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Objectives: Ferroptosis, a regulated form of cell death, has attracted significant

attention in hearing loss research; however, the role of ferroptosis-related genes

remains unclear. This study aimed to clarify diagnostic and therapeutic targeting

of ferroptosis-related genes in hearing loss.

Methods: Differentially expressed genes related to hearing loss from the GEO

database were intersected with ferroptosis-related genes. The Lasso and SVM-

RFE models were applied to reduce the gene set, identifying model genes.

Biological functions, pathways, and gene-drug associations related to these

model genes were analyzed. Age-related hearing loss (ARHL) genes within the

model genes were obtained from a genome-wide association study (GWAS)

dataset. Further validation was conducted in HEI-OC1 cells and the cochleae of

C57BL/6J mice, including auditory brainstem response (ABR) testing, qRT-PCR,

Western blotting, Fe2+ detection, and immunofluorescence analysis.

Results: The study identified 20 ferroptosis-related genes associated with

hearing loss. Using Lasso and SVM-RFE models, a novel model was constructed,

consisting of nine genes (SCD, ENPP2, PANX2, NEDD4, MEF2C, ABCC5,

KLHDC3, CYP4F8 and IFNA2). Among these, MEF2C and NEDD4 were found

to be associated with ARHL.

Conclusion: Ferroptosis is a potential pathological mechanism in hearing loss

research, and the nine ferroptosis-related genes identified provide promising

targets for exploring new diagnostics and treatments for hearing loss. Notably,

MEF2C and NEDD4 are associated with ARHL.
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1 Introduction

It is estimated that 2.5 billion individuals across the globe
will be living with different forms of hearing loss by 2050
(Chadha et al., 2021; GBD 2019 Hearing Loss Collaborators,
2021). Various factors, including familial predisposition, aging,
exposure to noise and medication use contribute to the risk of
hearing loss (Vlajkovic and Thorne, 2021). Collectively, these
factors exert a comprehensive influence on the progression of
hearing loss, culminating in pathophysiological alterations to the
inner ear. These modifications encompass damage of inner and
outer hair cells, atrophy of the stria vascularis, basement membrane
thickening, calcification, and hyalinization (Tawfik et al., 2020;
Wu et al., 2020). Research indicates that programmed cell death
pathways play an important role in the molecular mechanisms
of hearing loss. Ferroptosis, a form of newly programmed cell
death, is characterized by disruptions in iron metabolism, free
radical accumulation, and lipid peroxidation, and has garnered
increasing attention in this field (Sun et al., 2022). Ferroptosis
involves intracellular iron overload, free radical accumulation, and
lipid peroxidation (Dixon et al., 2012). Recently, ferroptosis has
gained attentions in many research fields including degenerative
diseases (Doll et al., 2019; Tang et al., 2021). Similarly, ferroptosis
plays a pivotal role in HC injury, and its importance is evident even
in the degeneration of the auditory cortex (Chen et al., 2020; Ma
et al., 2022). However, there is limited research on the relationship
between hearing loss, age-related hearing loss, and ferroptosis.

In recent years, lots of human non-syndromic hearing
impairment loci have been mapped and some model genes
identified. Some research has focused on genes and proteins that
may play a role in the development of hearing loss, but the majority
of genes and significant therapeutic targets remain unclear. This
study aims to integrate databases and apply bioinformatics methods
to analyze the involvement of ferroptosis-related genes and
associated signaling pathways in the development of hearing loss.
Moreover, we screen Genetic variation of model genes associated
with age-related hearing loss (ARHL) and verify the expression of
some important model genes in the cochlea. The goal is to provide
new insights into the pathogenesis and treatment of hearing loss.

2 Materials and methods

2.1 Data source and patient selection

We acquired 734 datasets by querying the GEO database1 with
the keywords “hearing loss,” which were eventually narrowed down
to 24 datasets after applying the terms “Expression profiling by
array” and “Homo sapiens.” Subsequently, GSE9822 (Bykhovskaya
et al., 2009) was selected by eliminating datasets with inadequate
sample sizes. The dataset chosen comprised of gene expression
data and clinical data from 14 deaf individuals and 29 normal
individuals. Ineligibility for inclusion in the study was ascribed
to patients with incomplete survival data or an overall survival
of less than 30 days. The chosen dataset consists of expression

1 https://www.ncbi.nlm.nih.gov/geo/

data from lymphoblastoid cell lines derived from peripheral blood
lymphocytes from deaf patients and unaffected family members, all
of whom carry the deafness-related mutation in the 12S rRNA gene,
and unaffected unrelated controls who do not. The study utilized
datasets that were readily accessible to the public and had already
been granted ethical approval for the original research.

2.2 Data correction and extraction of
ferroptosis genes expression

First, the gene probe matrix file was converted to a gene
expression file. Then, the expression data of the control and
experimental samples were read separately, and log2 processing
was applied to the data for correction. We retrieved a total of
728 ferroptosis genes from the FerrDb database2, including driver
genes, suppressor genes, and marker genes. We then extracted
the expression levels of these ferroptosis genes by comparing
them with the expression data files. Finally, we analyzed the
differentially expressed genes. The study was conducted according
to the principles expressed in the Declaration of Helsinki. All
the datasets were collected from published literature, and written
informed consent was confirmed.

2.3 LASSO model and SVM-REF model
genes selection

Using the “glmnet” package, construct a Lasso regression
model, plot the graph of Lasso regression and the graph of cross-
validation, find the point with the minimum cross-validation
error, and its value is the number of selected genes for output.
A regression model is a statistical technique used to understand
the relationship between one or more independent variables
(predictors) and a dependent variable (outcome). And using the
“e1071” package, we build a machine learning model based on
the support vector machine recursive feature elimination algorithm
(SVM-REF). This model will be used to rank the importance
of genes and perform cross-validation to obtain accuracy and
error metrics. Cross-validation is a method used to assess the
predictive performance of a model by partitioning the data into
subsets. The model is trained on some subsets while being tested
on others, allowing for a more robust evaluation of its accuracy
and generalizability. The output of the SVM-REF model will
correspond to the number of genes that result in the highest
cross-validation accuracy and the smallest error (Wu et al., 2024).

