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Introduction: Conventional machine learning (ML) approaches for constructing

biological age (BA) have predominantly relied on blood-based markers, limiting

their scope. This study aims to develop and validate novel ML-based BA models

using a comprehensive set of clinical, behavioral, and socioeconomic factors

and evaluate their predictive performance for mortality.

Methods: We analyzed data from 24,985 participants in the National Health

and Nutrition Examination Survey (NHANES) from 1999 to 2010, with follow-

up extending to 31 December 2019, or until death or loss to follow-up. Thirty

features, including blood and urine biochemistry, physical examination data,

behavioral traits, and socioeconomic factors, were selected using the Least

Absolute Shrinkage and Selection Operator (LASSO). These features were utilized

to train deep neural networks (DNN) and ensemble learning models, specifically

the Deep Biological Age (DBA) and Ensemble Biological Age (EnBA), with

chronological age (CA) as the reference label. Model performance was assessed

using mean absolute error (MAE), while interpretability was explored using

Shapley Additive exPlanation (SHAP). Predictive accuracy of DBA and EnBA for

mortality was compared with Phenotypic Age (PhenoAge) using the area under

the curve (AUC) derived from Cox proportional hazards models and hazard ratios

(HR), adjusted for demographics and lifestyle factors. Sensitivity analyses were

performed to ensure robustness.

Results: DBA and EnBA accurately predicted actual age (MAE = 2.98 and 3.58

years, respectively) and demonstrated strong predictive capability for all-cause

mortality, with AUCs of 0.896 (95% CI: 0.891–0.898) for DBA and 0.889 (95% CI:

0.884–0.894) for EnBA. Higher DBA and EnBA accelerations were significantly

associated with increased mortality risk (HR = 1.059 and 1.039, respectively).

SHAP analysis highlighted prescription medication usage, hepatitis B surface

antibody status, and vigorous physical activity as the most influential features

contributing to DBA predictions. Furthermore, BA acceleration was linked to

elevated risk of death from specific chronic conditions, including cardiovascular

and cerebrovascular diseases and cancer.

Discussion: Our study successfully developed and validated two ML-based BA

models capable of accurately predicting both all-cause and cause-specific
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mortality. These findings suggest that the DBA and EnBA models hold promise

for early identification of high-risk individuals, potentially facilitating timely

preventive interventions and improving population health outcomes.

KEYWORDS

aging, biological age, machine learning, deep learning, deep neural networks

1 Introduction

Aging is a complicated and inevitable process, which is closely
associated with functional limitations, chronic diseases (Jiang et al.,
2024), and disabilities (Christensen et al., 2009). The degree of aging
shows significant individual differences, so human beings of the
same Chronological Age (CA) may have varied physiological aging
(Partridge et al., 2018). This difference has sparked growing interest
in accurately estimating aging (Moqri et al., 2023). Biological
age (BA), compared to CA or other aging assessment models,
is constructed based on multiple biomarkers (Moqri et al., 2023;
Moqri et al., 2024; Putin et al., 2016; Xue et al., 2021). Therefore,
BA more accurately reflects an individual’s aging process. Biological
age acceleration (Age-Acc), derived as the residual from regressing
BA on CA, quantifies deviations from expected aging trajectories,
where positive values indicate accelerated aging (BA exceeding CA)
and negative values reflect decelerated aging. Accurate estimation
is crucial for better understanding factors that may influence the
aging process, laying the foundation for improving individual
healthspan and the development of geroprotectors and identifying
populations at higher risk of mortality (López-Otín et al., 2023).

The selection and inclusion range of biomarkers are always
critical factors limiting the precision of BA estimation (Moqri et al.,
2023). Previous studies mainly used blood biochemistry indicators
(Mamoshina et al., 2019; Putin et al., 2016) and DNAm data
(Sathyan et al., 2023) as sources of biomarkers for constructing
aging clocks, such as the classic aging methods the Klemera-Doubal
Method (KDM) (Klemera and Doubal, 2006; Machado et al., 2024)
and Phenotypic Age (PhenoAge) (Gao et al., 2023; Jia et al., 2024;
Levine et al., 2018; Mak et al., 2023; Roberts et al., 2021; Wang
et al., 2020; Wang et al., 2023). However, blood biochemistry
indicators can only reflect an individual’s health status at a specific
moment and are easily affected by short-term factors (Duan et al.,
2022). While methylation aging indicators delivered the most
precise CA estimation currently available, epigenetic information
outside of early life is too stable to quantify the influences
of behaviors, living conditions, environment, and therapeutic
approaches on biological aging rates (Murabito et al., 2018; Shipony
et al., 2014). Nevertheless, both behavioral and socioeconomic
factors play significant roles in influencing the aging process

