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Conventional computer-aided diagnostic techniques for Alzheimer’s disease

(AD) predominantly rely on magnetic resonance imaging (MRI) in isolation.

Genetic imaging methods, by establishing the link between genes and brain

structures in disease progression, facilitate early prediction of AD development.

While deep learningmethods based onMRI have demonstrated promising results

for early AD diagnosis, the limited dataset size has led most AD studies to lean

on statistical approaches within the realm of imaging genetics. Existing deep-

learning approaches typically utilize pre-defined regions of interest and risk

variants from known susceptibility genes, employing relatively straightforward

feature fusion methods that fail to fully capture the relationship between

images and genes. To address these limitations, we proposed a multi-modal

deep learning classification network based on MRI and single nucleotide

polymorphism (SNP) data for AD diagnosis and mild cognitive impairment (MCI)

progression prediction. Our model leveraged a convolutional neural network

(CNN) to extract whole-brain structural features, a Transformer network to

capture genetic features, and employed a cross-transformer-based network

for comprehensive feature fusion. Furthermore, we incorporated an attention-

map-based interpretability method to analyze and elucidate the structural and

risk variants associated with AD and their interrelationships. The proposed

model was trained and evaluated using 1,541 subjects from the ADNI database.

Experimental results underscored the superior performance of our model in

e�ectively integrating and leveraging information from both modalities, thus

enhancing the accuracy of AD diagnosis and prediction.
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1 Introduction

Alzheimer’s disease (AD) is a prevalent progressive degenerative condition of the

central nervous system, constituting ∼60%–80% of all dementia cases (Gopalakrishna

et al., 2022). As the elderly population continues to grow, the likelihood of developing this

disease among older individuals is steadily increasing. Characterized by a protracted and

irreversible course, AD presents limited treatment options with varying degrees of efficacy

(Burns, 2020). Mild Cognitive Impairment (MCI) is often viewed as an intermediate phase

between normal aging and AD, further categorized into progressive MCI (pMCI) and

stable MCI (sMCI) based on the likelihood of progression to AD. Early interventions in

the initial stages of AD are widely recognized as most effective, underscoring the crucial
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clinical significance of predicting MCI conversion (Better, 2024).

Magnetic Resonance Imaging (MRI) serves as a widely adopted

non-invasive imaging modality capable of identifying structural

changes such as cortical thinning, brain atrophy, and regional

tissue density alterations resulting from neurodegenerative diseases

(Frizzell et al., 2022). With the evolution of deep learning

technology, numerous studies have used deep learning networks

for AD diagnosis and prediction (Wen et al., 2020; Zhang et al.,

2021; Lian et al., 2020; Zhu et al., 2021). Owing to the limited

number of pMCI and sMCI samples, several investigations have

employed networks with architecture akin to those utilized for

AD differentiation (Lian et al., 2020; Aderghal et al., 2018). In

these instances, models were initially pre-trained on AD and

normal samples, then subsequently applied to pMCI and sMCI

classification tasks through transfer learning techniques, thereby

integrating AD diagnosis and MCI conversion prediction within

a unified.

To enable the earlier identification of AD and its associated

risk factors, it is imperative to uncover new biomarkers at the

micro level (Gatz et al., 2006). Identifying susceptibility genes

and their risk variants linked to AD can aid in predicting

the likelihood of developing AD before significant structural

or functional changes manifest in the brain. Previous research

has indicated that 60%–80% of the risk of developing AD is

genetically influenced, with several genes such as APOE, APOC1,

and CLU identified as being associated with AD (Zhou X.

et al., 2023). Single Nucleotide Polymorphism (SNP) denotes

DNA sequence polymorphisms arising from variations in a single

nucleotide at the genomic level. When an SNP occurs within or

in proximity to a gene’s regulatory region, it may impact gene

expression levels and be linked to the genetic mechanisms of the

disease. The utilization of Genome-wide association study (GWAS)

techniques has facilitated the identification of AD-related SNPs

by comparing groups of individuals with dementia against those

who are cognitively unimpaired. However, GWAS does not account

for epistatic interactions. Multiple regression methodologies have

been developed, integrating the apolipoprotein E (APOE) ε4

haplotype—a recognized significant sporadic AD risk factor—

alongside various other AD risk SNPs identified through GWAS

and polygenic risk scores. These approaches aim to provide a

more comprehensive understanding of heritability and the genetic

structure of AD (Yamazaki et al., 2019). Nevertheless, these

methods only capture a portion of disease heritability, signifying

that additional risk SNPs and critical data on interaction effects

remain undiscovered.

Recently, numerous studies have integrated brain imaging

and genomics data to develop deep learning methods for disease

prediction and diagnosis. Ning et al. (2018) employed the volumes

of 16 regions of interest (ROIs) obtained from MRI and known

pathogenic SNPs as inputs to a multilayer perceptron (MLP)

for AD classification. Addressing heterogeneity between different

modalities, Zhou et al. (2019) proposed a three-stage deep feature

extraction and fusion framework. Venugopalan et al. (2021) utilized

imaging, SNP, and electronic health record data to construct

deep feature extraction networks based on CNN and denoising

autoencoders, subsequently classifying the features using methods

such as random forests and support vector machines. Ying et al.