2.4 Functional and pathway enrichment
analysis

We conducted a pathway and functional enrichment analysis
of the Kyoto encyclopedia of genes and genomes (KEGG)
(Kanehisa and Goto, 2000) and Gene Ontology (GO) (Ashburner
et al., 2000) using various R packages, including “clusterProfiler,”

2 http://zhounan.org/ferrdb/current/
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“complexHeatmap,” “org.Hs.eg.db,” “DOSE,” “ggplot2,” “circlize,”
“dplyr,” and “enrichplot.” We used the BH algorithm to correct for
all p-values. To examine the enrichment of intersecting genes, we
utilized the GSEA database for pathway and process analysis.

Gene Set Enrichment Analysis (GSEA) is a bioinformatics
method used to analyze gene expression data. It helps researchers
determine whether a set of genes is differentially expressed under
specific conditions and whether these genes play an important role
in biological processes or signaling pathways (Subramanian et al.,
2005). GSVA (Gene Set Variation Analysis) is a tool used to analyze
sets of genes, which can transform individual gene expression
profile data into gene set expression profile data, thus better
reflecting the biological features of gene sets. It is commonly used
in the analysis of RNA sequencing data to identify differentially
expressed gene sets and discover pathway enrichment of gene sets
(Hänzelmann et al., 2013).

Gene Set Enrichment Analysis (GSEA) and GSVA (Gene Set
Variation Analysis) are both methods used to assess the enrichment
of predefined gene sets, but they differ in approach and application.
GSEA compares two groups of samples (e.g., control vs. treatment)
to evaluate gene set enrichment based on ranked gene expression,
often using permutation testing to assess significance. It is suited
for experiments with clear group labels. GSVA, on the other
hand, provides enrichment scores for individual samples, assessing
pathway activity without the need for predefined group labels. It
is ideal for analyzing complex datasets with sample heterogeneity,
such as cancer studies. GSVA uses a non-parametric approach to
capture gene set variation across samples. While GSEA focuses on
group comparisons, GSVA is more flexible for analyzing gene set
variation at the single-sample level.

2.5 Analysis of immune cell infiltration

Cell-type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) is a computational method used to
estimate the composition of different cell types in tissue samples.
It utilizes transcriptomic data to infer the relative proportions
of various cell types within a sample, particularly in the context
of mixed cell populations, such as in studies of the tumor
microenvironment or immune cell populations. CIBERSORT uses
a machine learning algorithm called Support Vector Regression
(SVR) (Newman et al., 2015). In order to perform immune cell
infiltration analysis on the corrected sample files, we utilized
the “e1071” and “preprocessCore” packages. These packages are
commonly used tools in the R language for pattern recognition and
data preprocessing, enabling us to process and analyze the sample
data to obtain valuable insights into immune cell infiltration.

2.6 Drug-gene interactions and
associated RNA prediction

Drug-gene interactions refer to the effect of a drug on the
activity of a gene, or the effect of a genetic variant on the
response to a drug. These interactions are important in determining
the effectiveness and safety of drug therapy. We downloaded

drugs associated with the feature genes from the Dgidb database3

(Cannon et al., 2024) and generated network relationship and node
attribute files. These files were visualized using Cytoscape software
(3.9.2).

TargetScan4 (McGeary et al., 2019) was developed in 2003 by
Benjamin Lewis and colleagues at MIT. It predicts miRNA target
genes by searching for conserved sites that match the seed region
of each miRNA. As an option, non-conserved sites can also be
predicted. Unlike other target prediction tools, TargetScan provides
an accurate ranking of predicted targets for each miRNA. miRanda5

(John et al., 2004) is a bioinformatics tool for miRNA target
prediction, developed in 2003 by Anton Enright and colleagues
at the Memorial Sloan-Kettering Cancer Center. Written in C,
miRanda screens the 3′-UTR based on three main criteria: sequence
matching, the thermodynamic stability of the miRNA-mRNA
duplex, and the conservation of target sites. miRDB6 (Liu and
Wang, 2019) uses a machine learning model trained on a large
set of experimental data to predict interactions between miRNAs
and target genes and to assign a Target Score. The score ranges
from 0 to 100, with higher scores indicating higher reliability of
the predicted interactions. spongeScan7 (Furió-Tarí et al., 2016)
is able to identify putative miRNA binding patterns in lncRNA
sequences. In the web tool, expression data can be added to
the predicted representation, which greatly facilitates downstream
functional analysis. SpongeScan is different from other lncRNA-
miRNA interaction prediction websites that utilize CLIP-seq data,
in that it allows for extensive searching of user-provided data and
can be used for any organism with sequence information.

2.7 Screening genetic variations in model
genes associated with age-related
hearing loss

To validate whether model genes are involved in ARHL in
human, we conducted in-depth analysis using the previously
published GWAS dataset for age-related hearing impairment
(ARHI) (GWAS CATALOG: GCST90012115). This GWAS dataset
gathers large-scale genomic data to analyze the genetic background
of age-related hearing impairment, also known as ARHL (Kalra
et al., 2020). The summary statistics data were downloaded from the
European Bioinformatics Institute (EBI)8. Genes of interest were
screened for SNPs reaching nominal significance (p < 0.01) in their
genomic loci.

2.8 HEI-OC1 cell culture

The HEI-OC1 cell line, provided by Dr. Iris Heredia of
the School of Engineering at the University of California,

3 https://www.dgidb.org/

4 http://targetscan.org

5 https://regendbase.org/tools/miranda

6 http://www.mirdb.org/

7 http://spongescan.rc.ufl.edu/

8 https://www.ebi.ac.uk/

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1526519
https://www.dgidb.org/
http://targetscan.org
https://regendbase.org/tools/miranda
http://www.mirdb.org/
http://spongescan.rc.ufl.edu/
https://www.ebi.ac.uk/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-17-1526519 April 21, 2025 Time: 18:35 # 4

Yuan et al. 10.3389/fnagi.2025.1526519

TABLE 1 Primers used for qRT-PCR.

