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Background: Oxidative stress is a pivotal mechanism implicated in the onset of 
traumatic brain injury (TBI), yet its precise role remains elusive. This study aims 
to elucidate the potential molecular interactions between key genes associated 
with oxidative stress and their influence on TBI pathogenesis.

Methods: TBI dataset and oxidative stress-related genes sourced from Public 
databases. Differential expression analysis and machine learning models were 
executed to select key genes, which were further validated using receiver 
operating characteristic (ROC) curves. A nomogram was constructed for 
diagnostic prediction, and enrichment analysis explored pathways associated 
with key genes. Immune infiltration analysis and regulatory network construction 
were conducted. Molecular validation included RT-qPCR and Western blotting 
using rat brain tissue to assess gene and protein expression levels.

Results: In our study, we  identified 400 differentially expressed genes (DEGs) 
between TBI and normal samples, including 20 oxidative stress-related genes. 
Machine learning analysis highlighted AKR1C2, QDPR, CYP3A5, CNTF, and 
PNPT1 as key genes with diagnostic potential (AUC > 0.6). Functional analysis 
revealed significant involvement of these genes in immune processes and 
metabolic regulation. Further, immune cell infiltration analysis showed notable 
differences in effector memory CD8 T cells. Molecular validation through RT-
qPCR and Western blot confirmed the overexpression of key genes PNPT1 and 
QDPR in TBI models, substantiating their potential role in TBI pathology.

Conclusion: Our study revealed the potential mechanisms of action for PNPT1 
and QDPR in TBI, offering valuable insights into their roles in TBI pathology. 
These findings opened new avenues for future therapeutic strategies in TBI 
treatment.
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1 Introduction

Traumatic brain injury (TBI) stands as a predominant cause of 
injury and disability worldwide, particularly notable among 
individuals under 45 years of age, where both its incidence and 
mortality rates are markedly high (Stocchetti et al., 2017; Ma et al., 
2021). Annually, over 50 million individuals globally are affected by 
TBI, establishing it as a severe public health issue. In China, the annual 
incidence of TBI ranges from 55.4 to 64.1 cases per 100,000 
population, with a mortality rate of approximately 13 per 100,000 
(Jiang et al., 2019). Europe sees nearly 82,000 deaths annually due to 
TBI (Huijben et al., 2020). In the United States, the costs associated 
with TBI-related treatment and rehabilitation are estimated at around 
20 billion USD annually (Maas et  al., 2017). Consequently, TBI 
represents not only a significant challenge in the realm of global public 
health but also necessitates widespread attention and response. TBIs 
typically occur due to violent external forces such as blows, jolts, or 
impacts to the head, leading to brain tissue damage. These injuries 
provoke a cascade of primary and secondary pathological changes 
including neuronal cell death, disruption of the neurovascular unit, 
axonal injury, neuroinflammation, and neurodegenerative changes 
(Huber et al., 1993; NICE, 2023). The pathological changes caused by 
TBI not only impact the acute rehabilitation of patients but also 
significantly increase the risk of developing other health issues such 
as depression, neurodegenerative diseases, and post-traumatic 
epilepsy (Bolton-Hall et al., 2019). The pathophysiology of TBI is 
complex, involving the interplay of multiple pathophysiological events 
(Kochanek et al., 2015). This complexity poses significant challenges 
in identifying reliable and sensitive biomarkers for TBI. To date, no 
biomarkers have been universally adopted for clinical diagnosis and 
prognosis in TBI, which complicates the early diagnosis, prognosis 
evaluation, and therapeutic intervention for this condition.

Oxidative stress (OS) occurs when the balance between oxidants 
and antioxidants is disrupted within cells, leading to an overproduction 
of free radicals and reactive oxygen species that can cause severe 
damage to cellular structures including lipids, proteins, and nucleic 
acids (Sies, 2015). In TBI, increased OS is often a consequence of 
physical trauma causing blood–brain barrier damage, membrane 
rupture, and aberrant intracellular calcium regulation. This heightened 
OS not only exacerbates the initial brain injury but may also trigger a 
series of neuroinflammatory responses and neuronal death, leading to 
long-term declines in neurological function (Lin et al., 2023). TBI 
represents an acute, destructive injury exposing the brain to various 
pro-oxidative molecules, thus impairing its antioxidative defense 
mechanisms (Bayir et al., 2006). OS serves as a key mediator in the 
secondary injury cascade within the pathophysiology of TBI 
(Hakiminia et al., 2022). Moreover, studies in animal models indicate 
that mitigating OS and inflammatory responses can provide effective 
neuroprotection for TBI patients (Wang et  al., 2020). Although 
current research has made progress in elucidating these mechanisms, 
translating these biochemical changes into effective clinical 
interventions remains challenging.

