency of qEEG in detecting PET-
CT and CSF-specific neuropathologic changes should be tested
in preclinical and clinical AD patients to obtain reliable and
robust qEEG measurements that can be used to assess dementia
at the individual level. Specific challenges in applying ML to
qEEG data include the need for large, well-annotated datasets
to train models effectively and the importance of robust cross-
validation techniques to ensure generalizability. With continued
advancements in technology, standardization of protocols, and
integration of machine learning, qEEG has the potential to
revolutionize the diagnosis and management of dementia, paving
the way for earlier interventions and improved patient outcomes.
Future research should address these challenges to establish qEEG
as a reliable and clinically actionable biomarker in the fight against
AD and related dementias.
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Farina, F. R., Emek-Savaş, D. D., Rueda-Delgado, L., Boyle, R., Kiiski, H., Yener, G.,
et al. (2020). A comparison of resting state EEG and structural MRI for classifying
Alzheimer’s disease and mild cognitive impairment. Neuroimage 215:116795. doi:
10.1016/j.neuroimage.2020.116795

Gkenios, G., Latsiou, K., Diamantaras, K., Chouvarda, I., and Tsolaki, M. (2022).
Diagnosis of Alzheimer’s disease and mild cognitive impairment using EEG and

Frontiers in Aging Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1522552
https://doi.org/10.1016/j.neunet.2024.106792
https://doi.org/10.1016/j.neunet.2024.106792
https://doi.org/10.1109/TNSRE.2024.3374651
https://doi.org/10.1017/S1092852918001347
https://doi.org/10.3389/fnhum.2023.1234168
https://doi.org/10.1007/s10072-023-07114-y
https://doi.org/10.1007/s10072-023-07114-y
https://doi.org/10.1111/bcp.15206
https://doi.org/10.1002/alz.12311
https://doi.org/10.1002/alz.12311
https://doi.org/10.1016/j.brainresbull.2005.10.013
https://doi.org/10.1016/j.brainresbull.2005.10.013
https://doi.org/10.1002/hbm.22005
https://doi.org/10.1111/j.1460-9568.2007.05601.x
https://doi.org/10.1111/j.1460-9568.2007.05601.x
https://doi.org/10.1016/j.neurobiolaging.2013.06.019
https://doi.org/10.1016/j.neuroimage.2008.08.005
https://doi.org/10.1016/j.neuroimage.2008.08.005
https://doi.org/10.3233/JAD-121750
https://doi.org/10.3233/JAD-121750
https://doi.org/10.3233/JAD-170703
https://doi.org/10.1007/s41870-018-0165-5
https://doi.org/10.1007/s41870-018-0165-5
https://doi.org/10.1126/science.7046051
https://doi.org/10.1126/science.7046051
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.1016/j.neurobiolaging.2023.06.008
https://doi.org/10.1016/j.neurobiolaging.2023.06.008
https://doi.org/10.1016/S0140-6736(06)69113-7
https://doi.org/10.1038/nrneurol.2010.4
https://doi.org/10.1186/s13195-020-00632-3
https://doi.org/10.2174/1567205014666170309120200
https://doi.org/10.1016/j.neurobiolaging.2011.12.011
https://doi.org/10.1155/2018/5174815
https://doi.org/10.1016/j.nicl.2021.102711
https://doi.org/10.1186/s13195-024-01582-w
https://doi.org/10.1016/j.jpsychires.2016.03.010
https://doi.org/10.1016/j.jpsychires.2016.03.010
https://doi.org/10.1186/s13195-020-00588-4
https://doi.org/10.1186/s13195-020-00588-4
https://doi.org/10.1126/science.8346443
https://doi.org/10.1126/science.8346443
https://doi.org/10.1016/j.neurobiolaging.2013.03.007
https://doi.org/10.1007/BF01277666
https://doi.org/10.1038/s41598-017-04204-8
https://doi.org/10.1038/s41598-017-04204-8
https://doi.org/10.3389/fnagi.2022.968451
https://doi.org/10.3389/fnagi.2022.968451
https://doi.org/10.1159/000508392
https://doi.org/10.1159/000381016
https://doi.org/10.1159/000381016
https://doi.org/10.1186/s12883-015-0400-7
https://doi.org/10.1186/s12883-015-0400-7
https://doi.org/10.1016/j.neuroimage.2020.116795
https://doi.org/10.1016/j.neuroimage.2020.116795
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1522552 April 16, 2025 Time: 17:15 # 18