Abbreviations: NHANES: National Health and Nutrition Examination Survey;
LASSO, least absolute shrinkage and selection operator; DNN, deep
neural networks; EnBA, Ensemble Biological Age; CA, chronological age;
PhenoAge, Phenotypic Age; MAE, mean absolute error; SHAP, Shapley
Additive exPlanation; AUC, area under the curve; HR, hazard ratio; BMI, Body
Mass Index; KDM, Klemera-Doubal Method; MLR, multiple linear regression;
PCA, principal component analysis; ML, machine learning; DL, deep learning;
CI, confidence interval.

(Argentieri et al., 2025; Huang et al., 2025; Lawrence et al., 2020).
The exploration of multidimensional aging assessment models,
which comprehensively assess blood biochemistry indicators, urine
biochemistry indicators, physical examination data, behavioral
information, and demographic and socio-economic characteristics,
remains limited.

In the past, the estimation of BA primarily relied on multiple
linear regression (MLR) and principal component analysis (PCA)
methods, which were constrained by dimensionality disasters
and the complex correlation structure of indicators. Machine
learning (ML) and deep learning (DL) are capable of uncovering
complex patterns and non-linear relationships in large datasets
(Dong et al., 2021). DNN leverages hierarchical feature interactions
and automatically handles heterogeneous data types, enabling
the discovery of complex synergistic effects that are difficult to
capture with traditional methods (Huang et al., 2025). Additionally,
Ensemble Learning approach enhances robustness by combining
diverse base models, mitigating overfitting risks while leveraging
their complementary strengths (Zhao et al., 2023). Over the past
decade, they have proven to be powerful tools for constructing
BA (Bobrov et al., 2018; Galkin et al., 2021; Gialluisi et al., 2022;
Mamoshina et al., 2018; Mamoshina et al., 2019; Putin et al.,
2016). These studies, however, are often limited by singularity
of data dimensions (Galkin et al., 2021; Mamoshina et al., 2018;
Mamoshina et al., 2019; Putin et al., 2016), a lack of interpretability
(Mamoshina et al., 2019), and a lack of systematic hyperparameter
tuning (Gialluisi et al., 2022). These shortcomings not only lead
to potential vast deviations in the identification of key biomarkers
but also to deficiencies in prediction accuracy [MAE = 5.55 (Putin
et al., 2016), 5.94 (Mamoshina et al., 2018), 6.00 (Gialluisi et al.,
2022) years]. Moreover, the complex internal structure of ML,
while facilitating the modeling of non-linear relationships, also
implies a reduction in the interpretability of the predictions. SHAP,
grounded in the Shapley values from game theory, allocates the
extent of all of feature’s contribution to the model’s predictions
through considering all possible feature combinations (Lundberg
and Lee, 2017). It addressed feature interactions and provided a
more effective solution to the black-box problem of ML (Tseng
et al., 2020; Xue et al., 2021).

Our study first developed a novel Deep Biological Age
(DBA) model and Ensemble Biological Age (EnBA), and validated
them by linking them to death risk among 24,985 participants
from the NHANES database, monitored over roughly 20 years.
Biological aging was determined based on blood and urine
biochemistry indicators, physical examination data, behavioral
information, and demographic and socio-economic characteristics
obtained at baseline.
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2 Materials and methods

2.1 Study population

The dataset used in this research came from NHANES,
alongside the basic information and methods described earlier. All
NHANES participants completed health questionnaires, physical
examinations, and laboratory tests on blood and urine samples.