In this study, we analyzed TBI datasets from the Gene Expression 
Omnibus (GEO) database, employing differential expression analysis 
and machine learning techniques to successfully identify key genes 
associated with OS. Based on these key genes, we  conducted 
enrichment analysis and regulatory network construction to uncover 
their potential mechanisms in TBI. Further validation of these key 

genes through real-time quantitative PCR and Western Blot methods 
provides a theoretical basis and molecular-level support for the clinical 
diagnosis and treatment of traumatic brain injuries. Not only has this 
enhanced our understanding of the role of OS in TBI, but it also offers 
crucial molecular targets for the development of future 
therapeutic strategies.

2 Materials and methods

2.1 Data source

The dataset GSE104687 containing gene expression profiles from 
48 TBI samples and 46 non-TBI samples with no loss of consciousness 
were downloaded from GEO database1 (Miller et al., 2017). Moreover, 
1,900 oxidative stress-related genes were obtained from GeneCards 
database2 (score > 5).

2.2 Differential expression analysis

Background correction and data normalization were performed 
on the GSE104687. Using the limma package (v 3.54.1) (Ritchie et al., 
2015), differences in gene expression levels between TBI and control 
group were analyzed to identify differentially expressed genes (DEGs) 
(adj.p < 0.05) (Ma et  al., 2021). Volcano plots and heatmaps were 
created using ggplot2 and pheatmap packages.

2.3 Identification and analysis of oxidative 
stress-related genes in TBI

The oxidative stress-related genes were intersected with previously 
identified DEGs to obtain oxidative stress-related DEGs. Following 
that, these oxidative stress-related DEGs were subjected to Gene 
ontology (GO) and Kyoto encyclopedia of genes and genomes 
(KEGG) enrichment analyses using ClusterProfiler (v 4.2.2) (Wu et al., 
2021) and org.Hs.eg.db packages to explore the common biological 
functions and signaling pathways (q < 0.25, p < 0.05). Subsequently, 
the obtained oxidative stress-related genes in TBI were analyzed for 
protein–protein interaction (PPI) analysis using the STRING3 
database (Maximum number of interactors = 0 and confidence 
score ≥ 0.4).

2.4 Machine learning

Based on oxidative stress-related DEGs, we  utilized the caret 
package to build various machine learning models, including Random 
Forest (RF), XGBoost (XGB), Generalized Linear Model (GLM), and 
least absolute shrinkage and selection operator (LASSO). All models 
were executed with default settings and evaluated through 5-fold 
cross-validation. Subsequently, the DALEX package (Guan et  al., 

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.genecards.org/

3 https://string-db.org
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2023) was used to interpret these four models and visualize their 
residual distributions and feature importance. Using the pROC 
package (v 1.18.0) (Robin et al., 2011), we plotted receiver operating 
characteristic (ROC) curves to compare the performance of different 
machine learning algorithms, selecting the best-performing classifier 
for accurately distinguishing between the normal group and TBI 
patients (AUC > 0.6). Additionally, we established a Random Forest 
classifier using the randomForest package (v 4.7-1.1) (Cao et al., 2024) 
with a decision tree count set at 240, exploring feature importance 
through Gini gain. Finally, we identified the top five genes by average 
Gini coefficient as key genes. In addition, we employed 5-fold repeated 
cross-validation across all machine learning models to ensure 
robustness and generalizability. The specific settings for cross-
validation are as follows: The trainControl function was used to 
configure 5-fold cross-validation with multiple repetitions, reducing 
the impact of randomness and enhancing the reliability of the results. 
Hyperparameters for each model were optimized through auto-tuning 
to achieve the best possible performance. For the Random Forest 
model, gene importance was calculated using the importance 
parameter in the randomForest function. Additionally, we determined 
the number of trees with the minimum error using which.min(rf$err.
rate[,1]), further optimizing model performance.