Genes Forward primer (5′

to 3′)
Reverse primer (5′

to 3′)

Mef2c GTGGTTTCCGTAGC
AACTCCTAC

GGCAGTGTTGAAGC
CAGACAGA

Nedd4 TGCTTTTGCCTACT
TCATCTGG

ATGTGGTGGTTTTAGA
GTTGTGG

Klhdc3 CCGACTGCTTTTCC
AACGACATC

CCAGCATTGTGGC
TGAGTGGAA

Abcc5 GCAAACTGGTTGGAA
TCTGCGG

CAAAGGTCCCACTGA
CGGCAAT

Gapdh CATCACTGCCACCCA
GAAGACTG

ATGCCAGTGAGCTT
CCCGTTCAG

Los Angeles (UCLA), originates from the House Ear Institute-
Organ of Corti. These cells were maintained in high-glucose
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
10% fetal bovine serum (FBS, Gibco, United States) and 1%
ampicillin (Sangon Biotech, Shanghai). Cultivation was conducted
under controlled conditions at 33◦C with a 10% CO2 atmosphere.
Subsequently, the HEI-OC1 cells underwent a 48 h treatment
with 30 mg/ml D-galactose (D-gal) (Sigma, United States) to
simulate an aging model.

2.9 Cell viability quantification and
measurement of Fe2+

Cell counting Kit-8 (CCK8) (Dojindo, Japan) was used to
examine cell viability according to manufacturer’s introduction. We
used FerroOrange (Dojindo) to detect intracellular Fe2+ according
to the manufacturer’s protocol. HEI-OC1 cells were treated with
D-gal and D-gal+Fer-1 for the indicated amount of time and
stained with a final concentration of 1 µmol/l FerroOrange.
FerroOrange for 30 min at 37◦C. Images were acquired using
LSM 710 confocal microscope (Zeiss, Oberkochen, Germany). We
selected eight randomly chosen regions from each group and
measured the fluorescence intensity of Fe2+. Each experiment was
repeated three times.

2.10 Real time PCR and western blotting

In order to verify the expression of model genes, quantitative
real-time PCR was conducted. Following treatment with 30 mg/ml
D-gal, total RNA was extracted from HEI-OC1 cells and
cochleae using the EZ-press RNA Purification Kit (EZBioscience,
United States). Following RNA extraction, reverse transcription
into cDNA was conducted using the Monad kit (MR05201,
Monad Biotech Co., Ltd., China), according to the manufacturer’s
instructions. Subsequently, qPCR was performed using the Takara
kit (RR420A, Japan) on a LightCycler 480 instrument (Roche,
United States). The primer sequences and genes utilized are
detailed in Table 1. GAPDH was employed as an internal
normalization control. And we used the 2−11CT method to analyze
relative gene expression, which calculates fold changes in gene

expression by normalizing target gene expression to an internal
control and comparing it to a reference sample (Maren et al., 2023).

The cochleae were lysed with RIPA lysis buffer (Beyotime,
China) and centrifuged at 14,000 × g for 20 min at 4◦C.
Supernatants were separated and transferred to PVDF membranes
(0.2 µm, Millipore, Bedford, MA, United States). The membranes
were incubated overnight at 4◦C with the primary antibodies:
Mef2c and GAPDH (1:1000, Proteintech, China). Subsequently,
the membranes were incubated with goat anti-rabbit IgG (1:3000,
Proteintech) for 1 h. After detecting by ECL kit (Beyotime, China).

2.11 Animals and auditory brainstem
response threshold test

The male C57BL/6J mice aged 28 days (n = 6) and 12 months
(n = 6) were purchased from Shanghai Sipeifu Laboratory. All mice
were housed in groups of six per cage with free access to food
and water, and subjected to a 12 h light/dark cycle. All procedures
were conducted in accordance with the “Guiding Principles in
the Care and Use of Animals” (China) and were approved by
the Institutional Animal Care and The Ethics Committee of First
Hospital Affiliated to Harbin Medical University (protocol number
IACUC-2023092). And all methods are reported in accordance
with ARRIVE guidelines.

The ABR system was obtained from Tucker-Davis
Technologies (Alachua, FL, United States). Mice were anesthetized
via intraperitoneal injection of 1% pentobarbital sodium
(70 mg/kg), and their body temperature was maintained at
37◦C using a thermostatic heating pad. The recording electrode
was placed subcutaneously at the vertex of the skull, while the
reference and ground electrodes were positioned on either side
of the mastoid. Hearing thresholds were assessed using six tone
burst frequencies (4, 8, 16, 22.6, 32, and 45.2 kHz). The stimulus
intensity of the tone bursts started at 90 dB SPL and was gradually
reduced in 5 dB steps down to 10 dB SPL.

2.12 Immunohistochemistry and
confocal imaging

After the ABR test is completed, we used
immunohistochemistry to evaluate the expression of the model
genes Mef2c and Nedd4, which are implicated in ARHL, in the
cochlea. We utilized 28 days-old (n = 3) and 12 months-old
(n = 3) male C57BL/6J mice. Six animals were anesthetized
and euthanized through cervical dislocation. Subsequently,
both cochleae were promptly excised and immersed in 4%
paraformaldehyde (BBI, Sangon Biotech, China) at pH 7.5,
followed by overnight fixation at 4◦C. Following fixation, the
cochleae were subjected to decalcification for a period of 3 days in
10% ethylenediaminetetraacetic acid (EDTA, BBI, Sangon Biotech,
China) in 4◦C. The tissue underwent sequential dehydration steps
in 10% and 20% sucrose solutions for 10 min each, followed
by immersion in 30% sucrose solutions. Finally, the tissue was
immersed in a mixture of 30% sucrose solution with Optimum
Cutting Temperature Compound (OCT, #4583S, SAKURA,
United States) for an additional 2 h. Last, it was embedded in
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OCT and left overnight for optimal embedding. We prepared
tissue sections of 10 µm thickness using a Leica histology cryostat
(CM1950, Germany). After air-drying at room temperature, the
specimens were permeabilized with 1% Triton X-100 (Solarbio
Life Sciences, China) for 30 min. Subsequently, blocking treatment
was carried out using 5% bovine serum albumin (BSA, Sangon
Biotech, China) for 1 h. Finally, the sections underwent primary
antibody incubation (Mef2c Polyclonal antibody, Proteintech,
10056-1-AP or Nedd4 Polyclonal antibody, Proteintech,21698-
1-AP) overnight in 4◦C at a dilution of 1:200. Following three
washes PBS, the samples were incubated with fluorescently labeled
secondary antibodies (goat anti-rabbit for Mef2c and Nedd4,
Alexa Fluor 488 # A-11034, ThermoFisher Scientific), specifically
goat anti-rabbit, at room temperature for a duration of 2 h. In
conclusion, the specimens underwent triple washes with PBS,
were then fixed with DAPI (Sigma-Aldrich, United States), and
subsequently visualized utilizing an LSM 710 confocal microscope
(Zeiss, Oberkochen, Germany).

