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Introduction: Heart rate variability (HRV) reflects cardiac autonomic regulation,

and reduced HRV is associated with Parkinson’s disease (PD). However,

studies regarding the implications of HRV measures for the clinical

manifestations of PD have shown inconclusive results. We examined the

relationship between HRV measures obtained via long-term monitoring using

a wearable electrocardiogram (ECG) device and the diagnosis and clinical

characteristics of PD.

Methods: Seventeen controls and 20 patients with PD were prospectively

enrolled. The HRV measures were recorded using a wearable ECG device for

up to 72 h. Time- and frequency-domain measures were derived from the

HRV analysis, and their association with PD diagnosis and clinical features was

investigated. We investigated their association with neuroimaging biomarkers

using magnetic resonance imaging to explore the underlying neural correlates.

Results: The diagnosis of PD was associated with several HRV measures,

including a decreased standard deviation of N-N intervals, standard deviation of

all heart rates, and low-frequency (LF) power. Among these HRV measures, only

LF power was associated with clinical features of PD. LF power was positively

correlated with the tremor sub-score (r = 0.500; p = 0.035) and negatively

associated with the left (r = −0.598; p = 0.024) and right (r = −0.693; p = 0.006)

cerebellar hemispheres in patients with PD.

Conclusion: Low-frequency power may be used as a biomarker for tremor-

associated pathophysiology of PD. Moreover, a wearable ECG device with its

capability for long-term monitoring might be a promising tool for diagnosing PD.
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1 Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder, with various motor and non-motor
symptoms throughout the disease course. Autonomic dysfunction
is common in PD and may be present in the very early
stages of PD, even before the onset of motor symptoms
(Sharabi et al., 2021). Autonomic dysfunction can manifest
as sympathetic, parasympathetic, and enteric nervous system
dysfunctions, resulting in orthostatic hypotension, constipation,
bladder dysfunction, and sexual dysfunction (Sharabi et al., 2021).
Deposition of alpha-synuclein aggregates is particularly common
in the cardiovascular autonomic nervous system because of the
high density of sympathetic innervation in the heart (Goldstein and
Sharabi, 2019). Cardiovascular autonomic dysfunction in PD may
result in orthostatic hypotension, postprandial hypotension, supine
hypertension, and non-dipping (Chen et al., 2020).

Regarding autonomic regulation of cardiac cycle, heart rate
variability (HRV) refers to the variation in time between successive
heartbeats and represents an index of the cardiac autonomic
nervous system (Shaffer and Ginsberg, 2017). HRV is a simple
and non-invasive tool for assessing cardiovascular autonomic
regulation in diverse populations (Yoon et al., 2016, Alonso et al.,
2015). Recently, wrist-worn trackers have become available for
recording HRV, rendering HRV as a promising digital biomarker
(Natarajan et al., 2020). Time- and frequency-domain measures and
non-linear measurements can be derived from HRV analysis, and
each measure is thought to be associated with its underpinning
autonomic correlates (Shaffer and Ginsberg, 2017). Alterations
in HRV have been linked to a variety of clinical conditions,
including cardiovascular disease and metabolic disorders, and are
increasingly recognized as reflective of neurodegenerative processes
(Stuckey et al., 2014, Liu et al., 2022).

The implications of HRV in PD have been studied previously.
Several cross-sectional and longitudinal studies have revealed
decreased HRV measures in patients with PD compared with
those in the healthy control and patients with essential tremor
(Sorensen et al., 2013, Kallio et al., 2000, Yoon et al., 2016,
Solla et al., 2015, Maetzler et al., 2015). Moreover, reduced HRV
is observed in idiopathic rapid eye movement sleep behavior
disorder, which could be a prodromal phase of PD (Valappil
et al., 2010, Postuma et al., 2010). However, the association
between HRV measures and the clinical manifestations of PD
has been inconsistent. Some studies have revealed an association
between HRV measures and clinical features, including hypokinesia
or cognitive status (Terroba-Chambi et al., 2020, Haapaniemi
et al., 2001), whereas others have failed to show an association
between HRV measures and clinical manifestations (Maetzler et al.,
2015, Mihci et al., 2006). These inconsistent findings may be
attributed to the diverse study designs and HRV measurement
methods. For example, short-term HRV recordings may not
capture a sufficient duration to reflect certain daily activity patterns
(Voss et al., 2013, Ruangsuphaphichat et al., 2023), and hospital-
based electrocardiogram (ECG) monitoring systems, such as
polysomnography-embedded ECG devices, have limited feasibility
for patients and only provide data for a specific time of the
day (Kwon et al., 2023). A recent study revealed an association
between striatal dopaminergic availability and HRV measures

(Kitagawa et al., 2021); however, the neural correlates of reduced
HRV in patients with PD have not been clearly elucidated.

