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Background: Alzheimer’s disease (AD) is a typical neurodegenerative disease 
that presents challenges due to the lack of biomarkers to identify AD. A growing 
body of evidence highlights the critical role of circadian rhythms in AD.

Methods: The differentially expressed clock genes (DECGs) were identified 
between AD and ND groups (non-demented controls). Functional enrichment 
analysis was executed on the DECGs. Candidate diagnostic biomarkers for AD 
were screened by machine learning. ROC and nomograms were constructed 
to evaluate candidate biomarkers. In addition, therapeutics targeting predictive 
biomarkers were screened through the DGIdb website. Finally, the mRNA–
miRNA network was constructed.

Results: Nine genes were identified through the DECG analysis between the AD 
and ND groups. Enrichment analysis of nine genes indicated that the pathways 
were enriched in long-term potentiation and circadian entrainment. Four clock 
genes (GSTM3, ERC2, PRKCG, and HLA-DMA) of AD were screened using Lasso 
regression, random forest, SVM, and GMM. The diagnostic performance of four 
genes was evaluated by the ROC curve. Furthermore, the nomogram indicated 
that ERC2, PRKCG, and HLA-DMA are good biomarkers in diagnosing AD. 
Single-gene GSEA indicated that the main enrichment pathways were oxidative 
phosphorylation, pathways of neurodegeneration-multiple diseases, etc. The 
results of immune cell infiltration analysis indicated that there were significant 
differences in 15 immune cell subsets between AD and ND groups. Moreover, 23 
drugs targeting HLA-DMA and 8 drugs targeting PRKCG were identified through 
the DGIdb website.

Conclusion: We identified three predictive biomarkers for AD associated with 
clock genes, thus providing promising therapeutic targets for AD.
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1 Introduction

Alzheimer’s disease (AD) is a destructive neurodegenerative disorder with a rising 
global incidence, imposing a significant economic burden on healthcare systems 
(Scheltens et al., 2021; Zheng and Wang, 2025). As the predominant form of dementia, 
AD manifests as progressive cognitive decline, memory impairment, and behavioral 
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alterations (Mangal and Ding, 2022; Liu et al., 2024). Mounting 
evidence suggests that neuropathological changes precede clinical 
symptoms in AD patients by several decades (Chen and Zhang, 
2022; Xu et al., 2024). Therefore, a comprehensive understanding 
of AD pathogenesis and the identification of novel genes for 
early diagnosis and treatment are urgent issues that 
demand attention.

The circadian rhythm serves as an intrinsic biological clock in 
the human body, forming an approximately 24-h cycle (Xiao et al., 
2023). Disruption of the circadian rhythm is a common 
characteristic observed in neurodegenerative disorders 
such as AD (Amidfar et al., 2023; Leng et al., 2019; Chen et al., 
2024). Impairments in circadian rhythm and sleep patterns 
among AD patients include fragmented sleep, heightened 
arousal at night, and reduced daytime activity levels, which can 
exacerbate AD-related pathologies (Zhang et  al., 2025). 
Studies in mice and humans have shown fluctuations in levels of 
Aβ and tau proteins in interstitial or cerebrospinal fluid 
during the sleep/wake cycle, with peaks during the active phase 
(Kang et al., 2009; Holth et al., 2019; Ma et al., 2016; Roh et al., 
2014; Xie et  al., 2013; Nguyen Ho et  al., 2024). Circadian 
disruption has also been associated with immune system 
dysregulation, which can lead to neuronal injury and cognitive 
decline in AD (He et al., 2023; Weng et al., 2024). Because the 
circadian rhythm is regulated by a transcription–translation 
feedback loop involving clock genes (Schrader et  al., 2024), 
identification of clock gene alterations is crucial for further 
investigations into AD pathogenesis. Therefore, we aim to explore 
the relationship between clock genes and AD through 
bioinformatics analysis in the study.