2.13 Statistical analysis

R software (3.6.1) and Perl software (5.30.0) were used for
statistical analyses. The “limma,” “pheatmap,” “corrplot,” and
“ggstatsplot” program in R was used to visualize the data. The
log-rank test was used to explore significant differences. The Cox
regression model was used for univariate and multivariate survival
analyses, and risk variables (p < 0.05) from univariate analysis were
chosen for multivariate analysis.

The data are expressed as the mean ± SD, and each
experiment was conducted independently at least three times for
accuracy. Statistical analyses were performed using Microsoft Excel
and GraphPad Prism 10 software (10.3.0). One-way analysis of
variance (ANOVA) was used for analysis to mean difference and
independent t-test applied for only two groups. Two-way ANOVA
was used for comparing hearing threshold. P value <0.05 was
considered statistically significant.

3 Results

3.1 Acquisition and analysis of
differentially expressed genes related to
hearing loss

To determine whether FRGs are differentially expressed in deaf
individuals, we compared ferroptosis-related gene expression data
from FerrDb database (Zhou and Bao, 2020) and lymphoblastoid
cell lines originating from a family with a mutation in the
12S rRNA gene, some of whom were deaf and some of
whom had normal hearing (GSE9822) (Bykhovskaya et al.,
2009). We conducted a differential analysis of ferroptosis-related
genes between experimental and control groups, resulting in
the identification of 20 genes (SCD, MT1G, KLHDC3, MEF2C,
TXN, FTH1, TFRC, ATG5, CYP4F8, STAT3, ECH1, GABARAPL1,
PANX2, ALOX15B, IFNA2, ENPP2, ABCC5, FZD7, NEDD4, and
ACVR1B) exhibiting statistically significant differential expression.
The results of this analysis are shown in Figure 1A.

To evaluate the correlation between differentially expressed
genes (DEGs), we generated correlation plots to visually represent
the results. As shown in Figure 1B, the expression of SCD is
positively correlated with TFRC (p < 0.05). PANX2 expression is
positively correlated with STAT3 (p < 0.05). KLHDC3 expression
is positively correlated with MT1G (p < 0.05). ATG5 expression
is positively correlated with TFRC (p < 0.01) and ENPP2
(p < 0.01). ALOX15B expression is positively correlated with TFRC
(p < 0.05) and PANX2 (p < 0.05). NEDD4 expression is negatively
correlated with TFRC (p < 0.05) and SCD (p < 0.01), ACVR1B
expression is negatively correlated with TFRC (p < 0.05) and ATG5
(p < 0.05), and CYP4F8 expression is negatively correlated with
SCD (p < 0.05). We performed gene ontology (GO) functional
enrichment analysis on DEGs and obtained statistically significant
enrichment results (Figure 1C and Table 2). Additionally, we
performed Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis on the differentially expressed genes,
yielding noteworthy outcomes (Figure 1D). The gene enrichment
map highlights Ferroptosis-related pathways and is associated with
functions such as iron ion binding in the Molecular Function
category and iron ion transport in the Biological Process category.
Iron ion binding mainly describes how proteins or molecules bind
to iron ions and exert their functions, while iron ion transport
focuses on the movement and distribution of iron ions within the
body or cells. Both are closely related to the biological function of
iron and have significant implications for health.

3.2 The novel model based on the lasso
model and the SVM-REF model

The Lasso model was established, as illustrated in Figure 2A,
where the vertical axis denotes binomial deviance. The number of
feature genes corresponding to the minimum binomial deviance
was determined to be 10, including MT1G, SCD, ENPP2,
PANX2, NEDD4, MEF2C, ABCC5, KLHDC3, CYP4F8, and IFNA2.
Subsequently, the SVM-REF model was constructed, revealing
that the point with the highest cross-validation accuracy and the
smallest error corresponded to the value of 19. This signifies that
the number of SVM features is 19, specifically CYP4F8, ENPP2,
IFNA2, PANX2, ATG5, MEF2C, KLHDC3, STAT3, ECH1, TFRC,
ABCC5, GABARAPL1, FTH1, SCD, NEDD4, ACVR1B, TXN, FZD7,
and ALOX15B. After taking the intersection of the characteristic
genes identified by the Lasso model and the SVM-REF model,
the novel model, namely SCD, ENPP2, PANX2, NEDD4, MEF2C,
ABCC5, KLHDC3, CYP4F8, and IFNA2, was obtained, as shown in
Figure 2B.

To evaluate the diagnostic accuracy of the selected feature genes
for the disease, we generated a Receiver Operating Characteristic
(ROC) curve, illustrated in the Figures 2C, D. The horizontal axis
represents the false positive rate, while the vertical axis represents
the true positive rate. The Area Under the Curve (AUC) of a ROC
curve typically ranges from 0.5 to 1, with a larger area indicative
of higher accuracy. The ROC curves for the nine feature genes
displayed AUC values exceeding 0.7, with the exception of IFNA2,
which fell below 0.7. This implies that each of the eight genes,
excluding IFNA2, individually exhibits a high disease diagnosis rate.
Subsequently, we amalgamated the nine genes to construct a model,
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FIGURE 1

Illustrates the overview of the analysis on differentially expressed genes (DEGs) related to hearing loss. (A) Heatmap; the green color denotes the
normal control groups, and the yellow color signifies individuals with experimental groups; (B) The correlation network involving 20 DEGs, with a
subsequent examination of functional enrichment for genes closely associated with the DEGs. The horizontal and vertical coordinates denote
differentially expressed genes, with red indicating a positive correlation and blue indicating a negative correlation. The symbol “*” in the upper right
corner of the graph denotes a statistically significant correlation, and the numerical value in the lower left corner represents the specific p-value.
The functional enrichment analysis is conducted through gene ontology (GO) in (C) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) in
(D). The outermost circle depicts the GO ID, with blue denoting biological processes, yellow indicating cellular components, and green representing
molecular functions. The second circle illustrates the number of genes in each GO category, while the third circle conveys the count of differentially
expressed genes enriched in each GO category. The innermost circle portrays the proportion of genes involved. *, P < 0.05; **, P < 0.01.

yielding an AUC of 0.968, indicating an exceptionally high disease
diagnosis rate.