In this study, we examined the relationship between HRV
measures obtained via long-term monitoring using a wearable ECG
device and the clinical characteristics of PD. The present study
leverages long-term HRV monitoring using a wearable ECG device
in conjunction with advanced neuroimaging to (1) delineate the
HRV parameters that distinguish PD patients from controls, (2)
explore the association between HRV metrics and clinical features
of PD, and (3) identify the neural substrates underlying these
autonomic alterations. By integrating these methodologies, our
work aims to advance the understanding of autonomic dysfunction
in PD and to establish novel biomarkers that may facilitate earlier
diagnosis of PD.

2 Materials and methods

2.1 Participants

We prospectively enrolled 20 patients with PD and 17
controls who visited the Memory Disorder Clinic of Wonju
Severance Christian Hospital between May 2022 and October
2022. PD was diagnosed according to the clinical criteria of the
United Kindgom Brain Bank (Gibb and Lees, 1988) and the
presence of appropriate dopamine transporter defects on 18F-N-(3-
fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane
positron emission tomography. Control group was defined as those
who showed no focal neurological symptoms and exhibited no
signs of parkinsonism on neurological examinations. Individuals
with a medical history of cerebrovascular disease or cardiovascular
disease, and dementia, current psychosis, or mental illness were
excluded. All patients underwent brain T1-weighted magnetic
resonance (MR) images for volumetric analysis and the Korean
version of the Montreal Cognitive Assessment for cognitive
assessment. Motor and non-motor symptoms were assessed
using the Movement Disorder Society-Unified Parkinson’s Disease
Rating Scale scores (MDS-UPDRS). The sub-scores for tremor
(items 3.15, 3.16, 3.17, and 3.18), rigidity (item 3.3), bradykinesia
(items 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, and 3.14), and gait and postural
instability (items 3.10, 3.11, and 3.12) were obtained from the MDS-
UPDRS part III (Hong et al., 2022). The clinical diagnoses of the
participants were established through mutual agreement between
two neurology specialists (MSB and JYH).

This study was approved by the Institutional Review Board
of Wonju Severance Hospital (Ref# CR221020), and the research
protocol was aligned with the principles of the Declaration of
Helsinki and its subsequent revisions.

2.2 Wearable device, data measurement,
and analysis

The Hicardi Plus (MEZOO Co., Ltd., Wonju-si, Gangwon-
do, Korea) is a lightweight (18 g), compact (60 × 40 × 10 mm),
wireless, and wearable adhesive monitoring device certified as a
medical device by the Ministry of Food and Drug Safety of Korea.
It monitors and records single-lead ECGs, respiratory rates, skin
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surface temperatures, and activities (Supplementary Figure 1). The
device consists of a reusable sensor module and disposable adhesive
patch that houses a two-point ECG electrode. It attaches to the
chest and can continuously measure signals for up to 72 h. To
ensure anonymization, patient information is not recorded on the
wearable device. The ECG signal is recorded at a rate of 250
samples/s with16-bit resolution.

The data from the wearable device were transferred in packets
through Bluetooth Low Energy (BLE) to a mobile gateway
implemented as a smartphone application, which then transmitted
the data packets to a cloud-based monitoring server via a cellular
or home WiFi network. Because BLE communication has a short
transmission distance, participants were instructed to keep the
smartphone with the mobile gateway installed nearby (within
1.5 m) during the measurement period to minimize potential
data loss. The ECG signals and the abovementioned data were
continuously recorded during daily living and analyzed after data
collection via monitoring server.

In this study, ECG records averaging 53.4 h per patient were
obtained during daily living, including both wakefulness and sleep
periods. Each ECG record data was measured during daily living
rather than in a controlled environment such as a hospital ward;
it may contain data losses resulting from various communication
errors, including BLE connectivity disruptions and errors in WiFi
or cellular transmission. Thus, prior to analysis, each record is
required to undergo the identification and exclusion process of
segments affected by communication-related data losses or signal
disruptions. Subsequently, preprocessing is conducted, including
noise filtering and artifact removal, followed by extraction of valid
R-peaks. Finally, HRV parameters are calculated from the validated
ECG data segments for further analysis.

Although each ECG record was recorded for durations
exceeding 24 h, ultra-low frequency (ULF), a frequency-domain
parameter of HRV, was not computed due to intermittent
data losses resulting from communication errors. The ULF
parameter requires continuous and uninterrupted long-term
ECG data to reliably detect very low-frequency physiological
rhythms; therefore, even small data gaps significantly impair
the accuracy of ULF calculations. Instead, ECG recordings were
segmented into consecutive 5 min intervals, and short-term HRV
parameters were calculated from these intervals to ensure analytical
reliability and validity.