Based on prior experience, we utilized aggregated data from
the 1999 to 2010 NHANES survey cycles, which included a
comprehensive analysis of biomarkers and covariates. After
deleting people under 20 years of age and those with missing
data on disease status, the remaining data were processed to
assess other missingness. For continuous variables, multiple
imputation was applied, while categorical variables were
imputed using the expectation-maximization (EM) algorithm.
Following these procedures, the final analysis encompassed 24,985
participants. We then developed two measures of biological
aging: DBA and EnBA, using complete datasets from the selected
biomarkers and covariates.

Among the 24,985 participants, individuals diagnosed with any
of eight pathological conditions (diabetes, cardiac insufficiency,
coronary artery disease (CHD), chest pain, myocardial necrosis,
stroke, cancer or malignancies, chronic kidney disease) were
grouped as patient cohort, while the rest formed the healthy cohort
(N = 15,011). We assumed that in the healthy cohort, BA is
close to CA, and therefore used this cohort to train the DNN
and Ensemble models. The trained models were then applied to
the entire population to estimate individual BA. Flowchart of the
sample selection were showed in Supplementary Figure 1.

Participants in the cohort were all required to give their written
informed consent.

2.2 Covariate data collection

Demographic data (including age, gender, personal earnings,
ethnic background, level of education, and marital status),
health behavior (related to sleep, exercise routine, tobacco use,
and drinking habits), and personal and family health histories
(notably of cardiovascular diseases, cancer, and diabetes) were
systematically gathered through comprehensive questionnaires by
trained professionals. Physical examinations were conducted using
precision-calibrated instruments according to established protocols
to measure Body Mass Index (BMI), fat mass percentage, systolic
and diastolic pressure, and beats per minute (BPM). Standardized
procedures were employed to obtain fasting blood and urine
samples for subsequent laboratory analyses.

Variables such as BMI (classifications as < 25, 25–30, and
≥ 30 kg/m2), ethnicity (classified as Mexican-origin American,
Hispanic of other origins, Non-Hispanic White, and Non-Hispanic
Black), poverty-to-income ratio (categorized as < 1 or ≥ 1),
education level (classified as elementary school education or
below, secondary school education or below, and college education
or higher), marital status (distinguished between unmarried or
other and married or cohabiting), smoking status (classified as
never, former, or current), alcohol consumption patterns (classified
as yes or no), sleep status (classified as trouble or not), and
physical activity levels (categorized as moderate work, vigorous

work, or none) were incorporated as covariates in the analysis.
Specially, Physical activity levels were derived from self-reported
participation, following definitions from questions provided by the
NHANES: (1) Over the past 30 days, did you/SP do moderate
activities for at least 10 min that cause only light sweating or a slight
to moderate increase in breathing or heart rate? Some examples are
brisk walking, bicycling for pleasure, golf, and dancing. (2) Over
the past 30 days, did you/SP do any vigorous activities for at least
10 min that caused heavy sweating, or large increases in breathing
or heart rate? Some examples are running, lap swimming, aerobics
classes or fast bicycling.

2.3 Mortality ascertainment

Mortality data, including causes of death such as cancer,
chronic lower respiratory conditions, diabetes mellitus, Alzheimer’s
disease, cardiovascular and cerebrovascular diseases, influenza
and pneumonia, nephritis, nephrotic syndrome, and nephrosis,
were obtained from NHANES follow-up records. These data
were available through the Public-use Linked Mortality Files
(LMF) for NHANES.

The research timeframe commenced on the enrollment date,
terminating upon the first occurrence of mortality, dropout,
withdrawal from the study, or upon reaching the study cutoff date
of 31 December 2019. The details of the subsequent analytical
procedures have been described in earlier publications (Huang
et al., 2023; Zhang et al., 2021). Briefly, participant health data were
linked to mortality outcomes and specific causes up to 31 December
2019, using unique identifiers assigned to participants. Mortality
outcomes and follow-up periods, expressed in years, were provided
for all participants.

2.4 Deep Biological Age (DBA)

Based on previous research and LASSO selection, thirty features
were selected for training (Supplementary Table 1). The data from
the healthy cohort was split into training (N = 12,009) and testing
(N = 3,002) datasets with an 8:2 ratio. A DNN model (learning
rate = 0.1, hidden layer sizes: 700, 1000, 700, 200, and 1) was
applied, using actual age as the dependent variable, with 10-fold
cross-validation. The network incorporated dropout regularization
(rate = 0.4) to mitigate overfitting, as detailed in Supplementary
Table 2. To isolate biometric signals, we further developed a
biometric-only DBA model by excluding five behavioral and
socioeconomic features (e.g., personal income, physical activity,
alcohol level, country of birth and education level), retaining
identical hyperparameters as the full-feature model. MAE was
computed to evaluate the predictive accuracy of the model. The
SHAP method was used to evaluate each feature’s contribution to
DBA and to determine the variable importance ranking.