3.3 Genetic immune-related analysis of
the novel model

Cell-type Identification by Estimating Relative Subsets of
RNA Transcripts (CIBERSORT) is a computational method for
evaluating the relative abundance of different cell types in
complex mixed tissue samples (Newman et al., 2015). Through
the implementation of a differential analysis targeting immune
cells, discernible statistical distinctions (p = 0.025) were observed
exclusively in the expression levels of T cells follicular helper,
differentiating the experimental group from the control group

amid the various immune cells scrutinized. Subsequently, a
correlation analysis elucidating the relationships between feature
genes and immune cells was conducted, with the results being
visually represented in a heatmap. Significant positive correlations
(p < 0.01) were identified between SCD expression and the
infiltration of activated mast cells, along with positive correlations
(p < 0.05) between PANX2 expression and the infiltration of M1
macrophages. Conversely, notable negative correlations (p < 0.01)
were established between PANX2 expression and the infiltration
of activated dendritic cells. Furthermore, positive correlations
(p < 0.05) were discerned between NEDD4 expression and
the infiltration of CD4 memory activated T cells, coupled with
negative correlations (p < 0.05) with the infiltration of M2
macrophages. Additionally, MEF2C expression exhibited positive
correlations (p < 0.05) with the infiltration of eosinophils,
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TABLE 2 The functional enrichment analysis of gene ontology (GO).

Ontology ID Description

MF GO:0005506 Iron ion binding

MF GO:0001664 G protein-coupled receptor binding

MF GO:0140297 DNA-binding transcription factor
binding

MF GO:0038024 Cargo receptor activity

MF GO:0015232 Heme transmembrane transporter
activity

MF GO:0016717 Oxidoreductase activity, acting on
paired donors, with oxidation of a
pair of donors resulting in the
reduction of molecular oxygen to two
molecules of water

CC GO:0005776 Autophagosome

CC GO:0030666 Endocytic vesicle membrane

CC GO:0055037 Recycling endosome

CC GO:0044754 Autolysosome

CC GO:0034045 Phagophore assembly site membrane

CC GO:0005767 Secondary lysosome

BP GO:0030099 Myeloid cell differentiation

BP GO:1903131 Mononuclear cell differentiation

BP GO:0006826 Iron ion transport

BP GO:0006995 Cellular response to nitrogen
starvation

BP GO:0043562 Cellular response to nitrogen levels

BP GO:0055012 Ventricular cardiac muscle cell
differentiation

M1 macrophages, and activated NK cells. KLHDC3 expression
demonstrated noteworthy positive correlations (p < 0.01) with
the infiltration of resting NK cells, while CYP4F8 expression
manifested positive correlations (p < 0.05) with the infiltration
of resting mast cells and negative correlations (p < 0.05) with
the infiltration of resting dendritic cells. Lastly, ABCC5 expression
revealed positive correlations (p < 0.05) with the infiltration of CD4
naive T cells, juxtaposed with negative correlations (p < 0.05) with
the infiltration of plasma cells and CD4 memory activated T cells
(Figure 3).

3.4 The novel model encompasses Gene
set enrichment Analysis (GSEA) and Gene
set variation Analysis (GSVA) for the
investigation of genetic mechanisms

Gene Set Enrichment Analysis (GSEA) and GSVA (Gene Set
Variation Analysis) are methods for gene set enrichment, but differ
in approach. GSEA focuses on group comparisons, while GSVA
analyzes gene set variation at the sample level. The source of the
target genes is still the nine novel model genes. We computed the
median expression value of the gene across all samples (columns),
group the samples according to the expression level of the gene, and

obtain high and low expression groups. Through GSEA analysis,
we can observe which functions or pathways are active in the
high or low expression groups of the novel model. As shown in
the Figure 4, the horizontal axis represents sorted genes, and the
vertical axis represents the enrichment score, with different colored
curves representing different pathways or curves. If the peak of
the curve appears in the upper left, it indicates that the function
or pathway is active in the high expression group of the feature
genes; if the peak of the curve appears in the lower right, it indicates
that the function or pathway is active in the low expression group.
Through GSEA analysis, we observed that MEF2C and NEDD4 are
significantly associated with DNA replication, which may be related
to ARHL.

Through GSVA analysis, we observed the distribution of
various pathways in the high and low expression groups of
the novel model. In the high expression group of MEF2C, the
following pathways were significantly associated: Asthma, Type
I diabetes mellitus, Allograft rejection, Graft versus host disease
and Oxidative phosphorylation, while in the low expression group,
Homologous recombination, DNA replication, Sulfur metabolism
and non-homologous end joining were significantly associated.
The Oxidative phosphorylation, Homologous recombination,
DNA replication, and non-homologous end joining associated
with MEF2C are also closely related to aging and may be
closely linked to ARHL.

In the high expression group of CYP4F8, the following
pathways were significantly associated: B cell receptor signaling
pathway, Basal transcription factors, other glycan degradation
and Valine leucine and isoleucine degradation, while in the
low expression group, Sulfur metabolism was significantly
associated. In the high expression group of SCD, Sulfur
metabolism was significantly associated, while in the low expression
group, Huntington disease, Parkinson disease, Protein export,
Glycosphingolipid biosynthesis ganglio series, Citrate cycle tca
cycle, B cell receptor signaling pathway, Basal transcription factors,
Oxidative phosphorylation, Lysosome and Glycosaminoglycan
biosynthesis keratan sulfate were significantly associated (Figure 5
and Table 3).