To conduct the aforementioned procedure, each ECG record
was first divided into consecutive 5 min segments, and each
segment was examined for data loss due to communication errors.
When a data packet is generated by the wearable ECG patch, an
identification number is assigned that increments sequentially by
one; thus, packet loss can be identified by checking the continuity
of these identification numbers. Next, the occurrences of electrode
detachment and intermittent electrode contact—referred to as
“lead-off,” “lead-fail,” or “lead-fault”—which can cause additional
data loss, were identified. A lead-off condition is characterized by
a drop in signal on one or more of the ECG leads or electrodes.
During the ECG recording, sudden movements by the participant
or scratching around the patch with their hand can cause a
momentary lead-off. The wearable ECG patch has an analog front
end (AFE) that automatically detects lead off and is set to output
a zero signal when lead off is detected. Most of the lead-offs were
mainly occurred in the process of attaching the electrode at the

beginning of the measurement and detaching the electrode after
the measurement.

Through the above process, each segment was validated, and
subsequently, R-peaks were detected within each valid segment.
The R-peaks were detected using the geometric angle between
two consecutive samples of the ECG signal (Song et al., 2015).
The R-peaks detection algorithm showed 99.95% of the sensitivity,
99.95% of the positive predictivity, and 0.10% of the detection
fail rate on the four different databases in the previous study was
adopted and modified to be suitable for wearable ECG signal. This
method utilizes a simple adaptive thresholding technique and a
geometric angle which is formed by two consecutive samples of
ECG. By converting the amplitude change of the ECG signal into
angle rather than size, the method has the advantage of accurately
detecting R peaks without being affected by irregular QRS group
shapes, sudden changes in size or interval, or sudden changes
in QRS group morphology such as ectopic beats. Due to the
non-linear characteristics of the angle, is robust and insensitive
to the variation of the amplitude and morphology of the QRS
complex and baseline drift as well as abrupt change. To enhance
the performance of R-peak detection, an adaptive filter for reducing
the baseline wander was added to the previous method before
calculating the geometric angle. And 64th order finite impulse
response low pass filter with a cut-off frequency of 25 Hz was used
to eliminate high-frequency noise. The low-pass filtered signal was
utilized exclusively for angle-based detection to identify candidate
R-peak regions. The final R-peak positions were determined by
locating the local maxima on the baseline-corrected, but unfiltered
ECG signal within a narrow window around each detected
region. This approach preserves the morphological integrity of
the QRS complex while maintaining the robustness of R-peak
detection, thereby minimizing the risk of false detections induced
by noise.

Heart rate variability analysis in both the frequency and
time domains of wearable ECG recordings was conducted
according to international guidelines (Task Force of the European
Society of Cardiology the North American Society of Pacing
Electrophysiology, 1996) using the detected R-peaks. In this study,
the following steps have been performed for HRV analysis. First,
the detected R-peaks were used to generate the R-R interval time
series. And the N-N (Normal-to-Normal) intervals (that is all
intervals between consecutive sinus-originated QRS complexes)
were obtained by removing the abnormal intervals caused by
ectopic beats, arrhythmic events, missing data, and noise, intervals
below 80% or above 120% of the average of the last six intervals
were excluded. Although the international guidelines suggest
that excluding R-R intervals based solely on ± 20% deviation
may not be optimal, recommending instead manual editing of
R-R intervals, manual verification of every beat was impractical
given the long-term nature of our data. Therefore, we applied
an 80%–120% interval criterion to automatically exclude beats
likely to be missed by manual review, except in cases of clear
arrhythmias.

The time-domain parameters were calculated from the N-N
interval time series. The mean heart rate (mean HR) of each 5 min
ECG segment was calculated by dividing 60 by the mean N-N
interval (in seconds). Similarly, the maximum heart rate (HRmax)
and minimum heart rate (HRmin) were obtained by dividing 60
by the shortest and longest N-N intervals (in seconds) within
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each segment, respectively. The difference between HRmax and
HRmin (HRmax-HRmin) was regarded a time-domain parameter.
The root mean square of successive differences (RMSSD) was
calculated by taking the square root of the mean squared differences
between adjacent N-N intervals with each 5 min ECG segment.
Also, the standard deviation of the N-N intervals (SDNN),
standard deviation of all heart rates (STD), and percentage
of adjacent N-N intervals that differed by > 50 ms (pNN50)
were calculated.

Next, interpolation and resampling were performed to
mitigate discontinuities caused by the removal of abnormal
intervals and to convert the irregularly spaced N-N intervals
into evenly spaced time series data, ensuring compatibility
with frequency-domain HRV analysis. In this study, linear
interpolation was applied for computational simplicity,
followed by resampling at 4 Hz to meet the requirements for
spectral analysis and then detrended by eliminating the linear
trends. After detrending, the power spectral density for the
evenly spaced N-N interval time series was estimated using
a periodogram based on the fast Fourier transform. In the
frequency-domain analysis, we examined low frequency (LF,
0.04–0.15 Hz), which is an index of both sympathetic and
parasympathetic activity, and high frequency (HF, 0.15–0.4 Hz),
which primarily represents parasympathetic activity to the
sinus node. Very low frequency (VLF, 0.003–0.04 Hz), which
partially reflects thermoregulatory mechanisms, fluctuations
in renin–angiotensin system activity, and the function of
peripheral chemoreceptors, and the LF/HF ratio, which indicates
sympathovagal balance, were obtained. Specifically, each 5 min
segment of the interpolated N-N interval time series (resampled
at 4 Hz) was multiplied by a Hann window, and the FFT-
based periodogram was applied directly to the entire segment.
Each segment yielded a single PSD estimate, from which LF,
HF, VLF power, and LF/HF ratios were calculated. The PSD
estimates from each segment were then averaged to obtain
representative PSD values.