2.5 Validation and correlation analysis of 
key genes

To evaluate the diagnostic capabilities of the selected key genes, 
ROC curves were plotted, and the area under the curve (AUC) value 
was calculated using the pROC package (v 1.18.0) to validate the 
diagnostic effectiveness of key genes. In addition, gene expression box 
plots of key genes in different tissues [cortical gray temporal (TCX), 
white matter (parietal) (FWM), and hippocampus (HIP)] of 
GSE104687 samples were also drawn to further validate the selected 
key genes. Concurrently, Pearson correlation analysis was performed 
using the PerformanceAnalytics package, and histograms, scatter 
plots, and correlation curves were plotted to explore the relationships 
among the key genes.

2.6 Construction of nomogram for key 
genes

In order to diagnose TBI from a clinical point of view, 
we constructed a histogram using the rms software package (v 6.5-0) 
to score each gene according to its expression. The cumulative total 
score for all genes could be used to predict the risk of developing 
TBI. Subsequently, calibration curves, ROC curves and decision curve 
analysis (DCA) curves were plotted to evaluate the diagnostic 
effectiveness of the histogram.

2.7 Gene set enrichment analysis of key 
genes

To explore the pathways associated with the key genes, we divided 
TBI samples from GSE104687 into high and low expression groups 
based on the median expression levels of each key gene. Gene set 

enrichment analysis (GSEA) was then executed using the 
clusterProfiler package, with the KEGG gene set serving as the 
background. This analysis helped us evaluate the biological functions 
and determine the statistical significance of the molecular pathways 
involved. Pathways with a q-value less than 0.25 and a p-value less 
than 0.05 were considered statistically significant.

2.8 Immune infiltration analysis

To evaluate the composition of immune cells in the 
microenvironment of TBI patients, enrichment scores for 28 types of 
immune cells (Charoentong et al., 2017) were computed using the 
ssGSEA method in the GSVA software (v 1.46.0) (Hänzelmann et al., 
2013). These scores were derived from a cohort of TBI patient samples, 
which were then compared to controls to determine significant 
differences (p < 0.05). Furthermore, relationships between key genes 
and immune cells were investigated through Spearman correlation.

2.9 Construction of regulatory networks 
and molecular docking

The miRNAs and lncRNA potentially regulating key genes were 
predicted using Starbase database.4 An mRNA-miRNA-lncRNA 
network was constructed using Cytoscape package. We utilized the 
Drug Signature Database (DSigDB) on Enrichr5 to examine the 
molecular properties of key genes. The identified drug candidates were 
integrated into the PubChem database to retrieve their 3D structures, 
which were then optimized for energy using viaChem 3D software. 
Subsequently, the key genes were uploaded to the UniProt and PDB 
databases to acquire the highest resolution receptor structures. The 
structures underwent dehydration, hydrogenation, and charge 
adjustments using viaAutoDockTools and PyMOL software. The final 
stage involved molecular docking analysis conducted with AutoDock 
Vina software (v 1.5.7) (Trott and Olson, 2010), ensuring precise and 
efficient binding predictions.

2.10 Construction of TBI animal models

Twelve 8-week-old male SD rats, each weighing 250 g, were 
procured from Shanghai Sipul-Bikai Laboratory Animal Co. Prior to 
experimentation, the rats were anesthetized through an intraperitoneal 
injection of 15% chloral hydrate (350 mg/kg) and then had the hair on 
the center of their heads shaved and disinfected. During the surgery, 
a cranial window was created by making an incision slightly to the 
right of the midline and drilling into the skull at the designated 
location, ensuring the dura mater remained intact. A 40 g metal 
weight was then dropped from a height of 25 cm directly onto the 
exposed area using the free-fall method to induce a 4 mm × 4 mm 
contusion in the right parietal lobe. After the procedure, the bone 
window was sealed with bone wax, and the scalp sutured. Upon 

4 https://rnasysu.com/encori/

5 https://maayanlab.cloud/Enrichr/enrich
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awakening, the rats were allowed to drink freely and maintained 
under normal conditions. The control group underwent only the 
cranial window procedure without any injury inflicted. Animal 
procedures were approved by the Institutional Animal Care and Use 
Committee of the Shanxi Bethune Hospital, Taiyuan, China (IACUC-
20240304) on March 6, 2024.