Recently, research on AD has focused on multimodal 
neuroimaging and deep learning frameworks (Upadhyay et al., 
2024b). Upadhyay et  al. conducted a comprehensive review of 
deep learning methods for AD classification, highlighting the 
potential for integrating structural MRI (sMRI) and functional 
MRI (fMRI) data (Upadhyay et  al., 2024a). Similarly, a study 
proposed a 3D deep learning model for early AD diagnosis using 
sMRI and PET imaging, achieving an accuracy of 91.84% (Raza 
et al., 2024). These new methods can improve the accuracy of AD 
diagnosis. In contrast to these approaches, our study uniquely 
combines machine learning with circadian biology to identify 
biomarkers associated with clock genes. Instead of previous 
studies that mainly relied on neuroimaging data, we used gene 
expression profiles to discover new diagnostic markers. This 
comprehensive approach not only improves diagnostic accuracy 
but also provides insights into the molecular mechanisms 
underlying AD progression.

In this study, we utilized a variety of bioinformatics methods 
and machine learning algorithms to explore the clock genes in AD, 
with the goal of identifying potential early predictive biomarkers 
for AD patients and understanding the pathological mechanisms 
involved. The findings of this study can potentially facilitate the 
discovery of diagnostic markers for AD. In addition, compared to 
previous studies (Bacalini et al., 2022; Niu et al., 2022) focusing 
on single-clock genes (e.g., BMAL1 or PER1), our study integrated 
multiple machine learning algorithms to prioritize biomarkers 
(ERC2, PRKCG, and HLA-DMA) with higher diagnostic 
specificity (AUC > 0.7).

2 Materials and methods

2.1 Data acquisition

Two Alzheimer’s disease microarray datasets (GSE132903 and 
GSE122063) were searched on the GEO datasets. The GSE132903 
dataset (97 AD patients and 98 non-demented controls) was derived 
from the GPL10558 platform of the Illumina Human HT-12 v4 
expression beadchip. The GSE122063 dataset (12 AD and 11 controls) 
was derived from the GPL16699 platform of Agilent-039494 SurePrint 
G3 Human GE v2 8x60K. All samples from the two different databases 
were obtained from human brain tissue. Details of the datasets are 
shown in Supplementary Table S1. The clock genes were obtained 
from the GSEA website.

2.2 Recognition of differentially expressed 
genes (DEGs)

To recognize DEGs between AD and ND groups (non-demented 
controls), a difference analysis was executed on the GSE132903. The 
DEGs were selected based on a p-value of <0.05 and an absolute 
log-fold change (FC) > 0.5. The packages “ggplot2” and “pheatmap” 
were then utilized to draw heatmaps and volcano maps. DEGs and 
clock genes were intersected to gain differentially expressed 
clock genes.

2.3 Enrichment analysis (EA)

EA of differentially expressed clock genes was carried out utilizing 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) annotations.

2.4 Machine learning

Four machine learning algorithms were utilized to screen 
candidate diagnostic biomarkers for AD: LASSO regression, random 
forest (RF), support vector machine recursive feature elimination 
(SVM-RFE), and Gaussian mixture model (GMM). LASSO regression 
was performed with λ selected via minimum mean squared error. 
Random forest utilized 10-fold cross-validation. SVM-RFE used 
5-fold cross-validation. GMM was optimized using the Bayesian 
Information Criterion. The intersection genes of these four machine 
learning algorithms had been identified as candidate hub genes for 
AD diagnosis.

2.5 Receiver operating characteristic 
evaluation (ROC)

The expression of candidate diagnostic biomarkers in the ND 
group and AD group was compared. In addition, the diagnostic 
value of each candidate biomarker was evaluated, and ROC was 
drawn. The area under the ROC curve (AUC) is then calculated 
with a 95% confidence interval (CI) to estimate the 
diagnostic value.
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2.6 Construction of nomogram

A nomogram was built using the rms R package. The diagnosis 
value of the genes was verified by measuring AUC.

2.7 Gene enrichment analysis (GSEA) of 
hub genes

The GSEA analysis was performed. We calculated the p-value for 
each gene set, and p-values < 0.05 were regarded as significant 
enrichment. Subsequently, the significantly enriched gene sets 
were visualized.