The ECG signal preprocessing and HRV analysis, including
signal filtering, R-peak detection, interpolation, resampling, and
spectral analysis, were conducted using MATLAB (version 2023a;
MathWorks, Natick, MA, United States).

2.3 MR image acquisition and
preprocessing

Three-dimensional T1-weighted MR images were obtained
using magnetization-prepared rapid acquisition gradient-echo
sequences with the following parameters: slice thickness of 0.9 mm,
pixel size of 0.4492 × 0.4492 mm, repetition time of 2,000 ms,
echo time of 2.43 ms, flip angle of 9-degree, and matrix size of
512 × 512 pixels. Images were reconstructed to 512 × 512 pixels
over a 256 mm field of view. The MR images were processed using
FreeSurfer v.7.4.01 to extract the bilateral thalamus and cerebellar
gray matter regions and estimate their volumes. The FreeSurfer
pipeline was used to estimate the intracranial volume (ICV) of
each participant.

1 https://surfer.nmr.mgh.harvard.edu

2.4 Statistical analysis

Statistical analyses were performed using the Statistical Package
for the Social Sciences software (version 26.0; IBM Corp., Armonk,
NY, United States). Comparisons of baseline characteristics and
HRV measures between the control and PD groups were performed
using the Mann–Whitney U test and Fisher’s exact test for
continuous and categorical variables, respectively. The association
between HRV measures and the diagnosis of PD was investigated
using logistic regression. In separate models for each HRV metric,
the diagnosis of PD was used as the dependent variable, each HRV
measure as the independent variable, and age and sex as covariates.
The sensitivity and specificity for differentiating the PD group
from the control group were assessed using the receiver operating
characteristic (ROC) curve analysis, with age and sex as covariates.
The association between HRV measures and clinical metrics was
analyzed using Pearson partial correlation, with HRV measure as an
independent variable and age and sex as covariates among patients
with PD. The association between HRV measure and the volume
of the thalamus and cerebellar cortex was analyzed using Pearson
partial correlation, with HRV measure as an independent variable
and age, sex, and ICV as covariates. Owing to the small sample
size, correction for multiple comparisons was not performed in
this study. For all analyses, statistical significance was set at a
p-value of < 0.05.

2.5 Data availability

The anonymized data supporting the findings of this study are
available upon request from the corresponding authors. The data
are not publicly available because of privacy and ethical restrictions.

3 Results

3.1 Baseline characteristics of study
participants

The demographic data, clinical characteristics, and HRV
measures of the study participants are summarized in Table 1.
Age, sex, education, and history of hypertension, diabetes mellitus
(DM), and dyslipidemia were comparable between the control and
PD groups. Patients with PD had higher UPDRS I (5.71 ± 4.54
vs. 14.15 ± 9.07, p = 0.001), UPDRS II (1.71 ± 3.10 vs.
15.90 ± 11.65, p < 0.001), UPDRS III (0.94 ± 1.52 vs.
25.70 ± 16.16, p < 0.001), and motor sub-scores and lower Mini-
Mental State Examination score (26.53 ± 2.72 vs. 21.61 ± 5.77,
p = 0.003) than the control group. Regarding HRV measures,
the PD group had lower HRmax-HRmin (16.57 ± 3.31 vs.
11.33 ± 4.02, p < 0.001), SDNN (21.45 ± 7.84 vs. 13.23 ± 4.26,
p < 0.001), STD (1.77 ± 0.66 vs. 1.18 ± 0.38, p = 0.002),
pNN50 (14.83 ± 14.12 vs. 6.98 ± 8.53, p = 0.030), RMSSD
(24.89 ± 10.68 vs. 16.19 ± 6.30, p = 0.004), VLF (0.91 ± 2.08
vs. 0.02 ± 0.04, p = 0.001), LF (0.12 ± 0.23 vs. 0.03 ± 0.02,
p = 0.001), and HF (0.13 ± 0.25 vs. 0.03 ± 0.02, p = 0.004) power.
The LF/HF ratios were comparable between the PD and control
groups.
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TABLE 1 Baseline characteristics of study participants.