3.5 The novel model: drug targets of
genes and associated RNA prediction

We used drug-gene interaction data from Dgidb (see text
footnote 3) to discover potential drug targets. As shown in
the Figure 6A, the red nodes represent up-regulated genes, the
green nodes represent down-regulated genes, and the blue nodes
represent related drugs. We found that the drugs CLOFIBRATE,
COLCHICINE, ARAMCHOL, ROSIGLITAZONE, and MK-8245
can upregulate the expression of the characteristic gene SCD; while
the drugs ZIDOVUDINE, FLOXURIDINE, OXALIPLATIN,
GLYBURIDE, FLUOROURACIL, IRINOTECAN, and
LEUCOVORIN can down-regulate the expression of the
characteristic gene ABCC5. The drugs CHEMBL1093490,
CHEMBL483302, CHEMBL1089321, CHEMBL1092743, and
CHEMBL1630084 can down-regulate the expression of the
characteristic gene ENPP2. The drug NADOFARAGENE
FIRADENOVEC can down-regulate the expression of the
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FIGURE 2

A novel model based on the Lasso model and the support vector machine recursive feature elimination algorithm (SVM-REF) model. X-axis: The top
number on the horizontal axis represents the number of genes. [Log(λ)]: The horizontal axis represents the logarithmic values of λ [Log(λ)]. λ is the
penalty parameter in Lasso regularization, which controls the sparsity of the model. Larger values of λ indicate stronger regularization, potentially
leading to more feature coefficients being shrunk to zero. Y-axis (Binomial Deviance): The vertical axis represents the binomial deviance, which is a
measure of the model’s performance in cross-validation. The lower the deviance, the better the model’s performance. (A) Feature maps of the Lasso
regression model and SVM-REF model; (B) Venn plot showing the intersection genes of the lasso regression model and the SVM-REF model; The
ROC curve of the novel model genes (C,D).

FIGURE 3

Genetic immune-related analysis of the novel model. (A) Differential analysis on immune cells; (B) Correlation analysis between feature genes and
immune cells. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

characteristic gene IFNA2, and the drug WARFARIN can
down-regulate the expression of the characteristic gene NEDD4.

We used three online tools, TargetScan (see text footnote 4),
miRanda (see text footnote 5), and miRDB (see text footnote
6), to analyze the miRNAs associated with the nine novel model
genes. When the corresponding database matches the relevant
miRNA, the score is assigned as one. If all three databases

match, the score is three. The miRNAs were matched with
the corresponding lncRNA data using the spongeScan database
(see text footnote 7). A miRNA-lncRNA-gene network was
constructed by taking the intersection of their shared genes. As
shown in the Figure 6B, red ellipse represents the feature genes
(eight genes, CYP4F8 not predicted), green triangle represents
the miRNA associated with the feature genes (437), and blue
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FIGURE 4

Gene Set Enrichment Analysis (GSEA) of the novel model genes. Rank in Ordered Dataset, represents the ranking value of the data set. Upper part:
The enrichment curve represents the dynamic process of enrichment score (ES) scoring. The final ES value of the gene set is the peak value (highest
or lowest point). A positive ES value indicates that the enrichment is at the top, that is, the enriched pathway is an up-regulated pathway; a negative
ES value indicates that the enrichment is at the bottom, that is, the enriched pathway is a down-regulated pathway. Middle part: The horizontal axis
represents the position of the gene. It is arranged from large to small, so the stronger the positive correlation, the higher the gene ranking position;
the stronger the negative correlation, the lower the gene ranking position. The lower part is the distribution of all gene ranks after sorting. The
corresponding genes in the left group are expressed in medium and high levels, and the corresponding genes in the right group are expressed in low
levels. The signal-to-noise ratio (Signal2noise) corresponding to each gene is displayed in a gray area graph. Ranked list metric represents the gene
ranking amount.
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FIGURE 5

Gene Set Variation Analysis (GSVA) of the novel model genes. (A) GSVA of novel model gene CYP4F8. (B) GSVA of novel model gene MEF2C.
(C) GSVA of novel model gene SCD. The T value of the GSVA score: the horizontal axis represents the quantified scores of the pathways related to
the enrichment of the target gene across different groups (moderated t-statistic), while the vertical axis represents the signaling pathways. The
target genes were divided into the high expression group (UP), low expression group (DOWN), and the group with no significant statistical
differences in enriched pathways between the high and low expression groups (NOT).

TABLE 3 Through GSVA analysis observed the distribution of various
pathways in the high and low expression groups of the novel model.

Gene High
expression
groups

Low expression
groups

CYP4F8 B cell receptor
signaling pathway,
Basal transcription
factors, other glycan
degradation, Valine
leucine and isoleucine
degradation

Sulfur metabolism

MEF2C Asthma, type I
diabetes mellitus,
Allograft rejection,
Graft versus host
disease, Oxidative
phosphorylation

Homologous recombination,
DNA replication, Sulfur
metabolism, non-homologous
end joining

SCD Sulfur metabolism Huntingtous disease, Parkinson
disease, protein export,
Glycosphingolipid biosynthesis
ganglio series, Citrate cycle tca
cycle, B cell receptor signaling
pathway, Basal transcription
factors, Oxidative
phosphorylation, Lysosome,
Glycosaminoglycan biosynthesis
keratan sulfate

rhombus represents the lncRNA associated with the miRNA
(417).

3.6 Genetic variation of model genes
(MEF2C, CYP4F8, ENPP2, NEDD4)
associated with age-related hearing loss

The result revealed that single nucleotide polymorphism (SNP)
loci in four gene (MEF2C, CYP4F8, ENPP2, NEDD4) regions
were nominally associated with ARHL. As shown in the Figure 7,
the rs10069451 (C > A) located in the upstream transcriptional
regulatory region of MEF2C shows a significant positive correlation

with ARHL (p-value = 1.1 × 10−5 beta = 0.87). The rs34260356
(G > A) located in the intronic region of CYP4F8 exhibited a
suggestive association of ARHL (p-value = 7.3× 10−3, beta = 1.05).
The rs149023977 (T > C) located in the intronic region of ENPP2
(p-value = 2.8 × 10−3, beta = 1.96) and the rs4424863 (A > T)
located a non-coding SNP in the intron region of NEDD4 (p-
value = 0.01, beta = 0.941) also showed nominal associations.

3.7 Verfication ferroptosis and model
genes in HEI-OC1 cells

D-gal treated HEI-OC1 cells have been utilized as an in vitro
model to investigate the cellular and molecular mechanisms
underlying ARHL. D-gal is widely used in research to simulate
oxidative stress and mimic natural aging processes in both in vitro
and in vivo models (John et al., 2005; Zhong et al., 2012). A total
of 30 mg/ml D-gal induces a 50% cell viability in HEI-OC1 cells
as reported in previous studies; therefore, 30 mg/ml D-gal was
used to establish the aging model condition (He et al., 2021). In
this study, we focused on the genes Mef2c, Cyp4f8, Enpp2, Nedd4,
and conducted qRT-PCR analysis using D-gal treated HEI-OC1
cells. As depicted in Figure 8A, we observed downregulation of
Mef2c (p < 0.01) and Enpp2 (p < 0.05) expression in D-gal treated
HEI-OC1 cells compared to the control group. Conversely, the
expression levels of Cyp4f8 (p < 0.05) and Nedd4 (p < 0.01) were
significantly up-regulated in the D-gal treated group compared to
the control group. These findings suggest that the expression of
certain model genes (Mef2c, Cyp4f8, Enpp2, Nedd4) is modulated
by D-gal treatment.