2.8 Analysis of immune cell infiltration

ssGSEA is widely used to evaluate the type of immune cells in the 
microenvironment. In this study, the ssGSEA algorithm was used to 
analyze the data of AD patients and quantify the relative proportion 
of 28 kinds of infiltrating immune cells. The box plot showed a 
comparison of the differential expression of immune cells between the 
two groups. The relationship between hub diagnostic biomarkers of 
AD and the most significantly different and highly expressed immune 
cells was also investigated.

2.9 Drug prediction analysis

Targeted drugs for hub genes were screened through the DGIdb 
website (https://dgidb.org/).

2.10 Construction of mRNA–miRNA 
networks

We used miRWalk to forecast key miRNAs targeting hub 
differentially expressed clock genes. The enrichment analysis of CC, 
MF, BP, and biological pathways of miRNA was performed with 
FunRich software. In addition, mRNA–miRNA networks with key 
miRNAs (≥2 differentially expressed clock genes) and hub 
differentially expressed clock genes were drawn with cytoscape3.10.1.

3 Results

3.1 Identification of DEGs between AD and 
ND groups

Five hundred and sixty DEGs between the AD and ND groups 
were identified, of which 323 were upregulated and 237 were 
downregulated. All DEGs were shown in the volcano map (Figure 1A), 
with upregulated genes marked orange and downregulated genes 
marked blue. A total of 326 clock genes were extracted from the GSEA 
website. By Venn analysis of DEGs and clock genes, nine intersection 
genes were obtained (Figure 1B). These genes were selected for further 
analysis due to their potential role in circadian rhythm regulation and 
AD pathology.

3.2 Functional enrichment analysis

In this study, GO and KEGG were used for functional EA of nine 
intersection genes. The biological process (BP) of GO term analysis 
indicated that the DECGs in AD were primarily enriched in 
neurotransmitter secretion, synaptic vesicle exocytosis, etc. In terms 
of the cellular component (CC) of GO term analysis, the differentially 
expressed clock genes were mostly located in the synaptic membrane, 
distal axon, and intercellular bridge. Concerning molecular function 
(MF) analysis, the results indicated that peptide binding, glutathione 
binding, and adenylate cyclase activity were the most relevant items 
of the DECGs (Figures  1C,D). KEGG analysis displayed that the 
DECGs were primarily enriched in the gap junction, GABAergic 
synapse, long-term potentiation, circadian entrainment, aldosterone 
synthesis and secretion, melanogenesis, pancreatic secretion, 
parathyroid hormone synthesis, secretion and action, cholinergic 
synapse, and glutamatergic synapse (Figures 1E,F). These pathways 
were closely associated with AD occurrence and development.

3.3 Recognition of hub genes by machine 
learning

To further simplify the identification of important characteristic 
variables of the DECGs, Lambda.min and lambda.1se were 
0.0187464 and 0.06895639, respectively, and six genes (ERC2, 
GABBR2, TBL1X, GSTM3, HLA-DMA, and PRKCG) were identified 
by lambda-based LASSO regression analysis (Figures  2A,B). 
According to the random forest method, the gene importance score 
was obtained, and eight candidate genes (PRKCG, GSTM3, HLA.
DMA, TBL1X, GABBR2, TUBB3, ERC2, and CLDN5) were 
identified after the gene was sequenced in order of importance 
(Figure 2C). The SVM-RFE method found six genes (PRKCG, HLA.
DMA, ADCY1, GSTM3, ERC2, and CLDN5) with the minimum 
error and maximum accuracy following 100 times (Figures 2D,E). 
As measured by the GMM classifier, the average accuracy of one 
feature gene in seven combinations was 0.8772354 (Figure  2F). 
Finally, the common genes (GSTM3, ERC2, PRKCG, and HLA.
DMA) were obtained by the four methods (Figure 2G). These genes 
were selected as hub genes due to their consistent identification 
across multiple machine learning algorithms.