2.11 Water maze and modified neuropathy 
symptom score

The day before the formal training, model rats were individually 
placed into water for 2 min of free swimming to familiarize themselves 
with the water maze environment. The following day, a place 
navigation test was conducted by dividing the water maze into four 
quadrants. Rats were randomly placed head-first into one of the 
quadrants. If a rat located the submerged platform within 1 min and 
maintained its position on the platform for 5 s, the trial was considered 
successful; if not, the rat was placed on the platform for 15 s. Each rat 
underwent five training sessions with 20-min intervals between each 
session. The rats’ swim paths, number of crosses, and time spent in 
each quadrant were recorded. During the actual experiment, the 
platform in the water maze was removed. Each rat was placed head-
first into the same quadrant and observed for their movements over a 
60-s period. The swim paths, number of crosses, and time spent in 
each area continued to be recorded.

Next, the rats were scored according to the mNSS scoring scale for 
tail lifting experiment, walking experiment, sensory experiment, 
balance beam experiment, reflexes and abnormal activity detection. 
The scale was graded from 0 to 18 (normal score, 0; maximal deficit 
score, 18).

2.12 RT-qPCR

Rat cranial samples tissue from both TBI and control groups was 
harvested. Total RNA was extracted using the FastPure Complex 
Tissue/Cell Total RNA Isolation Kit (Vazyme, Nanjing). The purity of 
the total RNA was assessed using the Nano-500 micro-
spectrophotometer. cDNA synthesis was performed using ABScript 
III RT Master Mix for RT-qPCR with gDNA Remover (RK20429, 
ABclonal, Wuhan). RT-qPCR was conducted using the Genious 2X 
SYBR Green Fast RT-qPCR Mix (RK21205, ABclonal, Wuhan). The 
primers used were as listed in Supplementary Table S1. GAPDH was 
used as an internal reference gene. Gene expression levels were 
calculated using the 2−ΔΔCt method.

2.13 Western blotting

Total protein solution was obtained by lysis of rat TBI and control 
cranial brain tissue samples using RIPA lysate (Beyotime, Shanghai, 
China). Protein concentration was assayed by BCA protein concentration 
assay kit (Beyotime, Shanghai, China). The protein solution was mixed 
with 5 × protein upsampling buffer (Servicebio, Beijing, China) in a 4:1 
ratio, denatured in a metal bath at 95°C for 10 min, and stored at −20°C 
or −80°C. To perform SDS-PAGE electrophoresis, separating and 
concentrating gels were prepared according to the molecular weight of 

the proteins, concentrating gels were electrophoresed at 80 V for 
30–40 min, and separating gels were electrophoresed at 120 V until the 
pre-stained protein labeling ran to the bottom. Subsequently, the gel and 
PVDF membrane were transferred to an ice bath at a constant current 
of 200 mA for 1 h. For the immunoreaction, the membrane was rinsed 
by TBST and then closed with 5% skimmed milk powder for 30 min, the 
primary antibody was diluted according to the instructions and 
incubated at 4°C overnight, and the secondary antibody was diluted at 
a ratio of 1:5000 and incubated at room temperature for 30 min. Finally, 
the membranes were treated with ECL luminescent solution and placed 
in a chemiluminescence instrument for exposure.

2.14 Statistical analysis

All analyses were executed in R software (v 4.2.2). Differences 
between groups were analyzed by Wilcoxon test. p < 0.05 was 
considered statistically significant. Data are expressed as the mean ± 
standard deviation (SD). The results of the water maze experiment 
were analyzed using a one-way ANOVA, followed by post-hoc Tukey’s 
tests to assess differences between groups. The mNSS scores were 
analyzed using an independent-samples t-test.

3 Results

3.1 Identification and analysis of oxidative 
stress-related genes in TBI

After the procedures described, a total of 400 DEGs were 
identified between TBI and normal samples, with 139 genes being 
down-regulated and 261 genes being up-regulated (Figures 1A,B). A 
total of 20 oxidative stress related genes in TBI were subsequently 
obtained (Figure 1C). Enrichment analysis was conducted on the 
oxidative stress-related DEGs to decipher the signaling pathways and 
biological functions implicated in TBI. The results of the GO analysis 
indicated that the suppressed pathways in TBI patients predominantly 
involved aerobic respiration, ATP synthesis-coupled electron 
transport, and mitochondrial functions including inner membrane 
protein complex assembly, ATP synthesis-coupled electron transfer, 
and oxidative phosphorylation. Furthermore, the pathways associated 
with respiratory chain complexes were also affected (Figure  1D). 
Conversely, the KEGG analysis revealed activation of pathways related 
to Staphylococcus aureus infection and aminoacyl-tRNA biosynthesis, 
alongside inhibition of oxidative phosphorylation and the proteasome 
pathway (Figure 1E). These findings underscore the profound impact 
of respiratory oxidative dysfunction in the pathogenesis and 
progression of TBI, highlighting critical areas for potential therapeutic 
intervention. Subsequently, based on oxidative stress-related DEGs 
we constructed a complex PPI network and found that TUFM was 
regulated by the most proteins (Figure 1F).