(2021) leveraged a pre-trained 2D-CNN network to extract MRI

features and an MLP for SNP feature extraction, integrating

the classification results of the two models through a gating

mechanism. Li et al. (2021) introduced a transformer-based SNP

feature extraction network and an MRI feature extraction network

based on the soft-thresholding algorithm, followed by feature

fusion utilizing deep learning networks. Additionally, Zhou R.

et al. (2023) proposed the ADCCA model for AD diagnosis,

incorporating MRI, PET, and SNP data. This network combined

MLP and canonical correlation analysis (CCA), integrating an

attention mechanism and utilizing 90 ROIs extracted from MRI

and 54 SNP on the APOE gene. The integral gradient method

was employed to identify crucial ROIs and SNP within the

classification network.

However, there are limitations within current research. Firstly,

prevailing methods typically utilized ROI-based artificially set

or extracted features as network inputs, such as volume and

gray matter intensity. Nevertheless, the brain presents a complex

network with intricate connections, and disease-related structural

changes may be dispersed across different areas of the brain.

Consequently, this approach may not comprehensively extract

all morphological abnormalities associated with AD from the

images due to patient heterogeneity. Secondly, SNP data exhibits

high dimensionality but relatively small sample sizes. As a

result, numerous studies have employed methods based on prior

knowledge to reduce the dimensionality of SNP data, such as

selecting AD-related variants listed in the AlzGene database

(http://www.alzgene.org/). Furthermore, most existing methods

have utilized concatenation to fuse features of the two modalities,

imaging and genetics, without fully leveraging the intrinsic

connection between them. This limitation consequently leads to a

relatively constrained classification performance.

The primary contributions of this work can be summarized as

follows:

1) Introduction of a multi-modal deep learning network aimed

at enhancing the performance of AD diagnosis and prediction.

This network was designed to capture more comprehensive

brain structure and genetic information from whole-brain MRI

and SNP data.

2) Development of a transformer-based fusion module tailored for

integrating genetic data and structural images to extract intrinsic

information between MRI and SNP.

3) Utilization of an interpretability approach based on grad-cam

and attention map to explore and present brain structures and

risk variants potentially associated with the disease.

2 Materials and methods

2.1 Overall architecture

The fundamental structure of the proposed network was

depicted in Figure 1, comprising three main modules: MRI feature

extraction, SNP feature extraction, and feature fusion. Preprocessed

whole-brain MRI and SNP data were utilized as inputs. To

extract MRI features, we employed ResNet as the backbone, while
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FIGURE 1

Overview of our proposed multi-modal deep learning network based on MRI and SNP. We first trained a convolutional neural network to extract

whole-brain structural features and a Transformer network to extract genetic features. Then we employed a cross-transformer-based network for

feature fusion. Finally, the CLS tokens from the two features were taken and concatenated to obtain the classification results.

a Transformer network was used for SNP feature extraction.

Furthermore, our approach involved a cross-transformer-based

network for feature fusion, drawing inspiration from LXMERT

(Tan and Bansal, 2019).

Due to the scarcity of samples containing genetic data and

the substantial number of variants compared to the sample

size, the SNP feature extraction module was susceptible to

overfitting. Simultaneously, training the MRI feature extraction

module necessitated a significant volume of data. Considering the

imbalance in the parameters of the two networks, we initially

trained the feature extraction networks for the two modalities

independently. Subsequently, we determined the parameters of

the feature extraction module and proceeded to train the feature

fusion module.

2.2 Subjects and pre-processing

Data used in this study were sourced from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (Jack et al.,

2008; Weiner et al., 2017), encompassing T1-weighted structural

MR scans and SNP data obtained from 1636 subjects at their

baseline acquisitions spanning three ADNI phases (i.e., ADNI-

1, ADNI-2, and ADNI-3). Subjects were categorized into four

groups—NC, AD, pMCI, and sMCI—based on standard clinical

criteria, including Mini-Mental State Examination (MMSE) scores

and Clinical Dementia Rating (CDR) scores. Normal controls are

defined by MMSE scores of 24–30, a CDR of 0, and absence

of depression or dementia. Individuals with MCI exhibit MMSE

scores of 24–30, a CDR of 0.5, subjective memory complaints, and

objective memory deficits confirmed by standardized assessments.

Within the MCI cohort, sMCI refers to individuals who retained

their MCI status during follow-up clinical evaluations, whereas

pMCI denotes those who transitioned to AD at subsequent time

points. AD is diagnosed based on MMSE scores ≤ 26, CDR

>0.5, and fulfillment of the National Institute of Neurological

and Communicative Disorders and Stroke–Alzheimer’s Disease

and Related Disorders Association (NINCDS/ADRDA) criteria for

probable AD, including progressive cognitive decline that interferes

with daily functioning. In the end, we got 610 NC subjects, 239

AD patients, 298 pMCI participants, and 489 sMCI participants.

Demographic details of the subjects were presented in Table 1.