To verify the occurrence of ferroptosis in aging HEI-OC1 cells,
we performed Fe2+ detection. FerroOrange is a fluorescent probe
was used to detect unstable divalent Fe2+, emitting irreversible
orange fluorescence upon interaction with Fe2+. The results
showed that after treatment with 30 mg/ml D-gal for 48 h, the
expression of Fe2+was increased (p < 0.001; Figures 8C, D). To
better demonstrate the occurrence of ferroptosis in aging HEI-
OC1 cells, we used CCK-8 assays and found that 1 µM of Fer-1
(a ferroptosis inhibitor) could mitigate D-gal-induced cell damage
(p < 0.05; Figures 8C, D). Moreover Fer-1 (1 µM) effectively
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FIGURE 6

The novel model: drug targets of genes and associated RNA prediction. (A) The red node represents up-regulated gene, the green nodes represent
down-regulated genes and the blue nodes represent related drugs. (B) The red ellipse represents the feature genes, the green triangle represents the
miRNA associated with the feature genes, and the blue rhombus represents the lncRNA associated with the miRNA.

FIGURE 7

Genome-wide association studies (GWAS) analysis of age-related hearing loss (ARHL)-associated [(A) MEF2C, (B) CYP4F8, (C) ENPP2, (D) NEDD4)]
single nucleotide polymorphisms (SNPs).

reversed the ferroptosis observed in aging HEI-OC1 cells (p < 0.05
Figure 8B).

3.8 The expression of model genes in
cochlea

After performing auditory brainstem response (ABR) testing,
we found that the hearing of 12 months-old C57 mice significantly

declined across all frequency ranges compared to 28 days-old mice
(Figure 9A, P < 0.001), which is consistent with previous study
(Sun et al., 2023). Then, we utilized qRT-PCR to further verify
the expression of model genes in the cochleae of 28 days-old and
12 months-old mice. As shown in Figure 9B, the mRNA expression
of Mef2c in the cochleae of 12 months-old mice was significantly
lower than in 28 days-old mice (p < 0.01), while the expression
of Nedd4 was significantly higher (p < 0.05). The Western blot
experiment further confirmed that the expression level of MEF2C
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FIGURE 8

The expression of model genes associated with age-related hearing loss (ARHL) in HEI-OC1 cells. (A) qRT-PCR analysis (model genes Mef2c, Cyp4f8,
Enpp2, Nedd4) using D-gal treated HEI-OC1 cells. (B) CCK-8 assay showed that Fer-1 effectively reversed the ferroptosis observed in aging HEI-OC1
cells. We performed Fe2+ detection to verify the occurrence of ferroptosis in aging HEI-OC1 cells, followed by fluorescence imaging (D) and
quantitative analysis (C). FerroOrange (red fluorescence) used to label Fe2+; DAPI (blue fluorescence) used to label the cell nuclei. Experiments were
performed in triplicate, and p-values were determined by One-way ANOVA and t-test. Scale bars: 20 µm. (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

in the cochlear tissue of 12 months-old mice was significantly lower
than 28 days-old mice (Figure 9C).

To verify expression patterns of Mef2c and Nedd4 in the
cochlea, immunohistochemistry was conducted. Our analysis
revealed significant Mef2c expression in spiral ganglion neurons
(SGNs) and bone-forming cells surrounding the cochlear lateral
wall. Notably, Mef2c expression levels were notably higher in
younger mice, particularly at postnatal stages, compared to
12 months-old mice. Additionally, Nedd4, a known cochlear
marker, exhibited robust expression in the organ of Corti
(Co), Reissner’s membrane, SGNs, and stria vascularis (SV).
Furthermore, Nedd4 expression levels were observed to be higher
in the cochleae of 12 months-old mice compared to those at 28 days
of age (Figures 9D, E and Supplementary Figure 1).

4 Discussion

Hearing loss represents a global health challenge with
complex etiologies, where programmed cell death pathways,
including ferroptosis, have emerged as critical contributors. Our
study integrates multi-omics approaches to systematically identify
ferroptosis-related genes (FRGs) associated with hearing loss
and establishes their diagnostic and therapeutic potential. The

intersection of bioinformatics predictions, GWAS validation, and
experimental evidence highlights the following key insights.

Our identification of 20 FRGs differentially expressed in
hearing loss underscores the involvement of ferroptosis in cochlear
pathophysiology. Notably, the nine-gene signature (SCD, ENPP2,
PANX2, NEDD4, MEF2C, ABCC5, KLHDC3, CYP4F8, IFNA2)
encompasses regulators of iron metabolism (e.g., SCD), lipid
peroxidation (ENPP2), and redox balance (KLHDC3), aligning
with the hallmarks of ferroptosis (Dixon et al., 2012; Tang
et al., 2021; Zhang et al., 2022; Sen et al., 2023) (Bai et al.,
2018). Functional enrichment analysis further links these genes
to iron ion transport and autophagosome pathways, suggesting
that iron embolism imbalance and impaired autophagy may
synergistically drive cochlear cell death. Bioinformatics functional
analysis indicated that nine Ferroptosis-Related Genes (FRGs) were
predominantly enriched in Nucleotide-binding Oligomerization
Domain (NOD) and ferroptosis pathways. The NOD pathway
is an important cellular signaling pathway primarily associated
with the inflammatory responses and programmed cell death. By
promoting the release of cytokines such as IL-1β, IL-6, and TNF-
α, and regulate the processes of programmed cell death, the NOD
pathway can lead to hearing loss (Frye et al., 2019). Moreover,
we hypothesized that ferroptosis played an important role in the
development of hearing loss. ROC curve analysis also revealed that
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FIGURE 9

Expression of Mef2c and Nedd4 in the cochlea. (A) Auditory brainstem response (ABR) thresholds measured at 28 days of age in C57BL/6J mice
(n = 6 per group). Data are presented as mean ± SEM and were computed from tone burst responses at frequencies of 4, 8, 16, 22.6, 32, and
45.2 kHz. (B) RNA expression levels in the cochleae of 28 days-old C57BL/6J mice (n = 3 per group). (C) Protein expression levels in the cochleae of
28 days-old C57BL/6J mice (n = 3 per group). (D,E) Immunofluorescence analysis of Mef2c (C, green fluorescence) and Nedd4 (D, green
fluorescence) was performed in the organ of Corti (Co), spiral ganglion neurons (SGNs), and stria vascularis (SV) of 28 days-old and 12 months-old
mice, with DAPI (blue fluorescence) used to label the cell nuclei. Experiments were performed in triplicate, and p-values were determined by t-test
and Two-way ANOVA. Scale bars: 20 µm. (*, P < 0.05; ***, P < 0.001; ****, P < 0.0001).