Variables Control PD P-value

Number 17 20

Age 71.59 ± 8.80 71.45 ± 6.59 1.000

Sex, female 7 (41.2) 12 (60.0) 0.330

Symptom duration, years NA 2.99 ± 2.40 NA

Education 11.06 ± 5.10 7.78 ± 4.79 0.080

Hypertension 9 (52.9) 9 (45.0) 0.746

Diabetes mellitus 3 (17.6) 4 (20.0) 1.000

Dyslipidemia 11 (64.7) 6 (30.0) 0.050

UPDRS I 5.71 ± 4.54 14.15 ± 9.07 0.001

UPDRS II 1.71 ± 3.10 15.90 ± 11.65 < 0.001

UPDRS III 0.94 ± 1.52 25.70 ± 16.16 < 0.001

Tremor sub-score 0.35 ± 0.86 2.35 ± 1.98 < 0.001

Rigidity sub-score 0.0 5.35 ± 4.16 < 0.001

Bradykinesia sub-score 0.29 ± 0.69 11.40 ± 7.18 < 0.001

Gait sub-score 0.06 ± 0.24 3.35 ± 3.05 < 0.001

MMSE 26.53 ± 2.72 21.61 ± 5.77 0.003

HRVmeasures

Time-domain measures

Mean HR 68.92 ± 9.26 73.35 ± 8.34 0.135

HRmax–HRmin 16.57 ± 3.31 11.33 ± 4.02 < 0.001

SDNN, ms 21.45 ± 7.84 13.23 ± 4.26 < 0.001

STD 1.77 ± 0.66 1.18 ± 0.38 0.002

pNN50, % 14.83 ± 14.12 6.98 ± 8.53 0.030

RMSSD 24.89 ± 10.68 16.19 ± 6.30 0.004

Frequency-domain
measures

VLF power, ms2 0.91 ± 2.08 0.02 ± 0.04 0.001

LF power, ms2 0.12 ± 0.23 0.03 ± 0.02 0.001

HF power, ms2 0.13 ± 0.25 0.03 ± 0.02 0.004

LF/HF ratio 2.13 ± 0.91 1.68 ± 0.77 0.158

The results are represented in mean ± standard deviation or n (%) using the Mann–Whitney
U test and Fisher’s exact test for continuous and categorical variables, respectively. PD,
Parkinson’s disease; UPDRS, Unified Parkinson’s Disease Rating Scale; MMSE, Mini-Mental
State Examination; HRV, heart rate variability; HR, heart rate; HRmax–HRmin , difference
between maximal heart rate and minimal heart rate; SDNN, standard deviation of NN
intervals; STD, standard deviation of all heart rates; pNN50, percentage of successive interbeat
intervals that differ by > 50 ms; RMSSD, root mean square successive difference; VLF, very
low frequency; LF, low frequency; HF, high frequency; NA, not applicable.

3.2 HRV measures associated with PD
diagnosis

The independent risks of HRV measures for the diagnosis of
PD are shown in Table 2. Among the time-domain measures,
high HRmax–HRmin [odds ratio (OR), 0.579; 95% confidence
interval (CI), 0.405–0.828; p = 0.003], SDNN (OR, 0.725; 95%
CI, 0.578–0.909; p = 0.005), STD (OR, 0.044; 95% CI, 0.004–
0.559; p = 0.016), and RMSSD (OR, 0.858; 95% CI, 0.755–0.975;
p = 0.019) were associated with a low risk of PD, independent

TABLE 2 Association between heart rate variability measures and
Parkinson’s disease diagnosis.

HRV measures OR 95% CI P-value

Time-domain measures

Mean HR 1.059 0.973–1.153 0.184

HRmax–HRmin 0.579 0.405–0.828 0.003

SDNN, ms 0.725 0.578–0.909 0.005

STD 0.044 0.004–0.559 0.016

pNN50, % 0.784 0.614–1.001 0.051

RMSSD 0.858 0.755–0.975 0.019

Frequency-domain measures

VLF power, ms2 1.92 × 10−5 0.000–3.140 0.076

LF power, ms2 3.420 × 10−27 0.000–0.000 0.010

HF power, ms2 5.345 × 10−16 0.000–24.077 0.072

LF/HF ratio 0.516 0.202–1.316 0.166

The results are derived from individual logistic regression models, with heart rate variability
measures as independent variables and age and sex as covariates. HR, heart rate; HRmax–
HRmin , difference between maximal heart rate and minimal heart rate; SDNN, standard
deviation of NN intervals; STD, standard deviation of all heart rates; pNN50, percentage of
successive interbeat intervals that differ by > 50 ms; RMSSD, root mean square successive
difference; VLF, very low-frequency power; LF, low-frequency power; HF, high-frequency
power; OR, odds ratio; CI, confidence interval.

of age and sex, whereas pNN50 showed a trend of negative
association with the risk of PD (OR, 0.784; 95% CI, 0.614–
1.001; p = 0.051). Among the frequency-domain measures, high
LF power was associated with a low risk of PD, independent
of age and sex (OR, 3.42 × 10−27; 95% CI, 0.000–0.000;
p = 0.010).