We adhered to the standard MRI pre-processing pipeline,

commencing with MRI intensity correction using the N3

algorithm (Sled et al., 1998). Subsequently, skull-stripping was

conducted utilizing the ANTs software (http://stnava.github.io/

ANTs/), followed by linear registration to the Colin27 template

(Holmes et al., 1998) through FLIRT (Jenkinson et al., 2002)

in the FSL package (Jenkinson et al., 2012) to mitigate global

linear disparities. Finally, we uniformly cropped the pre-processed

images to eliminate extraneous background along the image edges,

resulting in a standardized image size of 152 × 184 × 152 and a

spatial resolution of 1× 1× 1 mm3.

For the SNP data, quality control procedures were applied to

each SNP dataset using Plink software (Chang et al., 2015). These

measures included: (1) Exclusion of SNPs with a missing rate

exceeding 5% and samples with a genotyping detection rate below

95%, (2) Elimination of samples exhibiting gender differences, (3)

Removal of SNPs with a p-value <1e-6 in the Hardy–Weinberg

equilibrium test, (4) Exclusion of SNPs with a minor allele

frequency below 0.05, and (5) Addressing population stratification.

SNP variants for patients were not standardized across different

phases of ADNI due to the limitations of microarrays for large-

scale genotyping. These were sourced from Illumina Human 610-

Quad, Illumina Human Omni Express, and Illumina Omni 2.5
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TABLE 1 Demographic information of the dataset.

Group #of subj Gender
(male/female)

Age (mean ± SD) MMSE
(mean ± SD)

CDR (mean ± SD)

NC 610 284/326 75.8± 5.0 29.10± 1.01 0.02± 0.00

AD 239 125/114 75.3± 7.5 23.28± 2.03 0.75± 0.25

pMCI 298 179/119 74.8± 6.8 26.59± 1.71 0.50± 0.00

sMCI 498 278/211 74.9± 7.6 27.27± 1.78 0.49± 0.04

M arrays, respectively (Saykin et al., 2010). Consequently, prior

to merging, genotype imputation was conducted separately on

each SNP dataset. Before imputation, SNP variants obtained from

different platforms were harmonized to the GRCh37 version using

Bcftools (Danecek et al., 2021), with concurrent correction of

DNA strands. The Sanger Imputation Server (https://www.sanger.

ac.uk/) was utilized to estimate missing genotypes, while SHAPEIT

(Delaneau et al., 2012) facilitated pre-phasing during the genotype

imputation process. The reference panel selected for imputation

was the 1000 Genomes Phase 3 data. Subsequent to obtaining

the imputed data, SNPs meeting criteria of INFO score >0.5 and

genotype posterior probability <0.9 were retained, whereas SNPs

featuring more than two alleles were excluded.

Following genotype imputation, SNP data from four datasets

were consolidated. Subsequently, the merged data underwent

additional quality control, involving the exclusion of sites with

a genotype call rate below 90%, minor allele frequency <5%,

and Hardy–Weinberg equilibrium test p-value lower than 1e-6.

Ultimately, 4,967,369 SNP variants successfully passed the quality

control process. Upon completion of preprocessing, a total of 1,541

subjects were retained, comprising 567 NC, 239 AD subjects, 293

pMCI, and 455 sMCI.

2.3 MRI features extraction

We employed a ResNet-based module to extract features

from MRI data. Initially, a 3 × 3 × 3 convolutional kernel

with 64 channels was utilized for feature extraction, followed

by a batch normalization layer and a ReLU activation function.

Subsequently, four residual connection modules were employed

to further enhance feature extraction. This process resulted in the

generation of an MRI feature map sized at 512× 10× 6× 5.

During the pre-training phase of the feature extraction

network, the feature maps obtained via the residual connection

modules were first directed to the global average pooling layer.

These feature maps were subsequently flattened to serve as input

for the ensuing fully connected layers. The final layer produced

two scores, which were normalized using the softmax function,

representing the probabilities of negativity and positivity.

2.4 SNP feature extraction

Considering the significant impact of prior knowledge on SNP

selection based on known susceptibility genes, there is a risk of

overlooking the discovery of new risk variants. To address this, we

opted to employ GWAS for SNP dimensionality reduction. SNPs

that exhibited a stronger correlation with the sample phenotype

based on p-values were filtered out.

Following this, the SNP genotype sequences were encoded

using the one-hot encoding method. Each SNP was represented as

a 1× 4 vector, with the reference allele homozygote being encoded

as 1,000, the heterozygote as 0100, the alternate allele homozygote

as 0010, and any missing genotype as 0001. Post-encoding, the SNP

sequence size for each sample became n × 4, where n denoted the

number of SNPs input into the network for each subject.