9 FRGs might be accurately distinguished from the normal samples.
Finally, we further explored whether risk genes are involved in
ARHL in human. Interestingly, through genetic analysis, it has
been determined that variant sites in four genes are associated with

ARHL, suggesting potential regulatory functions. Previous studies
have confirmed the occurrence of ferroptosis-related mechanisms
in the auditory cortex of D-gal induced aging rats (Chen et al.,
2020). Moreover, oxidative stress levels and lipid peroxidation
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markers in the cochlea of aged mice are significantly elevated also
leading to ferroptosis (Sun et al., 2023). These findings extend prior
work on ferroptosis in other diseases to auditory pathologies.

The association of MEF2C and NEDD4 with ARHL through
GWAS and cochlear validation provides mechanistic insights into
age-dependent auditory decline. MEF2C, a transcription factor
critical for neuronal survival (Harrington et al., 2016; Santos et al.,
2017), may safeguard cochlear neurons by suppressing ferroptosis,
as its silencing exacerbates Erastin-induced cell death (Bao et al.,
2021). MEF2C deficiency leads to a mild decrease in auditory
sensitivity in young adult mice, moreover it is also identified as a
potential crucial gene in the development of the AN (McChesney
et al., 2022). Similarly, NEDD4, an E3 ubiquitin ligase, could
modulate auditory function by regulating ion channel turnover or
stress-response proteins in the stria vascularis (Lewis et al., 2018).
The ARHL-linked SNPs in MEF2C (rs10069451) and NEDD4
(rs4424863) localize to regulatory regions, potentially altering their
expression or splicing in aging cochleae. Expressed broadly within
the cochlear duct, NEDD4 encodes a ubiquitin ligase protein known
for its interaction with and ubiquitination of products from diverse
genes associated with deafness (Zhong and Liu, 2009). Therefore,
NEDD4 may serve as novel candidate deafness gene. This aligns
with reports of elevated oxidative stress and lipid peroxidation in
aged murine cochleae (Sun et al., 2023), suggesting ferroptosis as a
unifying mechanism across genetic and age-related hearing loss.

Our drug-gene interaction network identifies candidates (e.g.,
CLOFIBRATE for SCD upregulation, WARFARIN for NEDD4
inhibition) that warrant validation in preclinical models. Notably,
SCD overexpression has been shown to mitigate ferroptosis in
hepatocytes (Bai et al., 2018), supporting its therapeutic potential
for hearing preservation. Furthermore, immune infiltration
analysis reveals significant correlations between FRGs (e.g.,
MEF2C with NK cells, PANX2 with M1 macrophages) and pro-
inflammatory subsets, suggesting that ferroptosis may amplify
cochlear inflammation—a known driver of sensorineural hearing
loss (Zhang et al., 2020; Grayson et al., 2022). Immune cells play
a significant role in the development and progression of hearing
loss, especially in conditions like sensorineural hearing loss, otitis
media, and age-related hearing decline. Targeting these interactions
could offer dual benefits by reducing both cell death and immune-
mediated damage. Moreover, the immune system’s response can
influence the inner ear’s health, sometimes contributing to tissue
damage and hearing loss.

However, while our study provides a robust framework,
certain limitations must be acknowledged. First, the reliance on
lymphoblastoid cell line data (GSE9822) introduces potential bias,
as peripheral blood cells may not fully recapitulate cochlear gene
expression. It is important to note that mitochondrial 12S rRNA
mutations have been associated with hearing loss in multiple
families, underscoring their biological significance (Chen and
Guan, 2022). To address this issue and enhance the robustness
of our research, we plan to incorporate more database validation
in our future work, such as data derived from mouse models,
which may provide further insights into the implications of these
mutations. Future studies should validate FRG expression in
human temporal bone specimens or murine cochlear explants.
In our upcoming in-depth research, we plan to perform single-
cell RNA sequencing using human temporal bone specimens or
cochlear-specific datasets, and will strive to expand the scope of

data inclusion as much as possible. In this study, we utilized
HEI-OC1 cells and C57BL/6J mice, which are commonly adopted
models in auditory research. However, the C57BL/6J strain carries
a Cdh23 mutation, which imposes inherent limitations as a model
for ARHL. Moreover, in subsequent research, primary cell models
or organoids could enhance translational relevance, and validation
in alternative strains or human-derived models would provide
greater precision. While our study is a candidate gene investigation
focusing on MEF2C, CYP4F8, ENPP2, and NEDD4, there is prior
biological evidence linking these genes such as NEDD4 and MEF2C
to auditory function and ARHL (Lewis et al., 2018; McChesney
et al., 2022). Therefore, we choose a relaxed significance threshold
in GWAS. In the future research, we will perform overexpression
or knockout validation of key genes in the upcoming experiments
to further confirm their role in ARHL and conduct functional
validation through immune cell infiltration analysis to confirm
their direct contribution to cochlear damage.

5 Conclusion

Ferroptosis may be a potential process in the occurrence and
development of hearing loss. A comprehensive bioinformatics
analysis was conducted utilizing diverse datasets to explore the
expression profiles and diagnostic significance of SCD, MEF2C,
NEDD4, PANX2, ENPP2, KLHDC3, CYP4F8, ABCC5 and IFNA2
in patients with hearing loss. These genes have the potential to
be diagnostic biomarkers for hearing loss. Moreover, variant sites
in MEF2C and NEDD4 suggest potential regulatory functions
in ARHL, offering novel targets for interventions aimed at
preserving auditory function in aging populations. Future work
should prioritize in vivo validation of these candidates and explore
combinatorial strategies targeting both ferroptosis pathways.
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