3.4 Property of hub genes to diagnose AD

The level of four hub genes in the AD and ND groups was 
compared in the GSE132903 training dataset, and the level of four 
genes displayed statistically remarkable differences between the two 
groups (Figure 2H). ROC curves were built to evaluate the diagnosis 
specificity of every gene. Furthermore, we computed the AUC and 
95%CI for every project. The results are as follows: HLA-DMA (AUC 
0.749, CI 0.681–0.827), PRKCG (AUC 0.79, CI 0.727–0.853), ERC2 
(AUC 0.715, CI 0.642–0.788), GSTM3 (AUC 0.767, CI 0.701–0.833) 
(Figure 2I). In the validation dataset (GSE122063), the expression of 
four genes displayed statistically remarkable differences between the 
two groups (Figure 2J). The AUC of four genes was computed in the 
GSE122063 validation dataset, and the results showed that the AUC of 
these four genes was slightly higher (Figure  2K). GSTM3 showed 
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inconsistent expression trends between the training dataset 
(GSE132903) and the validation dataset (GSE122063). This discrepancy 
might arise from cohort heterogeneity (e.g., differences in disease 
stages or genetic backgrounds) or technical variability (e.g., batch 
effects on microarray platforms). In the future, a large sample size and 
multi-center cohorts are needed to verify the role of GSTM3 in AD.

3.5 Establishment and verification for 
nomogram diagnostic mode

A nomogram model was established for AD diagnosis using 
three hub genes (HLA-DMA, PRKCG, and ERC2) (Figure 3A). The 

ROC curve displayed that the combined nomogram model had the 
highest predictive power compared to other single biomarker 
models (Figure 3B). Calibration curves were utilized to assess the 
predictive power of the nomogram model in training datasets. The 
correction curve showed a small error between the exact and 
estimated risk for Alzheimer’s disease, showing that the nomogram 
model was more accurate in forecasting Alzheimer’s disease 
(Figure 3C). The nomogram was also established in the validation 
dataset (Figure 3D), and the ROC curve in the validation dataset 
further verified the effective prediction of the conjoint nomogram 
model (Figure 3E). The calibration curves for the validation dataset 
further displayed a precise nomogram model for predicting AD 
(Figure 3F).

FIGURE 1

Identification of DEGs in AD patients versus ND and enrichment analysis. (A) The volcano map indicated the genes expressed significant differentially 
between AD and ND groups; orange signified the upregulated genes, and blue signified the downregulated genes. (B) Venn diagram of the DEGs and 
clock genes: purple represented the DEGs, and blue represented the clock genes. (C,D) GO EA of intersection nine genes. (E,F) KEGG EA of nine genes.
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FIGURE 2

Identification of potential diagnostic biomarkers of clock gene-related AD through machine learning approaches and validation of hub gene diagnostic 
efficacy. (A) Path chart of the LASSO coefficients for intersection genes. Every curve showed the locus of every intersection gene, with the ordinate 
being the value of the gene, the bottom abscissa being log (λ), and the top abscissa being the number of non-zero intersection genes in the model at 
various time points. (B) LASSO regression curve. The diagnostic biomarkers (n = 6) were identified by the LASSO. The optimum λ value was determined 
by 10 times cross-validation. (C) The random forest algorithm. (D,E) SVM-RFE algorithm screened nine intersection genes to determine the suitable 
group of feature genes. In the end, eight genes were selected as the optimal feature genes. (F) The GMM classifier determined the average accuracy of 
a single characteristic gene among the seven combinations. (G) The hub genes were obtained from the LASSO, random forest algorithm, SVM-RFE, 
and GMM. Validation of hub genes for diagnostic efficacy. (H) The levels of HLA-DMA, PRKCG, ERC2, and GSTM3 in the AD group and control group in 
the GSE132903 dataset. (I) The ROC curve displayed the diagnostic performance of the hub gene in the GSE132903 dataset. (J) The expression levels 
of HLA-DMA, PRKCG, ERC2, and GSTM3 in the AD group and control group in the GSE122063 dataset. (K) The ROC curve displayed the diagnostic 
performance of the hub gene in the GSE122063 dataset.
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FIGURE 3

Establishment and verification of nomogram diagnostic model and GSEA enrichment analysis. (A) Nomogram model diagram on account of the level 
of three hub genes in the training dataset (GSE132903). (B) ROC curves display the diagnostic property of hub genes in the training dataset. 