3.2 AKR1C2, QDPR, CYP3A5, CNTF, and 
PNPT1 identified as key genes

To further identify key genes, we  applied machine learning 
techniques. The results showed that both the RF and XGBoost models 
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had relatively low residuals (Figures 2A,B). Additionally, these models 
demonstrated lower root mean square error in their variable 
importance analysis (Figure  2C). However, when evaluating the 
diagnostic performance of different models using ROC curves, the RF 
and GLM models achieved a higher AUC score of 0.623 (Figure 2D). 
Based on this, we selected RF as the final algorithm for more accurate 
key gene identification in TBI. The optimal genes identified were 
AKR1C2, QDPR, CYP3A5, CNTF, and PNPT1 and termed as key 
genes (Figures 2E,F).

To better elucidate the relationship between each key gene and 
traumatic brain injury, we mapped the expression levels of each key 
gene in different tissues of GSE104687 and GSE104687 samples. This 
analysis revealed that all key genes were significantly overexpressed in 
the TBI group in GSE104687 (Figure 3A). In particular, QDPR and 
PNPT1 were highly expressed in the TBI group in different tissues 
(Figures 3B–D). Additionally, we assessed the diagnostic value of these 
key genes using ROC curves, which demonstrated high diagnostic 
efficiency (AUC > 0.6) for each gene (Figure  3E). We  further 
investigated the correlations among the key genes (Figure 3F), finding 
a notable correlation particularly between QDPR and PNPT1 
(cor = 0.56).

3.3 Establishment of the nomogram based 
on key genes

To visualize the association between key genes and TBI 
progression, we  constructed a nomogram using the key genes 
identified from our analysis (Figure  4A). A diseased sample was 
randomly selected for evaluation, yielding a total score of 318 and 
predicting a 72.4% probability of disease, closely matching the actual 

data. The predictive accuracy was confirmed through ROC and 
calibration curves, both demonstrating excellent efficacy 
(Figures 4B,C). Additionally, DCA was conducted for each gene and 
the overall model, revealing that the predictive model provides a 
positive net benefit in clinical decision-making, suggesting that its use 
could enhance clinical outcomes (Figure 4D).

3.4 GSEA for key genes

The pathways enriched by AKR1C2, CNTF, CYP3A5, PNPT1, and 
QDPR reveal several overlapping and related biological processes 
(Figures  5A–E). Common pathways include immune-related 
processes such as allograft rejection, autoimmune thyroid disease, 
graft-versus-host disease, and type I diabetes mellitus, indicating that 
these genes may play crucial roles in immune regulation and 
autoimmune responses. Additionally, pathways liked nicotine 
addiction and chemical carcinogenesis suggested these genes might 
be  involved in metabolic and addiction-related processes. The 
enrichment of pathways related to ribosome biogenesis and 
aminoacyl-tRNA biosynthesis pointed to a role in protein synthesis 
and cellular metabolism. Overall, these genes were implicated in both 
immune dysfunction and metabolic regulation.

3.5 Revealing the relationship between key 
genes and immune cells

We obtained the scores of 28 immune cells in TBI patients and 
normal samples by immune cell infiltration analysis (Figure  6A). 
Afterwards wilcox.test results revealed that effector memory CD8 T cells 

FIGURE 1

Identification and analysis of oxidative stress-related DEGs. (A) Volcano plot of DEGs. (B) Heat map of DEGs. (C) A total of 20 oxidative stress related 
genes in TBI. (D) The Gene Ontology (GO) analysis for GSEA of oxidative stress-related DEGs. (E) The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis for GSEA of oxidative stress related genes in TBI. (F) The PPI network of 20 oxidative stress-related DEGs.
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(Tem CD8) showed significant differences in immune infiltration 
(p < 0.01) (Figure 6B). Correlation analysis, the results showed that most 
of the key genes were positively correlated with in Tem CD8 (Figure 6C).