After dimensionality reduction and encoding, we used a

transformer network for SNP feature extraction. To enhance the

nonlinearity of the network, we first used a convolutional kernel

with a size of 3 and padding of 1 to transform the input data

size into n × 32. Subsequently, two multi-head Attention block

were used for feature extraction. Each block consisted of two

attention heads. In the attention head structure, the input data

was first mapped to three different matrices (key, query, and

value) through three separate linear layers. We used dot-product

and softmax function to calculate attention maps from the query

and key matrices. Then the attention maps were multiplied with

the value matrices. The attention-weighted features concatenated

with origin features were projected to feed-forward layer. The

feed-forward layer consisted of two linear layers (64 units and

32 units respectively) and a residual shortcut connection with

layer normalization. For input, the transformer output can be

formulated as

y = LaynerNorm(x+MSA(x)), (1)

f = LaynerNorm(y+ Linear(x)). (2)

Finally, the encoded SNP features with the size of 925 × 32

were flattened into a one-dimensional vector. After passing through

two linear layers and a softmax function, a score was obtained

for classification.

2.5 Multimodal feature fusion and
classification

In order to effectively integrate MRI features and SNP features,

we developed a cross-transformer-based network for feature fusion.

This module utilized the SNP features encoded by the transformer

and the MRI features before average pooling as inputs. To ensure

alignment of feature dimensions between the two modalities, we

initially reshaped the MRI features to 512 × 300, while the shape

of SNP features was adjusted to 925 × 32. Following typical
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transformer-based network procedures, we included a CLS token

at the beginning of the features from both modalities, serving as a

representative semantic feature for the final classification.

Two cross-transformer blocks were employed, each

simultaneously taking the MRI features and SNP features as

inputs. One block used the MRI features as input for the key and

value matrices, and the SNP features as input for the query, while

the other block used the SNP features as input for the key and

value matrices, and the MRI features as input for the query. Each

block consisted of four attention heads and a feed-forward layer.

The processing can be expressed as

Q1 = fsnp W1,K1 = fmriW2,V1 = fmriW3, (3)

fsnp→mri = Transformer (Q1,K1,V1) , (4)

Q2 = fmriW4,K2 = fsnp W5,V2 = fsnp W6, (5)

fmri→snp = Transformer (Q2,K2,V2) . (6)

The self-transformer block used the previously obtained MRI

and SNP features as inputs for further extraction of intra-

modality features. It also included four attention heads and a

feed-forward layer.

Following the extraction of inter-modality and intra-

modality features via the cross-transformer and self-transformer,

respectively, the CLS tokens from the two feature maps were

extracted and subsequently concatenated. The concatenated

features were then processed through a fully connected layer and

softmax function to derive the final classification result.

3 Results

3.1 Implementation

The dataset, comprising both SNP andMRI data, was randomly

divided into training (60%), validation (20%), and test (20%) sets.

Both the pre-training and joint training stages employed cross-

entropy loss as the network’s loss function.

The proposed method was trained in practice using the Adam

optimizer with a batch size of 4. An initial learning rate of 1e − 4

was employed, which was subsequently reduced by a factor of 0.1

after 10 training epochs. The network implementation was carried

out in Python using the PyTorch library on a single NVIDIA GTX

3090 GPU.

3.2 Evaluation metrics

In this study, we used four metrics to evaluate the classification

performance, including accuracy (ACC), sensitivity (SEN),

specificity (SPE), and F1 score. The F1 score is the harmonic

average of the model sensitivity and specificity. These metrics are

defined as:

ACC =
TP + TN

TP + TN + FP + FN
, (7)

SEN =
TP

TP + FN
, (8)

SPE =
TN

TN + FP
, (9)

F1− Score =
2TP

2TP + FN + FP
. (10)

where TP, TN, FP and FN denoted the true positive, true negative,

false positive and false negative value respectively.

3.3 Competing methods

We compared the proposed method with four baseline

methods, including machine learning methods and deep learning

methods.

1) Machine learning methods: initially, we selected the widely

used machine learning methods, including random forest (RF)

and support vector machines (SVM). We employed the imaging

features and genetic features obtained by the feature extraction

module as inputs for both methods.

2) Concat + MLP method: following the work (Li et al., 2021),

we also performed a stitching operation on MRI features and SNP

features to obtain the fused features. Subsequently, we utilized an

MLP network including three fully connected layers followed by a

softmax function to obtain the final classification results.

3) Bilinear pooling: bilinear pooling is a commonly used feature

fusion method that is primarily used to combine different feature

vectors to obtain a joint representation space (Braman et al.,

2021; Chen et al., 2020). On the bilinear pooling module, a gate

attention mechanism was first employed to calculate the weights

of MRI and SNP features, controlling the expression of features

extracted from each branch. Next, the outer product was used to

calculate the relationship between different modal features. Finally,

the obtained fused features were projected onto two fully connected

layers, and the activation function was applied to obtain the final

classification results.

3.4 Classification performance

3.4.1 AD classification
The performance of the proposed method in AD classification

on the test dataset was presented in Table 2. The findings indicated

that utilizing solely MRI information yielded superior classification

results compared to using only SNP data. Furthermore, leveraging

the combined features of both modalities leads to enhanced

classification performance over using individual modality

features. Specifically, our multi-modal network demonstrated an

improvement in accuracy from 91.77 to 93.04% and in the F1

score from 85.71 to 88.17%, when contrasted with the utilization of

imaging data alone.