(Continued)
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3.6 GSEA enrichment analysis of hub genes

We further explored the specific signaling pathways of the three hub 
genes and investigated the underlying specific mechanisms by which 
they affect AD progression. GSEA results displayed that the signaling 
pathways related to the high level of HLA-DMA were oxidative 
phosphorylation and pathways of neurodegeneration-multiple diseases 
(Figure 3G). At the same time, the pathways related to the low expression 
of PRKCG were endocrine and other factor-regulated calcium 
reabsorption (Figure 3H). The pathways related to the low expression of 
ERC2 were oxidative phosphorylation and pathways of 
neurodegeneration-multiple diseases (Figure  3I). These enrichment 
items were all associated with energy metabolism, suggesting that these 
three hub genes might be involved in the course of AD by affecting the 
circadian rhythm and, thus, the body’s metabolism.

3.7 Analysis of immune infiltration

The results of immune cell infiltration analysis indicated that there 
were significant differences in 15 immune cell subsets between AD 
and ND groups (Figure  4A). Subsequently, correlations between 
different immune cells in AD were evaluated (Figure 4B). Moreover, 
the expression of the three hub genes might influence the level of 
AD-infiltration immune cell types (Figure  4C). HLA-DMA was 
positively correlated with immature B cells, activated CD8 T cells, 
monocytes, macrophages, activated dendritic cells, neutrophils, mast 
cells, T follicular helper cells, effector memory CD8 T cells, natural 
killer cells, plasmacytoid dendritic cells, MDSC, natural killer T cells, 
CD56dim natural killer cells, type 1 T helper cells, central memory 
CD8 T cells, and eosinophils. ERC2 had a negative relationship with 
immature B cells, activated CD8 T cells, monocyte, macrophage, 
activated dendritic cells, neutrophils, mast cells, T follicular helper 
cells, effector memory CD8 T cells, natural killer cells, plasmacytoid 
dendritic cells, MDSC, natural killer T cells, CD56dim natural killer 
cells, central memory CD8 T cells, type 17 T helper cells, and central 
memory CD4 T cells. There was a negative correlation between 
PRKCG and neutrophils, mast cells, T follicular helper cells, effector 
memory CD8 T cells, natural killer cells, MDSC, natural killer T cells, 
CD56dim natural killer cells, type 2 T helper cells, gamma delta T 
cells, CD56bright natural killer cells, and immature dendritic cells.

3.8 Identification of potential targeted 
drugs

The DGIdb website was utilized to forecast potential therapeutic 
drugs for three hub genes. There are 23 potential drugs for HLA-DMA 
and 8 for PRKCG (additional file: Supplementary Table S2), including 
vasodilators: fasudil; drugs used to treat AD: BRYOSTATIN, etc. Some 
of these drugs have been shown to have clinical benefits for AD.

3.9 mRNA–miRNA interactive network

The miRNA prediction results of three hub differentially expressed 
clock genes are shown in Figure 4D. A total of 576 miRNAs were 
identified, among which 62 miRNAs had a large number of cross-
linked genes (differentially expressed clock genes ≥2) (Data Sheet 1). 
The EA of 576 miRNAs indicated that CC was concentrated in the 
nucleus (46.7%), cytoplasm (44.7%), Golgi apparatus (8.4%), lysosome 
(13.2%), endosome (3%), and early endosome (0.9%) (Figure 4E). MF 
focused on transcription factor activity and so on (Figure 4F). BP is 
primarily involved in the regulation of nucleobase (Figure  4G). 
Biological pathways mainly include beta1 integrin cell surface 
interactions (Figure  4H). Considering the regulatory relationship 
between miRNA and mRNA, the miRNA–mRNA regulatory network 
was established utilizing Cytoscape software (version 3.7.2) 
(Figure 4I).

Figure 4 mRNA–miRNA regulatory network analysis. (A) miRNA 
prediction results of hub genes. (B) CC EA results of 576 miRNAs via 
FunRich. (C) MF EA results of 576 miRNAs via FunRich. (D) BP EA 
results of 576 miRNAs via FunRich. (E) Biological pathways EA 
results of 576 miRNAs via FunRich. (F) miRNA–mRNA regulatory 
network, V-type, and circle indicate miRNA and mRNA, respectively.