Yuan and Zhao 10.3389/fnagi.2025.1522552

recurrent neural networks.Annu. Int. Conf. IEEE Eng.Med. Biol. Soc. 2022, 3179–3182.
doi: 10.1109/EMBC48229.2022.9871302

Gómez, C., Hornero, R., Abásolo, D., Fernández, A., and Escudero, J. (2009a).
Analysis of MEG background activity in Alzheimer’s disease using nonlinear methods
and ANFIS. Ann. Biomed. Eng. 37, 586–594. doi: 10.1007/s10439-008-9633-6

Gómez, C., Mediavilla, A., Hornero, R., Abásolo, D., and Fernández, A. (2009b). Use
of the higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s
disease patients. Med. Eng. Phys. 31, 306–313. doi: 10.1016/j.medengphy.2008.06.010

Hamilton, C. A., Schumacher, J., Matthews, F., Taylor, J.-P., Allan, L., Barnett,
N., et al. (2021). Slowing on quantitative EEG is associated with transition to
dementia in mild cognitive impairment. Int. Psychogeriatr. 33, 1321–1325. doi: 10.
1017/S1041610221001083

Han, S.-H., Pyun, J.-M., Yeo, S., Kang, D. W., Jeong, H. T., Kang, S. W.,
et al. (2021). Differences between memory encoding and retrieval failure in
mild cognitive impairment: Results from quantitative electroencephalography and
magnetic resonance volumetry. Alzheimers Res. Ther. 13:3. doi: 10.1186/s13195-020-
00739-7

Hatz, F., Hardmeier, M., Benz, N., Ehrensperger, M., Gschwandtner, U., Rüegg, S.,
et al. (2015). Microstate connectivity alterations in patients with early Alzheimer’s
disease. Alzheimer’s Res. Therapy 7:78. doi: 10.1186/s13195-015-0163-9

Hua, X., Church, K., Walker, W., L’Hostis, P., Viardot, G., Danjou, P., et al.
(2022). Safety, tolerability, pharmacokinetics, and pharmacodynamics of the positive
modulator of HGF/MET, fosgonimeton, in healthy volunteers and subjects with
Alzheimer’s disease: Randomized, placebo-controlled, double-blind, phase i clinical
trial. J. Alzheimers Dis. 86, 1399–1413. doi: 10.3233/JAD-215511

Huang, C., Wahlund, L., Dierks, T., Julin, P., Winblad, B., and Jelic, V. (2000).
Discrimination of Alzheimer’s disease and mild cognitive impairment by equivalent
EEG sources: A cross-sectional and longitudinal study. Clin. Neurophysiol. 111, 1961–
1967. doi: 10.1016/s1388-2457(00)00454-5

Iannaccone, S., Houdayer, E., Spina, A., Nocera, G., and Alemanno, F. (2023).
Quantitative EEG for early differential diagnosis of dementia with Lewy bodies. Front.
Psychol. 14:1150540. doi: 10.3389/fpsyg.2023.1150540

Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A., and Morabito, F. C. (2019).
A convolutional neural network approach for classification of dementia stages based
on 2D-spectral representation of EEG recordings. Neurocomputing 323, 96–107. doi:
10.1016/j.neucom.2018.09.071

Jelic, V., Julin, P., Shigeta, M., Nordberg, A., Lannfelt, L., Winblad, B., et al. (1997).
Apolipoprotein E epsilon4 allele decreases functional connectivity in Alzheimer’s
disease as measured by EEG coherence. J. Neurol. Neurosurg. Psychiatry 63, 59–65.
doi: 10.1136/jnnp.63.1.59

Jelic, V., Shigeta, M., Julin, P., Almkvist, O., Winblad, B., and Wahlund, L. O. (1996).
Quantitative electroencephalography power and coherence in Alzheimer’s disease and
mild cognitive impairment. Dementia 7, 314–323. doi: 10.1159/000106897