3.3 ROC curve analyses

By combining HRV measures that were significantly correlated
with PD risk with age and sex, ROC curve analyses showed that
these HRV measures had good diagnostic accuracy [area under
the curve (AUC) for HRmax–HRmin, 0.885; 95% CI, 0.768–1.003;
AUC for SDNN, 0.879; 95% CI, 0.760–0.999; AUC for STD, 0.835;
95% CI, 0.706–0.964; AUC for RMSSD, 0.821; 95% CI, 0.675–
0.966; AUC for LF power, 0.868; 95% CI, 0.750–0.985; AUC for all
HRVs, 0.935; 95% CI, 0.851–1.020; Figure 1]. Pairwise comparisons
of the ROC curves did not reveal any significant differences
(Supplementary Table 1).

3.4 Association between HRV measures
and clinical manifestations in PD

The association between HRV measures and the clinical
features of patients with PD is shown in Table 3. Among the
HRV measures that showed a significant association with PD
diagnosis, RMSSD and LF power was positively associated with
the bradykinesia subscore (r = 0.495, p = 0.037) tremor sub-
score (r = 0.500, p = 0.035), respectively, whereas HRmax–HRmin,
SDNN and STD were not associated with any clinical features of
PD.
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FIGURE 1

Comparison of receiver operating characteristic curves for heart rate variability measures in differentiating the Parkinson’s disease group from the
control group. Receiver operating characteristic area under the curve (AUC) analysis reveals that HRmax–HRmin, SDNN, STD, RMSSD, LF power, and
integrating all HRV metrics led to good diagnostic accuracy [AUC for HRmax–HRmin, 0.885; 95% confidence interval (CI), 0.768–1.003; AUC for
SDNN, 0.879; 95% CI, 0.760–0.999; AUC for STD, 0.835; 95% CI, 0.706–0.964; AUC for RMSSD, 0.821; 95% CI, 0.675–0.966; AUC for LF power,
0.868; 95% CI, 0.750–0.985; AUC for all HRV metrics including HRmax–HRmin, SDNN, STD, RMSSD, and LF power, 0.935; 95% CI, 0.851–1.020].
HRmax–HRmin, difference between maximal heart rate and minimal heart rate; LF, low frequency; RMSSD, root mean square successive difference;
SDNN, standard deviation of the N-N intervals; STD, standard deviation of all heart rates; HRV, heart rate variability.

3.5 Association between LF power and
tremor-associated brain regions

The association between LF power and volume of tremor-
associated regions in the brain is illustrated in Figure 2 and
Supplementary Table 2. Higher LF power was associated with lower
cerebellar volume in both the left (r = −0.598, p = 0.024) and
right (r = −0.693, p = 0.006) hemispheres after considering age,
sex, and ICV as covariates. Higher LF power had a tendency of
negative correlation with the volumes of the left (p = 0.052) and
right (p = 0.111) thalami.

4 Discussion

In this study, we investigated the clinical implications and
associated neural correlates of HRV in patients with PD, using
a wearable ECG device. Our findings were as follows: (1) the
diagnosis of PD was associated with several HRV measures,
including low LF power, with good diagnostic accuracy; (2) LF
power was positively associated with tremor sub-scores in patients
with PD; and (3) LF power was negatively associated with cerebellar
cortical volume in patients with PD. Taken together, our results

suggest that LF power in HRV is associated with tremor-associated
pathophysiological processes in PD.

Several studies have compared HRV measures to distinguish
PD from other conditions, including essential tremor (ET),
atypical parkinsonism, and HCs. Patients with PD had lower
HRV measures than those with ET (Yoon et al., 2016), and
several studies have shown that patients with PD had lower HRV
measures than controls (Haapaniemi et al., 2001, Mihci et al.,
2006, Solla et al., 2015, Maetzler et al., 2015). Even patients with
idiopathic rapid eye movement sleep behavior disorder, which
is often regarded as the prodromal phase of PD, had reduced
HRV compared with the control population (Postuma et al.,
2010, Valappil et al., 2010). Considering the early involvement of
the autonomic nervous system in the pathological stages of PD
(Braak and Del Tredici, 2008) and the incidental finding of Lewy
pathology in the autonomic nervous system of patients without
any clinical symptoms (Iwanaga et al., 1999), HRV measures
may be used as sensitive biomarkers for the diagnosis of PD.
In our study, the comparison of HRV measures showed reduced
SDNN, STD, pNN50, VLF power, LF power, and HF power in
patients with PD than in controls. However, as age and sex could
influence HRV measures in the general population (Shaffer and
Ginsberg, 2017), a comparison of HRV between groups should
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FIGURE 2

Association between low frequency power and tremor-associated regional volume. Pearson partial correlation shows association between LF power
and GM volume of the left thalamus (A), right thalamus (B), left cerebellum (C), and right cerebellum (D). Bold orange lines represent regression lines
from multiple linear regression models of LF power on GM volumes, adjusted for age, sex, and intracranial volume, with dashed lines indicating their
95% confidence bounds. GM, gray matter; LF, low frequency.