4 Discussion

Alzheimer’s disease is one of the most commonly diagnosed cases 
of senile dementia in the world (Twarowski and Herbet, 2023). Data 
from the Alzheimer’s Association Report revealed that approximately 
50 million individuals worldwide were afflicted by AD in 2018, with 
projections estimating a rise to 152 million by 2050 (Zhang et al., 
2022). The elevated prevalence of AD imposes a substantial economic 
and societal burden, presenting a formidable challenge for both 
individuals and communities (Huang et al., 2024). Current therapeutic 
approaches to AD encompass cognitive enhancement therapy, 
management of neuropsychiatric symptoms, and disease-modifying 
treatments (Zhang et al., 2023). However, several drugs are still under 
investigation and exhibit limited efficacy (Thakkar et  al., 2023). 
Therefore, exploring new treatment strategies is an urgent task 
for researchers.

Circadian rhythms, intrinsic 24-h oscillations in charge of 
regulating daily behaviors and biological processes (Jin et al., 2023), 
have garnered attention concerning their potential impact on 
AD. Although the causal relationship between Alzheimer’s disease and 
circadian rhythm disruption is unclear, there is growing evidence that 
AD and circadian disruption may interact, with circadian disruption 
increasing the risk of AD development and AD exacerbating circadian 
disruption (Rigat et al., 2023; Uddin et al., 2020; McKee et al., 2020). 
Notably, clock genes have become pivotal roles in regulating circadian 
rhythms, attracting increased research interest (Zhu et  al., 2022). 
Circadian rhythms are influenced by the dark–light cycle and are 

(C) Calibration curve displays the predicted performance of the nomogram in the training dataset. (D) Nomogram diagram on the account of the level 
of three hub genes in the validation dataset (GSE122063). (E) ROC curves display the diagnostic performance of hub genes in the validation dataset. 
(F) Calibration curve displays the predicted performance of the nomogram in the validation dataset. (G) Enrichment results of HLA-DMA. 
(H) Enrichment results of PRKCG. (I) Enrichment results of ERC2.

FIGURE 3 (Continued)
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FIGURE 4

Immune cell infiltration analysis between AD and ND groups. (A) Comparison of the percentage of various immune cells between AD and ND groups. 
(B) The correlation of 28 kinds of immune cells in AD was shown by the heatmap. (C) Heat map of correlation between three hub genes and immune 
cells. “*” indicates that the p-value is below 0.05, “**” indicates that the p-value is below 0.01, and “***” indicates that the p-value is below 0.001.
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chiefly governed via a series of molecular clocks in the suprachiasmatic 
nucleus (Uddin et al., 2021). Hub clock genes, such as period circadian 
protein homologs, cryptochromes (CRY1 and CRY2), CLOCK, and 
BMAL1, coordinate an intricate transcription–translation feedback 
loop oscillating each 24 h (Takahashi, 2017; Vitaterna et al., 2001). 
Many studies have highlighted the intimate relation between clock 
genes and AD pathogenesis (Lananna et al., 2020; Buhl et al., 2019).

In the study, we  recognized 560 DEGs between AD and ND 
groups, with 323 upregulated and 237 downregulated. Through Venn 
analysis, nine intersection genes (PRKCG, TUBB3, ADCY1, GABBR2, 
ERC2, GSTM3, TBL1X, HLA-DMA, and CLDN5) were identified 
from the DEGs and clock genes. These findings hold promise as a 
foundation for subsequent animal experiments or investigations using 
human samples, offering valuable insights into the interplay between 
clock genes and AD progression.

EA of DECGs showed high enrichment levels in BP, including 
synaptic vesicle, exocytosis neurotransmitter, signal release from 
synapse, synaptic vesicle cycle, regulation of synaptic plasticity, 
vesicle-mediated transport in synapse, regulation of neurotransmitter 
levels, regulated exocytosis, and learning or memory. These processes 
are closely associated with neurotransmitters, synapses, and learning 
or memory. The enriched cell components displayed that DECGs were 
prevalent in the synaptic membrane and distal axon. In terms of 
molecular function, differentially expressed clock genes are mainly 
enriched in glutathione binding, structural constituents of synapse, 
and GABA receptor activity.