3.6 Potential molecular regulatory 
mechanisms of key genes

In the starBase database, AKR1C2 was predicted to interact with 2 
miRNAs (hsa-miR-185-5p and hsa-miR-338-3p), while CNTF 
(hsa-miR-10a-5p and hsa-miR-10b-5p etc.) and PNPT1 (hsa-miR-
145-5p and hsa-miR-183-5p etc.) were predicted to interact with 10 
miRNAs, respectively. QDPR was predicted to interact with 14 miRNAs 
(hsa-miR-124-3p and hsa-miR-140-3p etc.). This network includes 
several interaction pairs, such as AKR1C2-hsa-miR-185-5p-AL162258.1 
and CNTF-hsa-miR-10a-5p-AL031432.3 etc. (Figure 7A). By prediction, 
only one drug, enalapril maleate, was predicted by PNPTI to be  a 
potential therapeutic agent for TBI with good docking (Figure 7B).

3.7 Experimental validation

To validate our model, we conducted water maze tests and mNSS 
assessments. TBI rats exhibited significant cognitive impairments; 

notably, the escape latency increased markedly, and the time spent in 
the target quadrant significantly decreased (p < 0.05). There was a 
slight reduction in the number of crossings times and a marginal 
increase in distances spent (Figures  8A,B). Moreover, the mNSS 
results showed significantly higher scores for the TBI group compared 
to controls, indicating neurological deficits (p < 0.05) (Figure 8C).

For molecular validation, we extracted cranial tissues from the 
modeled rats and performed RT-PCR to assess the expression of 
CNTF, PNPT1, and QDPR. The results demonstrated significantly 
higher expression of PNPT1 (p < 0.01) and QDPR (p < 0.05) in the 
TBI group compared to controls (Figure 8D). Western blot analysis 
further confirmed elevated protein levels of PNPT1 and QDPR in the 
TBI group, reinforcing the transcriptional data (p < 0.05) (Figure 8E).

4 Discussion

The relationship between TBI and OS is influenced by complex 
interactions, with OS playing a significant role in the pathophysiology 
of TBI. Traumatic brain injuries abruptly and severely disrupt brain 
metabolism, leading to an overproduction of reactive oxygen species 
(ROS) and reactive nitrogen species (RNS) (Fesharaki-Zadeh, 2022). 
These reactive compounds severely damage cellular components such 
as lipids, proteins, and DNA, exacerbating neuronal injury and 

FIGURE 2

Machine learning construction and evaluation of screening key genes. (A) Cumulative residual distributions of the four machine learning models. 
(B) Residual box plots of the four machine learning models. Red dots represent the root mean square of residuals (RMSE). (C) Significance functions of 
the four machine learning models. (D) ROC curves of the four machine learning models plotted based on 5-fold cross-validation of the test. (E,F) 
Random Forest-based feature importance identification.
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promoting inflammation and cell death (Wu et al., 2022; Zhao et al., 
2022). Given the brain’s high oxygen consumption rate, rich lipid 
content, and relatively low antioxidative defenses, it is particularly 
susceptible to oxidative damage (Thapa et al., 2021; Zhang et al., 2021). 
This highlights the importance of managing OS in developing 
recovery strategies for TBI. Currently, there is a lack of effective 
treatments for TBI clinically, emphasizing the importance of 
identifying new diagnostic biomarkers and exploring potential 
mechanisms for early diagnosis and targeted treatment. In our study, 
we  employed machine learning techniques to identify five genes 

related to OS in TBI: AKR1C2, QDPR, CYP3A5, CNTF, and PNPT1, 
confirming their diagnostic value. These genes are also associated with 
immune and metabolic regulation. Subsequent experimental 
validation of their expression provided valuable insights for future 
therapeutic interventions.