consider age and sex. When age and sex were considered as
covariates, SDNN, STD, HRmax–HRmin, RMSSD, and LF power
were associated with PD diagnosis. However, among these HRV
measures, only LF power showed a significant correlation with
the clinical manifestations of PD, especially the tremor sub-score,
whereas other HRV measures did not show a significant correlation
with the clinical manifestations of PD. This result indicates that
among the HRV measures, LF power may reflect tremor-associated
pathophysiology in PD. Previous studies have revealed a variable
association between LF power and the clinical manifestations of
PD. Studies have shown that LF power distinguished patients with
PD from controls (Yoon et al., 2016) and that patients with PD
with the tremor-dominant subtype had a higher LF power than
those with the akinetic-rigid subtype (Solla et al., 2015), which
is in line with our study. In terms of the autonomic basis of LF
power, a previous study has shown that LF power is associated
with sympathetic function (Malik et al., 1996), whereas another
study has shown that LF power reflects parasympathetic function
(Reyes del Paso et al., 2013). Moreover, another study has shown
that LF power is correlated with baroreceptor activity (Goldstein
et al., 2011). In addition, whether preganglionic or postganglionic
fibers contribute to LF power has not been fully investigated.
Therefore, the underlying physiology of LF power has not been
fully elucidated. However, in PD, although both preganglionic
and postganglionic fibers are affected, postganglionic fibers are

more frequently and confluently involved in the early stage of
the disease, compared to multiple system atrophy (Druschky
et al., 2000). Moreover, the sympathetic cardiac nervous system
is more profoundly involved than the parasympathetic cardiac
innervation in early PD (Sorensen et al., 2013). Therefore, cardiac
postganglionic sympathetic dysfunction may be associated with
reduced LF power in patients with PD. However, future studies
dissecting parasympathetic from sympathetic and preganglionic
from postganglionic pathophysiology are warranted to unveil the
mechanisms underlying reduced LF power in PD.

In PD, tremors are associated with multiple neurotransmitter
systems other than dopamine alone, including serotonin,
noradrenaline, and acetylcholine (Dirkx and Bologna, 2022).
In our study, higher LF power was associated with a higher tremor
score, indicating a common pathophysiological process between
LF power and tremor in PD. A prior study revealed the relative
preservation of cardiac metaiodobenzylguanidine scans in tremor-
dominant PD compared with that in akinetic-rigid PD (Spiegel
et al., 2007). Moreover, a low proportion of patients with PD with
multiple-domain autonomic dysfunction had the tremor-dominant
subtype (Zhou et al., 2021), and patients with tremor-dominant
PD had lower SCOPA-AUT scores than those with the postural
instability and gait disorders subtype (Malek et al., 2017). In
addition, the noradrenergic subtype of PD is characterized by
akinetic-rigid postural instability and gait disturbance motor
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TABLE 3 Association between heart rate variability measures and clinical features in Parkinson’s disease.

Clinical variables SDNN STD HRmax–HRmin RMSSD LF power

r P r P r P r P r P

UPDRS I 0.302 0.223 −0.014 0.956 −0.277 0.265 0.326 0.186 0.377 0.123

UPDRS II 0.313 0.206 −0.101 0.691 −0.322 0.193 0.299 0.228 0.385 0.115

UPDRS III 0.394 0.106 0.155 0.539 −0.129 0.611 0.435 0.071 0.175 0.487

UPDRS III Tremor 0.340 0.167 0.162 0.520 0.031 0.902 0.254 0.308 0.500 0.035

UPDRS III Rigidity 0.340 0.168 0.312 0.208 0.013 0.961 0.406 0.094 −0.001 0.996

UPDRS III Bradykinesia 0.438 0.069 0.172 0.495 −0.050 0.845 0.495 0.037 0.168 0.505

UPDRS3 III Gait 0.313 0.205 0.017 0.947 −0.233 0.351 0.269 0.281 0.375 0.125

MMSE 0.167 0.537 0.143 0.596 −0.092 0.736 0.200 0.460 0.011 0.968

The results are derived from Pearson’s partial correlation analysis between clinical features and heart rate variability measures, with age and sex as covariates. UPDRS, Unified Parkinson’s
Disease Rating Scale; MMSE, Mini-Mental State Examination; SDNN, standard deviation of NN intervals; STD, standard deviation of all heart rates; HRmax–HRmin , difference between
maximal heart rate and minimal heart rate; RMSSD, root mean square successive difference; LF, low frequency.

manifestation rather than tremor (Ray Chaudhuri et al., 2023).
These findings are consistent with our findings showing a positive
association between LF power and tremor sub-scores. Therefore,
cardiac autonomic preservation and tremor-dominant phenotypes
may be associated with PD. However, the pathophysiological
connection between the autonomic nervous system and tremor
severity in PD has not been clearly elucidated. Preserved adrenergic
circuitry is associated with tremor (Paulus and Jellinger, 1991),
and LF power is associated with both the sympathetic and
parasympathetic nervous systems (Shaffer and Ginsberg, 2017).
Therefore, high LF power may reflect the relative preservation
of the adrenergic system, which in turn correlates with a higher
tremor score. However, as we could not directly investigate the
adrenergic function nor noradrenaline-associated brain structures
in our study, this assumption should be investigated in future
studies.