3.4.2 MCI conversion prediction
Given that MCI serves as the preliminary stage in the

development of AD, intervening prior to progression to AD can

effectively mitigate the advancement of the disease. As a result,

it becomes imperative to predict the likelihood of MCI evolving

into AD and to differentiate between progressive MCI (pMCI)
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TABLE 2 AD vs. NC classification performance.

Data ACC SEN SPE F1-score

SNP 81.01% 71.11% 84.96% 69.09%

MRI 91.77% 86.67% 93.77% 85.71%

Fusion 93.04% 91.11% 93.81% 88.17%

TABLE 3 pMCI vs. sMCI classification performance.

Data ACC SEN SPE F1-score

SNP 65.33% 64.41% 65.93% 59.38%

MRI 78.00% 66.10% 85.71% 70.27%

Fusion 76.67% 72.88% 79.12% 71.07%

TABLE 4 Comparison with other methods.

Methods ACC SEN SPE F1-score

RF 89.87% 86.66% 91.15% 82.93%

SVM 88.61% 73.33% 94.69% 78.51%

Concat +

MLP

92.40% 86.67% 94.69% 86.67%

Bilinear 92.40% 80.00% 97.34% 85.71%

Ours 93.04% 91.11% 93.81% 88.17%

and stable MCI (sMCI). Although distinctions between pMCI and

sMCI are minimal, our approach involved selecting SNP variants

obtained through GWAS from the AD-NC training set. In the

MRI feature extraction module, we employed transfer learning by

utilizing AD-NC subjects to train the network and initialize the

parameters of the pMCI-sMCI classification network.

The results for MCI conversion prediction were detailed in

Table 3. Our findings suggested that the brain structural and

genetic features associated with the disease, as obtained from our

proposed network, were effective and hold potential for future

use in predicting MCI conversion. Interestingly, we observed a

decrease in accuracy when both SNP andMRI data were employed.

This reduction may be attributed to the subtle distinctions in loci

between pMCI and sMCI, which cannot be adequately captured

using the same SNP feature extraction network utilized for AD vs.

NC classification.

3.4.3 Comparative analysis
Compared with existing deep learning studies that primarily

concentrate on MRI or SNP data, our research emphasized

the fusion of features from both modalities. Table 4 provided a

comparison of the results obtained by our method and other

competing techniques in AD classification, revealing superior

performance achieved by our network. In contrast to conventional

methods such as machine learning, feature concatenation, and

bilinear pooling discussed in the preceding section, our utilization

of a cross-transformer network has exhibited enhanced capabilities

in utilizing the relationship between genes and images to achieve

improved classification performance.

3.5 Interpretability analysis

While numerous methods rely on deep learning networks for

AD diagnosis and prediction, a notable limitation has been the

lack of clinical interpretability, hindering the delivery of dependable

diagnostic evidence for clinical application. In our study, we

integrated an interpretability analysis approach based on Grad-

CAM (Selvaraju et al., 2017). This method facilitated automatic

identification of crucial structural brain changes and risk variants

linked to disease progression. Additionally, we utilized ANNOVAR

(http://www.openbioinformatics.org/annovar/) to annotate risk

variants and their respective genes.

The interpretability analysis outcomes were illustrated in

Figure 2 and detailed in Table 5, derived by averaging data across

all individual participants. Several noteworthy observations can

be made based on these results. Firstly, our method successfully

pinpointed key pathological brain regions, distinguishing AD

patients from normal controls, as well as pMCI from sMCI,

including the superior parietal cortex, basal ganglia, hippocampus,

amygdala, and additional temporal areas. The detection of these

regions underscored their significance as neuroimaging biomarkers

in AD progression and validated the robustness of the localization

results generated by our method.

Secondly, as indicated in Table 5, the interpretability analysis

also revealed crucial variant loci associated with AD. Top SNPs

linked to AD included rs769449 (APOE, associated with p-

tau181 levels), rs59007384 (TOMM40, CSF APOE correlation), and

rs2075650 (TOMM40, AD risk allele; Table 5, Figure 2). Novel loci

(e.g., rs566177061, rs113785991) were also identified.

We identified the top 100 crucial SNP sites and annotated the

SNPs to the corresponding genes. After eliminating duplicate genes,

a total of 75 genes remained. Subsequently, we conducted Gene

Ontology (GO) enrichment analysis on these genes, setting the

enrichment analysis p-value and FDR-corrected p-value thresholds

at 0.05. This analysis yielded 41 biological process gene clusters

and 29 molecular function gene clusters, as illustrated in Figures 3,

4, respectively. Notably, among the key genes associated with AD

predicted by our network model, those related to the blood-brain

barrier (BBB) transport mechanism held the highest ranking, with

a corrected p-value of 6.98e-6. These genes include APOE (Jackson

et al., 2022), ABCC5 (Zhang et al., 2023), SLC22A2 (Huttunen

et al., 2022), SLC16A12 (Nguyen et al., 2022), ABCC2 (Schulz et al.,

2023), SLC22A3 (Huttunen et al., 2022), and SLC16A7. In addition,

our enrichment analysis also highlighted the significant roles

of several mechanisms within the circulatory system, including

vascular transport, organic anion transport, and vascular processes.