Quinoid dihydropteridine reductase (QDPR) is a key enzyme 
involved in the regeneration of tetrahydrobiopterin (BH4), an essential 
cofactor for the synthesis of neurotransmitters such as dopamine and 
serotonin, and a crucial component for normal neurological function 
(Liu et al., 2024). Deficiencies in QDPR have been observed to lead to 

FIGURE 3

Validation of key genes. (A) Differential expression boxplot of key genes in GSE104687 samples. Differential expression boxplot of key genes in 
(B) cortical gray temporal (TCX), (C) white matter (parietal) (FWM), and (D) hippocampus (HIP) of GSE104687 samples. (E) ROC curves for key genes. 
(F) Correlation analysis of key genes.
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a spectrum of neurological symptoms, including movement disorders, 
hypotonia, cognitive developmental delays, and epileptic seizures, 
underscoring the enzyme’s importance in neural development and 
functional maintenance (Breuer et al., 2019). Further studies have 
shown that mice models with the QDPR gene knocked out exhibit 
increased sensitivity to oxidative stress, suggesting a potential 
antioxidative role for QDPR in neuroprotective mechanisms (Xu et al., 
2014). In TBI models, an upregulation of QDPR expression was 
observed, which may reflect the brain’s attempt to compensate for 
neuro-metabolic damage by enhancing BH4 production. This 
upregulation indicates a potentially important regulatory role for 
QDPR in the recovery process following neural injury. Additionally, 
aberrant expression of QDPR in certain neurodegenerative diseases 
further emphasizes its critical role in neurotransmitter synthesis. For 
instance, abnormalities in QDPR function in patients with Parkinson’s 
disease may be linked to disturbances in neurotransmitter synthesis, 
thereby influencing the clinical manifestations and progression of the 
disease (Kurosaki et  al., 2019). Polyribonucleotide 
Nucleotidyltransferase 1 (PNPT1) primarily functions in 
mitochondrial RNA processing and influences various cellular 
responses, including innate immune system activities (Guan et al., 
2024). Dysfunctions of PNPT1, particularly in the context of bi-allelic 

pathogenic variants, are closely associated with mitochondrial 
dysfunction and a range of clinical symptoms and potential excessive 
immune responses (Rius et  al., 2019). Although no studies have 
directly linked PNPT1 with TBI, recent research highlights its role in 
activating the NLRP3 inflammasome, a key component of the 
inflammatory response often associated with diseases such as 
traumatic brain injury (Hsu et al., 2023). Activation of the NLRP3 
inflammasome may trigger inflammatory cascades post-TBI, 
indicating a potential indirect connection with TBI (Chakraborty 
et al., 2023). Moreover, in neurodegenerative diseases like Alzheimer’s 
and Parkinson’s, neuronal damage is often accompanied by severe 
oxidative stress and inflammatory responses, creating a vicious cycle 
that is a critical pathological mechanism in many chronic diseases 
(Silva et al., 2022). Our experimental results show increased expression 
of PNPT1 in TBI, which may influence the progression of TBI by 
modulating inflammation and OS responses.

Ciliary Neurotrophic Factor (CNTF) is a pivotal neurotrophic 
factor crucial for the development and repair processes of the nervous 
system (Ghasemi et  al., 2018). It promotes the survival and 
differentiation of specific neural cells, especially in the recovery of 
damaged nervous systems, showing significant potential (Kang et al., 
2012). CNTF effectively prevents the spontaneous degeneration of 

FIGURE 4

Construction and evaluation of Nomogram. (A) Nomogram for 5 key genes. (B) Evaluation of ROC curves for Nomogram. (C) Calibration curves for 
Nomogram. (D) DCA curves for Nomogram.
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dopamine neurons and promotes behavioral recovery in Parkinson’s 
disease animal models through its action on CNTF receptor α 
(CNTFRα) expressed in substantia nigra dopamine neurons (Nam 
et al., 2015). Additionally, given that TBI is a potential risk factor for 
Parkinson’s disease, the protective role of CNTF could be significant 
in preventing the development of TBI consequences. Aldo-keto 
Reductase (AKRs) are part of the oxidoreductase superfamily, found 
in prokaryotic and eukaryotic organisms. AKR1C2, a member of the 
AKR1 family, is primarily distributed in tissues like the liver, stomach, 
and bladder (Ostinelli et al., 2021). It is associated with the biosynthesis 
of steroid hormones, the formation of DNA adducts, and the 
production of ROS, particularly linked to the onset and progression 
of tumors. It metabolizes 5α-dihydrotestosterone (DHT) and 
progesterone (P4), affecting the carcinogenesis of hormone-dependent 
tissues such as the prostate and breast. AKR1C2 also metabolizes 
carcinogens and reduces ROS levels in cancer cells, thereby enhancing 