In addition to nigrostriatal dopaminergic deficiency,
dysfunction of the cerebellothalamocortical circuit is crucial
in the pathophysiology of tremor in PD (Dirkx and Bologna,
2022). A recent study revealed differential patterns of cerebellar
atrophy and cerebellar cortical volume in patients with PD, with
and without tremor (Piccinin et al., 2017). As high LF power
correlated with high tremor scores in our study, we investigated
whether tremor-associated regions were associated with LF power.
Interestingly, the bilateral cerebellar cortical volume was negatively
associated with LF power. This is in line with the finding that
LF power was positively correlated with the tremor sub-score,
in that decreased cerebellar cortical volume could be associated
with higher tremor sub-scores. On the other hand, cerebellum
participates in cardiovascular autonomic control. The cerebellum
has been recognized as a key region of the central autonomic
network, (Sklerov et al., 2019) specifically impacting cardiovascular
function by regulating blood pressure and HRV (Baker et al., 2019,
Napadow et al., 2008, Baker and Kimpinski, 2020). High LF power
could be associated with a preserved adrenergic nervous system
and reduced cerebellar volume, both of which are associated with
tremor pathogenesis as well as with a certain phenotype that
represents the motor presentation of tremor in PD. However, the
association between LF power, tremor sub-score, and cerebellar
cortical volume might be complicated, and because of the small
number of study participants, we did not further investigate the

relationship between LF power, tremor sub-score, and cerebellar
cortical volume in this study. Future studies on cardiac autonomic
dysfunction, tremor-associated motor phenotypes, and the
cerebellum are warranted.

In summary, in our study, patients with PD had lower
LF power than controls, and lower LF power was associated
with PD diagnosis when considering age and sex. Moreover,
LF power was positively correlated with the tremor sub-score
and negatively correlated with cerebellar cortical volume. As the
cerebellum may play a role in both the tremor-associated network
and the central autonomic network, these results imply that LF
power may be utilized as a biomarker reflecting tremor-associated
pathophysiological processes in PD.

Our study has some limitations. First, the relatively small
number of study participants may limit the generalizability of
our findings. Furthermore, the odds ratio for PD diagnosis
associated with LF power was modest, which may constrain
the clinical implications of LF power as a diagnostic marker
for PD. However, given the small unit scale of LF power and
the limited sample size, our study emphasizes the significant
associations observed between LF power and PD diagnosis,
tremor severity, and cerebellar cortical volume. These findings
suggest that LF power may serve as a potential biomarker
reflecting the function of the adrenergic nervous system, which in
turn might be linked to neurophysiological correlates of tremor
in PD. Therefore, the association between reduced HRV and
tremor-associated pathophysiological findings, including cerebellar
dysfunction, needs to be validated in a larger population. Second,
as LF power was associated with tremor sub-scores among the
clinical manifestations of PD, we investigated the association
between LF power and tremor-associated structures, including the
thalamus and cerebellar cortex. Therefore, the association between
HRV measures and other brain structures including the central
autonomic network or tremor-associated structures such as the
neocortex, deep gray matter, and brainstem, should be investigated
in the future. Third, other comorbidities that may have affected
HRV were not considered in this study. Altered HRV is associated
with diverse pathological and physiological conditions (e.g., DM,
heart failure, structural heart disease, and psychiatric disorders)
(Sammito and Böckelmann, 2016), and our study participants
included those with DM. As the number of study participants was
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small and the frequency of DM was comparable between the control
and PD group, we included diabetic patients in order to maximize
the study participants. However, as cardiac autonomic nervous
system dysfunction and HRV alteration are common in DM
(Benichou et al., 2018, Dimitropoulos et al., 2014), future studies
in non-diabetic patients are warranted. Fourth, as noradrenergic
subtype of PD is often associated with worse cognitive function
(Ray Chaudhuri et al., 2023), PD patients with distinct autonomic
dysfunction could have been enrolled in our study. Our study
results may add an evidence to prior studies revealing preserved
noradrenaline transporter binding in the locus coeruleus of the
patients with tremor-predominant PD (Paulus and Jellinger, 1991,
Kinnerup et al., 2021). However, future large-scale unbiased study
is warranted to confirm this association between LF power, tremor
severity, and cerebellothalamic circuit.

5 Conclusion

In our study, reduced LF power was associated with the
diagnosis of PD, and preservation of LF power was associated
with higher tremor severity and lower cerebellar cortex volume.
These results indicate that LF power may be used as a biomarker
for tremor-associated pathophysiology in PD. In addition, the
wearable ECG device, with its capability for long-term monitoring,
shows promise as a highly feasible and reliable tool for the early
diagnosis of PD.
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