In terms of molecular functions, the top three enriched activities

were organic anion transmembrane transporter activity, anion

transmembrane transporter activity, and active transmembrane

transport activity.

3.6 Ablation experiments

3.6.1 Analysis on SNP feature extraction module
To assess the efficacy of backbone models in the SNP feature

extraction module, we employed MLP, TextCNN (Kim, 2014),
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FIGURE 2

Visualization results of Grad-CAM for two groups. (Upper) AD vs. NC crucial brain areas. (Lower) pMCI vs. sMCI crucial brain areas.

TABLE 5 Key SNPs obtained using interpretability methods.

SNP Chr Gene

rs769449 19 APOE

rs59007384 19 TOMM40

rs2075650 19 TOMM40

rs566177061 6 TSBP1-AS1

rs55825602 19 TOMM40

rs6955647 2 TANC1

rs439401 19 APOE

rs73142265 6 TSBP1-AS1

rs4676754 19 KLK3

rs192303 7 NPSR1

rs157582 19 TOMM40

rs3760720 19 LOC105372441; KLK3

rs484195 19 APOC1

rs2072153 17 ZNF652

rs2980879 8 TRIB1; LINC00861

rs1264435 6 ABCF1

rs4939291 11 OR4D6; OR4D10

rs13111134 4 UGT2B4

rs113785991 3 ABCC5

rs73142265 7 TPST1

AttentionCNN, and Transformer as individual backbones. The

outcomes of the experiment were presented in Table 6. Our findings

revealed that the use of the Transformer model resulted in the

highest performance, attaining a maximum accuracy of 81.01%

along with an F1-score of 69.09%.

3.6.2 Analysis on SNP dimensionality reduction
Owing to the high dimensionality of SNP data and the

constrained number of subjects, the dimensionality of the SNP

input significantly influenced both the efficacy of the SNP feature

extraction module and the interpretability analysis results. We

investigated the impact of p-value selection in GWAS on the AD

classification performance of the SNP feature extraction module.

The experimental findings were detailed in Table 7, revealing that

the module exhibited optimal performance when employing a SNP

set with a p-value lower than 1e-6, achieving a peak accuracy of

81.01% and an F1 score of 69.09%.

3.6.3 Analysis on the length of encoding SNP
Given our focus on SNP genotypes without specific base

arrangements, we restricted the SNP genotypes to four possibilities:

AA, aa, Aa, and missing. Unlike the lexical diversity in natural

language models, SNP genotypes were encoded within relatively

constrained parameters. To bolster the model’s generalization, we

introduced one-dimensional convolution at the outset of the SNP

feature extraction module to extend the SNP embedding length.

The selection of the number of convolutional kernel channels

could influence subsequent feature extraction effectiveness.

Consequently, we conducted experiments using one-dimensional

convolutional kernels with varied parameters. The experimental

outcomes, as detailed in Table 8, revealed that encoding SNPs with

a length of 32 yielded the most effective classification performance.

3.6.4 Analysis on feature fusion module
In order to scrutinize the impact of the self-transformer block

within the feature fusion module, we performed AD classification

experiments employing networks both with and without the self-

transformer block. As depicted in Figure 5, our experimental
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FIGURE 3

GO enrichment analysis results in biological process.

FIGURE 4

GO enrichment analysis results in molecular function.

TABLE 6 Comparison with other methods.

Methods ACC SEN SPE F1-score

MLP 74.68% 57.78% 81.41% 56.62%

TextCNN 79.75% 64.44% 85.84% 64.44%

AttentionCNN 80.34% 66.67% 85.84% 65.39%

Transformer 81.01% 71.11% 84.96% 69.09%

findings illustrated that integrating the self-transformer block

enhanced the classification performance of the network, leading to

an increase in accuracy from 91.77 to 93.04%. This improvement

implied that the self-transformer block leveraged the fused features

obtained from the cross-transformer block, thereby amplifying

essential disease-relevant features through its attentionmechanism.

4 Discussion

4.1 A ResNet-transformer dual-modality
deep learning framework for AD
classification

This study proposed a dual-modality deep learning framework

integrating MRI and SNP data, which significantly improved

AD classification accuracy and provides a critical technical

advancement for early prediction of MCI progression to AD.

Frontiers in AgingNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1532470
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnagi.2025.1532470

TABLE 7 Result of AD vs. NC classification using di�erent SNP sets.

p-value Number of
variants

ACC SEN SPE F1-score

1e-5 1,420 79.13% 44.44% 92.92% 54.79%

1e-6 925 81.01% 71.11% 84.96% 69.09%

1e-7 593 81.01% 64.44% 87.61% 65.91%

The methodology combined ResNet and Transformer networks to

extract high-level features from whole-brain MRI and pre-filtered

SNP data, respectively, followed by cross-modality Transformer-

based fusion. This approach demonstrated multiple technical

innovations, revealing that deep multimodal interaction can

overcome the limitations of traditional linear correlation models.