their tolerance to oxidative stress and drug stimuli and is abnormally 
expressed in various tumors (Li et  al., 2023; Wang et  al., 2023). 
However, studies on the role of AKR1C2 in neurological diseases are 
limited. Recently, Zhao and colleagues discovered a correlation 
between AKR1C2 and the onset of Alzheimer’s disease through 
bioinformatics analysis, considering that TBI is a significant risk factor 
for Alzheimer’s, this finding provides new clues for further research 
into the potential mechanisms between TBI and AKR1C2 (Zhao et al., 
2023). Our study initially shows that AKR1C2 may play a role in the 
pathophysiology of TBI, although the specific mechanisms require 
further detailed exploration. Cytochrome P450 3A5 (CYP3A5) gene 
belongs to the cytochrome P450 superfamily, primarily involved in 
important processes such as drug metabolism, cancer biology, and 
organ transplantation (Zhang et al., 2014; Cutrona et al., 2024). Studies 
have shown that the CYP3A5*3 allele is prevalent among various 
populations, a variant that leads to reduced enzyme expression, thus 

FIGURE 5

Functional enrichment analysis of key genes. Gene Set Enrichment Analysis (GSEA) results for AKR1C2 (A), CNTF (B), CYP3A5 (C), PNPT1 (D), QDPR (E).
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FIGURE 6

Immune infiltration analysis. (A) Histogram depicting the abundance of 28 types of immune cells in TBI and control samples. (B) Box plot visualizing the 
differences in immune cell infiltration abundance between TBI and control samples for 28 immune cell types. (C) Heatmap showing the correlation of 
immune cell with key genes. **p < 0.01.
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affecting the clearance rate of drugs. This downregulation particularly 
affects the drug response to commonly used immunosuppressive 
drugs like tacrolimus in transplantation (Lolodi et  al., 2017). 
Additionally, aberrant expression of CYP3A5 might promote cancer 
progression by altering the metabolism of cancer treatment drugs or 
endogenous molecules (Jiang et al., 2015). In liver transplantation, 
changes in CYP3A5 expression are significantly related to individual 
differences in the metabolism of immunosuppressive drugs (such as 
tacrolimus) (Guo et  al., 2023). However, the role of CYP3A5  in 

neurological diseases has not yet been clearly reported, indicating a 
need for further exploration of its potential mechanisms in 
neurological diseases, providing new directions for TBI treatment.

To further explore the potential mechanistic roles of key genes in 
the development of TBI, we  conducted enrichment analyses that 
revealed these genes are predominantly associated with immune 
responses and metabolic regulation. Subsequent immune infiltration 
analysis identified that Tem CD8 play a significant role in the 
progression of TBI. Tem CD8 cells are an essential cellular group in 

FIGURE 7

Potential molecular mechanisms for key genes. (A) Regulatory network of mRNA-miRNA-lncRNA. (B) Molecular docking of PNPT1 with enalapril 
maleate.

FIGURE 8

The expression of key genes in TBI animal model. (A) Water maze experiment trajectory diagram. (B) Box plot for water maze experiment trajectory. 
(C) Box plot for mNSS scores. (D) The result of RT-qPCR. (E) The result of western blotting. *p < 0.05, **p < 0.01.
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the immune system, capable of rapidly responding to reinfection 
(Chapin et al., 2023). The chronic inflammatory phase following TBI 
may lead to immune exhaustion and dysregulation, suggesting that 
Tem CD8 cells might fail to produce appropriate responses at critical 
moments or may induce an immunosuppressive state due to prolonged 
activation, thereby affecting brain repair capabilities. This imbalance 
in immune regulation may be associated with long-term neurological 
dysfunction, cognitive impairments, and psychiatric issues following 
TBI. There is currently a lack of direct studies clarifying the specific 
association between Tem CD8 cells and TBI, necessitating further 
research in this area.

Utilizing public databases to analyze gene expression characteristics 
related to TBI, we identified several potential key genes and therapeutic 
targets, including AKR1C2, QDPR, CYP3A5, CNTF, and PNPT1. These 
genes may play various roles in the pathophysiology of TBI. In 
particular, abnormalities in OS and immune responses are likely major 
dysregulation mechanisms in TBI, offering potential targets for new 
therapeutic strategies. Furthermore, our findings underscore the 
importance of further research into the roles of these genes in TBI to 
better understand their specific mechanisms and ultimately improve the 
prognosis for TBI patients. However, despite some verification of these 
genes’ functions at the molecular level, broader experimental and 
clinical studies are needed to explore their exact roles and impacts 
before translation into specific therapeutic interventions.
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