KEGG enrichment analysis was mainly enriched in gap junction, 
GABAergic synapse, long-term potentiation, thyroid hormone 
synthesis, insulin secretion, melanogenesis, pancreatic secretion, 
parathyroid hormone synthesis, secretion and action, cholinergic 
synapse, leukocyte transendothelial migration, glutamatergic synapse, 
and so on. Notably, in addition to circadian entrainment and synapse-
related pathways, other pathways are associated with metabolism and 
neurotransmission. The high energy requirements of the brain make 
it very sensitive to modifications in energy metabolism, and metabolic 
disorders are a hallmark of brain aging, especially in neurodegenerative 
disorders, for instance, AD. AD patients are often associated with 
metabolic abnormalities, such as abnormal insulin secretion and 
parathyroid hormone synthesis (Chen et al., 2023; Patel and Edison, 
2024). These metabolic abnormalities further aggravate AD by 
affecting brain energy metabolism and neuronal health. For example, 
in AD patients, excessive release of glutamate and overactivation of 
NMDA receptors lead to increased calcium influx, which in turn 
causes metabolic disorders (Le Douce et al., 2020). The results of this 
study emphasize the correlativity between clock genes associated with 
AD and metabolism and further reveal the correlativity between AD 
and metabolic disease from the view of clock genes.

Four machine learning methods (LASSO, random forest 
algorithm, SVM-RFE, and GMM) were utilized to identify differential 
expression clock genes, and four key genes (GSTM3, ERC2, PRKCG, 
and HLA.DMA) were obtained. In addition, the expression levels of 
four genes were evaluated in training and validation datasets, and a 
clock gene diagnosis model for AD was established and validated. In 
the construction of the AD model, the three most relevant clock genes 
were ERC2, PRKCG, and HLA-DMA. Notably, we  built a more 
comprehensive diagnostic nomogram model on account of three hub 
genes in training and validation datasets, which is more valuable for 
the diagnosis of AD than independent biomarkers.

We further analyzed the specific signaling pathways of the three 
hub genes and explored the underlying molecular mechanisms by 
which they affect AD progression. Single-gene GSEA results show 
amyotrophic lateral sclerosis, oxidative phosphorylation, Parkinson’s 
disease, pathways of neurodegeneration-multiple diseases, cardiac 
muscle contraction, endocrine and other factor-regulated calcium 
reabsorption, and synaptic vesicle cycle. Previous studies have shown 
that neurological diseases are closely associated with circadian 
rhythms. In our study, clock genes associated with AD were 
concentrated in the pathways related to neurological and metabolic 
dysregulation, further proving a shared pathway between AD and 
these systemic disorders from a circadian view.

Previous studies have shown that some clock genes can cause AD 
through the immune system (Li et al., 2020; Song, 2019). In this study, 
we found significant differences among activated B cells, activated CD8 
T cells, immature B cells, memory B cells, mast cells, MDSC, natural 
killer cells, natural killer T cells, neutrophils, and other immune cells 
between AD patients and healthy individuals. HLA-DMA showed a 
positive correlation with neutrophils, mast cells, T follicular helper 
cells, effector memory CD8 T cells, natural killer cells, MDSC, natural 
killer T cells, and CD56dim natural killer cells. However, ERC2 and 
PRKCG were negatively correlated with neutrophils, mast cells, T 
follicular helper cells, effector memory CD8 T cells, natural killer cells, 
MDSC, natural killer T cells, and CD56dim natural killer cells. In 
summary, these three hub genes exhibited a complex relationship with 
immune cell infiltration in AD, indicating their potential role in 
maintaining the balance of the immune response. Therefore, a deeper 
understanding of the immune mechanisms may enhance the diagnosis 
of AD and facilitate the development of effective treatments.

This study forecasts potential therapeutic agents for clock genes 
closely associated with AD patients. These agents include circadian 
rhythm modulators: bryostatin and bryostatin 1; anti-inflammatory 
and immunomodulator agents: fasudil, SB220025, UCN-01, 
PF-562271, tamatinib, and SP-600125; neuroprotective agents: 
lauroguadine, ingenol mebutate, and quercetin. These potential agents 
targeting clock genes treat AD through different mechanisms, 
providing a theoretical basis and feasible direction for subsequent 
relevant research.