Traditional AD neuroimaging analyses predominantly rely

on predefined brain measurements (e.g., volume or cortical

thickness), which risk overlooking global microstructural changes

and cross-regional degenerative patterns. To address this, our

ResNet-based MRI feature extraction module employed residual

structures to effectively capture subtle whole-brain structural

variations. Experimental results showed that compared to

conventional methods, e.g. voxel-based morphometry (VBM),

ResNet achieves a notable improvement in sensitivity to minute

gray matter density changes, substantially mitigating feature

omission risks caused by prior assumptions. For SNP data,

which exhibits high dimensionality, weak effects, and linkage

disequilibrium, traditional genome-wide association studies

(GWAS) may miss potential risk loci due to reliance on statistical

threshold filtering. Our Transformer-based SNP feature extraction

module dynamically evaluated global dependencies among SNP

loci through self-attention mechanisms. This enabled adaptive

identification of known AD-associated variants (e.g., APOE:

rs769449, rs439401; TOMM40: rs59007384, rs2075650) and

discovery of novel candidate polymorphisms such as rs566177061

(TSBP1-AS1) and rs6955647 (TANC1). The parallel computing

architecture of Transformer enhanced efficiency in detecting

SNP-SNP interaction effects compared to traditional regression

models, while eliminating dependence on prior gene functional

annotations (Zhou X. et al., 2023). The feature fusion module

employed Cross-Transformer to model deep interactions between

imaging and genetic features, complemented by Self-Transformer

to strengthen intra-modality feature correlations. This dual

mechanism comprehensively explored non-linear multimodal

relationships, outperforming conventional concatenation or

shallow fusion methods.

By synergizing these innovations, the framework not only

enhances diagnostic accuracy for AD and MCI progression

prediction but also provides verifiable biomarker candidates for

pathological mechanism exploration.

4.2 Genetic insights and AD pathogenesis:
bridging SNPs to molecular mechanisms

The identification of key SNPs by the proposed model is

consistent with the established genetic framework of AD while

TABLE 8 Result of AD vs. NC classification using di�erent length of

encoding SNP.

Channel ACC SEN SPE F1-score

4 79.75% 44.44% 93.81% 55.56%

16 81.01% 60.00% 89.38% 64.29%

32 81.01% 71.11% 84.96% 69.09%

64 79.75% 75.56% 81.42% 68.00%

FIGURE 5

AD classification performance using networks with and without the

self-transformer block.

revealing novel pathways. Variant on rs439401 has been closely

linked to AD in previous studies, a result consistent with

our findings. Furthermore, we identified previously unreported

variants that may also be linked to the disease, such as rs769449,

rs59007384, and rs2075650. Most of these SNPs are situated on

chromosome 19, and their associated genes including APOE,

TOMM40, KLK3, and APOC1 have long been recognized for their

significant impact on the development and progression of AD

in prior research, thus validating the relevance of the key SNPs

identified by our network.

Specifically, the prominently ranked rs769449 locus has been

previously associated with plasma p-tau18, with the minor allele

gene A of rs769449 significantly correlated with heightened p-

tau181 levels. Carriers of rs769449-A exhibited more pronounced

longitudinal cognitive decline (Huang et al., 2022). TOMM40,

a gene encoding a protein related to cellular vitality on the

outer mitochondrial membrane, is believed to potentially lead to

mitochondrial dysfunction, thus being linked to AD development.

The rs59007384, positioned near the TOMM40 gene, has been

found in related studies to be associated with APOE levels in
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cerebrospinal fluid. Research suggested that considering both the

APOE gene and variations at the rs59007384 locus may offer more

accurate predictions of AD risk than assessing either factor alone.

In APOEε4 non-carriers, rs59007384 also elevates the risk of MCI

progressing to AD (Cervantes et al., 2011). Additionally, the G

allele of rs2075650, associated with reduced TOMM40 expression,

may impair mitochondrial resilience to Aβ toxicity, accelerating

cognitive decline (Zhou, 2021). Therefore it is also considered to

increase the risk of AD (Huang et al., 2016). Furthermore, several

unexplored loci, including rs566177061, rs6955647, and rs4676754,

may hold potential implications for AD, as yet unaddressed in

existing research.

The genes related to the BBB transport mechanism are the

most relevant group of genes we identified in association with the

pathology and recognition of AD. The BBB serves as a crucial

interface regulating the passage of substances into and out of

the central nervous system (Wu et al., 2023). Research indicated

that a compromised BBB integrity leads to increased permeability,

potentially facilitating the entry of harmful substances (Sweeney

et al., 2018), such as Aβ , into the brain, thereby contributing to

Aβ deposition and accumulation—a hallmark of AD pathology.