Jesus, B., Cassani, R., McGeown, W. J., Cecchi, M., Fadem, K. C., and Falk, T. H.
(2021). Multimodal prediction of Alzheimer’s disease severity level based on resting-
state EEG and structural MRI. Front. Hum. Neurosci. 15:700627. doi: 10.3389/fnhum.
2021.700627

Jiang, Y., Zhang, X., Guo, Z., and Jiang, N. (2024). Altered EEG theta and alpha
band functional connectivity in mild cognitive impairment during working memory
coding. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 2845–2853. doi: 10.1109/TNSRE.
2024.3417617

Jiao, B., Li, R., Zhou, H., Qing, K., Liu, H., Pan, H., et al. (2023). Neural biomarker
diagnosis and prediction to mild cognitive impairment and Alzheimer’s disease using
EEG technology. Alzheimers Res. Ther. 15:32. doi: 10.1186/s13195-023-01181-1

Jo, T., Nho, K., and Saykin, A. J. (2019). Deep learning in Alzheimer’s disease:
Diagnostic classification and prognostic prediction using neuroimaging data. Front.
Aging Neurosci. 11:220. doi: 10.3389/fnagi.2019.00220

Kim, J.-S., Lee, S.-H., Park, G., Kim, S., Bae, S.-M., Kim, D.-W., et al. (2012). Clinical
implications of quantitative electroencephalography and current source density in
patients with Alzheimer’s disease. Brain Topogr. 25, 461–474. doi: 10.1007/s10548-
012-0234-1

Kim, N. H., Yang, D. W., Choi, S. H., and Kang, S. W. (2021). Machine learning
to predict brain amyloid pathology in pre-dementia Alzheimer’s disease using QEEG
features and genetic algorithm heuristic. Front. Comput. Neurosci. 15:755499. doi:
10.3389/fncom.2021.755499

Klepl, D., He, F., Min, W., Blackburn, D., and Sarrigiannis, P. (2022a). Bispectrum-
based cross-frequency functional connectivity: Classification of Alzheimer’s disease.
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022, 305–308. doi: 10.1109/EMBC48229.
2022.9871366

Klepl, D., He, F., Wu, M., Blackburn, D. J., and Sarrigiannis, P. (2022b). EEG-based
graph neural network classification of Alzheimer’s disease: An empirical evaluation of
functional connectivity methods. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2651–2660.
doi: 10.1109/TNSRE.2022.3204913

Klepl, D., He, F., Wu, M., Blackburn, D. J., and Sarrigiannis, P. (2023). Adaptive
gated graph convolutional network for explainable diagnosis of Alzheimer’s disease
using EEG data. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 3978–3987. doi: 10.1109/
TNSRE.2023.3321634

Knopman, D. S., Petersen, R. C., and Jack, C. R. (2019). A brief history of “Alzheimer
disease”: Multiple meanings separated by a common name. Neurology 92, 1053–1059.
doi: 10.1212/WNL.0000000000007583

Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L. O., John, E. R., et al.
(2005). Decreased EEG synchronization in Alzheimer’s disease and mild cognitive
impairment. Neurobiol. Aging 26, 165–171. doi: 10.1016/j.neurobiolaging.2004.03.008

Lynch, C. (2020). World Alzheimer report 2019: Attitudes to dementia, a global
survey. Alzheimer’s Dement. 16:e038255. doi: 10.1002/alz.038255

Marceglia, S., Mrakic-Sposta, S., Rosa, M., Ferrucci, R., Mameli, F., Vergari, M., et al.
(2016). Transcranial direct current stimulation modulates cortical neuronal activity in
Alzheimer’s disease. Front. Neurosci. 10:134. doi: 10.3389/fnins.2016.00134

Maturana-Candelas, A., Gómez, C., Poza, J., Pinto, N., and Hornero, R. (2019).
EEG characterization of the Alzheimer’s disease continuum by means of multiscale
entropies. Entropy 21:544. doi: 10.3390/e21060544
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