The miRNA plays a key part in the modulation of gene expression 
and influences the post-transcriptional regulation of genes by binding 
to mRNA (Fabian et al., 2010). Research has indicated that miRNAs 
play a crucial part in neurological diseases, including AD (Klyucherev 
et al., 2022). In our study, we explored the clock genes associated with 
AD and their corresponding miRNA regulatory networks, revealing 
the potential mechanisms of these genes in AD pathology. By 
establishing a miRNA–mRNA network, we  obtained miRNAs 
associated with three key clock genes (HLA-DMA, PRKCG, and 
ERC2). The interaction of these miRNAs with clock genes may play a 
crucial part in the occurrence and progress of AD. The construction 
of miRNA regulatory networks provides a novel perspective for 
comprehending the intricate gene regulatory mechanism of AD.

EA of 576 miRNAs displayed that they were enriched in β1 integrin 
cell surface interactions, TRAIL signaling pathway, etc. These pathways 
play a crucial part in neurodegenerative and metabolic diseases, 
suggesting that these miRNAs may take part in the pathological course 
of AD by influencing these key pathways. This study offers important 
clues for further exploring the specific mechanism of miRNA in AD 
and is helpful for the future development of miRNA treatment methods 
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for AD. Although this study reveals a potential mechanism of action 
for miRNAs in AD, further experiments are needed to validate these 
findings. Future studies can verify the specific regulatory relationship 
between these miRNAs and clock genes in AD through in vivo and 
in vitro experiments. In addition, the in-depth exploration of miRNA 
expression patterns at different stages of AD and in different patient 
populations will help to develop personalized treatment regimens.

This study had the following three advantages: (1) This is a novel 
integration of four machine learning algorithms (LASSO, RF, 
SVM-RFE, and GMM) to identify AD biomarkers from clock genes, 
addressing limitations of single-model approaches; (2) It is the first 
time to combine HLA-DMA, PRKCG, and ERC2 to form a nomogram 
for AD diagnosis, thus achieving higher diagnostic value; and (3) 
We systematically explored the role of circadian immune crosstalk in 
AD. However, this study also had some limitations. First, the 
dependency on public datasets can induce biases associated with 
sample collection and management. Second, the variability in gene 
expression trends across datasets underscores the need for larger, 
more diverse cohorts to enhance the robustness of our results.

Future studies should emphasize the experimental validation of 
the identified hub genes and their associated pathways in AD models. 
Investigating the molecular mechanisms through which these genes 
influence circadian rhythms and metabolism could provide deeper 
insights into AD pathology. In addition, exploring the therapeutic 
potential of the identified drugs in preclinical and clinical studies is 
crucial. Expanding the scope of immune infiltration analysis to 
include a broader range of immune cells and their interactions with 
clock genes may also uncover new therapeutic targets.

5 Conclusion

In conclusion, we identified three clock gene-related biomarkers 
(ERC2, PRKCG, and HLA-DMA) with high diagnostic performance 
for AD through four machine learning algorithms (LASSO regression, 
Random Forest, SVM-RFE, and GMM). Functional enrichment 
analysis revealed that these biomarkers were involved in key pathways 
such as oxidative phosphorylation and neurodegeneration, 
highlighting their potential roles in AD pathogenesis. Immune 
infiltration analysis further uncovered significant differences in 15 
immune cell subsets between AD and control groups, suggesting a 
link between circadian disruption and neuroinflammation. In 
addition, we identified 23 drugs targeting HLA-DMA and 8 drugs 
targeting PRKCG, providing a foundation for future therapeutic 
development. The mRNA–miRNA regulatory network analysis offered 
novel insights into the post-transcriptional mechanisms underlying 
AD. These findings not only advance our understanding of the 
molecular mechanisms linking circadian rhythms to AD but also 
provide valuable tools for early diagnosis and targeted therapy. Future 
studies should focus on the experimental validation of these 
biomarkers and their therapeutic potential in preclinical models.
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