Additionally, dysfunction in the BBB transport mechanism may

impede Aβ clearance, exacerbating its accumulation in the

brain (Alkhalifa et al., 2023). The novel association of ABCC5

(via rs113785991) with BBB transport mechanisms introduces

a previously understudied axis in AD. ABCC5, a member of

the ATP-binding cassette (ABC) transporter family, regulates

Aβ efflux at the BBB (Shubbar and Penny, 2020). Our GO

enrichment analysis further implicates SLC22A2 and SLC16A12

in BBB solute transport, suggesting that polymorphisms in these

genes may disrupt ionic homeostasis or nutrient delivery, priming

the brain for neurodegeneration. The identification of genes

associated with the BBB transport mechanism holds substantial

promise for early AD detection and the development of potential

intervention pathways.

4.3 The role of key brain regions and
genetic variants in AD: insights from
structural MRI and SNP analysis

The medial temporal lobe (MTL), which includes the

hippocampus and amygdala, and the basal ganglia are crucial in the

onset and progression of AD. The hippocampus, a core component

of the MTL, is pivotal for memory consolidation. Structural

MRI studies consistently reveal hippocampal atrophy as one of

the earliest biomarkers of AD, correlating with cognitive decline

(Braak and Braak, 1991). The MTL’s vulnerability stems from its

high metabolic demand and dense synaptic connectivity, making

it susceptible to amyloid-β (Aβ) deposition and neurofibrillary

tangles (NFTs) composed of hyperphosphorylated tau. These

pathologies disrupt synaptic plasticity and neuronal integrity,

leading to episodic memory deficits (Jack et al., 2010). The APOE

ε4 allele (rs769449, rs439401 identified by the proposed model) is

strongly associated with hippocampal atrophy. APOE ε4 impairs

Aβ clearance, exacerbating amyloid deposition in the MTL (Liu

et al., 2013). Additionally, TOMM40 (rs2075650), located near

APOE, may influence mitochondrial protein import, affecting

neuronal energy metabolism and accelerating MTL degeneration

(Burggren et al., 2017). The basal ganglia, traditionally linked to

motor control, also participate in cognitive and limbic circuits.

Structural MRI studies report basal ganglia atrophy in AD,

though less pronounced than in the hippocampus. This region’s

involvement may reflect its connections to cortical areas governing

executive function, which deteriorate as AD progresses (Vitanova

et al., 2019).

4.4 Limitations and future work

Although the experimental results showcased promising

application potential for the proposed method, it is essential to

conscientiously address several limitations in future endeavors to

enhance its performance further.

Initially, the selection of a backbone had a discernible impact

on feature extraction, consequently influencing classification

performance. In our present model, we employed ResNet as the

backbone for MRI feature extraction, resulting in a relatively

straightforward MRI feature extraction module and consequently

limiting the classification performance of the proposed model.

Currently, several multi-scale deep convolutional networks, based

on whole-brain and patch approaches, have demonstrated strong

performance in early AD diagnosis (Lian et al., 2020; Zhu et al.,

2021). Our future efforts will focus on enhancing the MRI feature

extraction module.

Furthermore, the performance of the SNP feature extraction

module was constrained by the utilization of diverse gene chips

across different phases in ADNI. Owing to variations in SNP

variants among these genotyping chips, data consolidation from

various chips can only be achieved through imputation. Moreover,

numerous disease-associated risk variants may not be present

in the genotyping chips. In addition to SNP data, integrating

additional forms of genetic data could potentially enhance the

model’s performance.

Additionally, the interpretability method employed in our

model exhibited a relatively coarse nature. The use of trilinear

interpolation in the interpretability analysis resulted in the

identification of larger brain deformation regions, posing

challenges in accurately pinpointing key structures. In future

endeavors, we intend to integrate patch-based methods to map

interpretability analysis results to smaller regions, facilitating the

detection of more nuanced structural changes associated with

the disease. Regarding gene interpretability analysis, our current

approach only yielded the top risk variants. Subsequently, akin to

prior research, we plan to utilize several significant SNPs derived

from the interpretability method of the network to conduct gene

ontology enrichment and expression quantitative trait variant

analyses, thereby delving deeper into the pathological mechanisms

of AD.

Moreover, the utilization of diverse datasets for network

training may yield varied results. Despite utilizing data from

multiple stages within the ADNI dataset, the relatively small data

size constrained the performance of the network. Integrating

additional datasets and expanding the inclusion of in-house
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datasets holds the potential to augment the classification

performance of the network.

5 Conclusion

This study introduced a novel cross-transformer-based multi-

modal deep learning network, leveraging both whole-brain MRI

and SNP data for Alzheimer’s disease diagnosis. Diverging from

conventional approaches that rely on pre-defined ROI signatures

and known risk variants as network inputs, our proposed

network directly incorporates whole-brain MRI data and all SNPs

without prior presets. This approach mitigated the influence

of prior knowledge and contributed to a more comprehensive

understanding of brain regions and genetic variants associated with

disease progression. Furthermore, our utilization of a larger dataset

spanning multiple stages of ADNI enhanced the generalization

capability of our network. The performance of the proposed

method was assessed across 1541 subjects, revealing that the

concurrent use of MRI and SNP data improves AD diagnosis

and prediction performance compared to single-modal data usage.

Additionally, we implemented an attention-based approach to

enhance the interpretability of the model. The discovery of

numerous new SNP variants within this network will advance our

understanding of the mechanisms underlying AD.
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