2.5 Ensemble Biological Age (EnBA)

We also trained ensemble learning models using data
from the healthy cohort following a similar approach. The
data were split into training and testing datasets with an
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8:2 ratio. The ensemble models were constructed using a
combination of base learners, including Random Forest, Extra
Trees, XGBoost, and Support Vector Machine (SVM). We selected
Ridge regression as the meta learner due to its ability to perform
well in scenarios where multicollinearity is present and its
capacity to prevent overfitting through L2 regularization. Ridge
regression’s regularization parameter, set to α = 0.1, controls
the model’s complexity, helping to maintain a balance between
bias and variance, as detailed in Supplementary Table 2. To
validate the contribution of non-biometric traits, we additionally
implemented a biometric-only EnBA model, excluding the same
five behavioral/socioeconomic features while retaining the full-
feature model’s hyperparameters.

The ensemble model’s effectiveness was assessed using MAE
(10-fold cross-validation) to assess their accuracy in predicting
actual age and to determine the differences between the
predicted BA and CA.

2.6 PhenoAge estimation

As previously mentioned, PhenoAge V2 was developed by
regressing the mortality risk on 42 blood biomarkers and CA and
has been widely used to capture morbidity and mortality risks
across different subgroups. PhenoAge (V2) was computed using
the R package “BioAge” (Kwon and Belsky, 2021). Based on the
Gompertz distribution, a parametric proportional hazards model
was established by selecting chronological age and nine clinical
biomarkers, converting the 10 years mortality risk into years of
age. Initially, we trained the algorithm on the NHANES III dataset,
modeling mortality as a function of 12 blood biomarkers [including
albumin (ALB), alkaline phosphatase (ALP), blood urea nitrogen
(BUN), creatinine (CRE), C-reactive protein (CRP), HbA1c, total
cholesterol (TC), uric acid (UA), white blood cell count (WBC),
lymphocyte percentage (LYM%), mean cell volume (MCV), and red
cell distribution width (RDW)], and finally projected the biological
aging measures in our data.

Additionally, we reconstructed the PhenoAge V1 developed
by Levine el al. (2018) to enable direct comparison with
earlier-generation clocks after excluding participants without
blood glucose (n = 12,925). This version combines CA and
nine core biomarkers [albumin (ALB), alkaline phosphatase
(ALP), creatinine (CRE), C-reactive protein (CRP), blood glucose
(BG), white blood cell count (WBC), lymphocyte percentage
(LYM%), mean cell volume (MCV), and red cell distribution
width (RDW)], reflecting systemic physiological dysregulation
as originally described (Levine et al., 2018). Both V1 and
V2 were evaluated alongside our DBA and EnBA clocks
(Supplementary Figure 2), highlighting performance differences
between survival-optimized clocks (PhenoAge) and age-trained
models (DBA/EnBA).

2.7 Biological age acceleration

To calculate biological age acceleration (Age-Acc), we
performed linear regression of each biological age measure (DBA,
EnBA, and PhenoAge) against chronological age (CA), with the
resulting residuals representing age acceleration values (DBA-Acc,

EnBA-Acc, and PhenoAge-Acc, respectively); positive values
indicate accelerated aging (biological age exceeding expected age)
while negative values reflect decelerated aging, with all models
incorporating necessary adjustments for technical covariates.

2.8 Statistical analysis

Study participant’ baseline characteristics were summarized
using median (IQR) or N (%), and statistical tests were
employed to detect differences: t-tests and Wilcoxon rank-sum
tests for continuous variables, as appropriate; chi-square tests for
categorical variables.

We compared the predictive performance of DBA, EnBA,
PhenoAge (V1 and V2) with all-cause mortality using Cox models
and used AUC to evaluate performance. Sensitivity analyses were
undertaken to ascertain the robustness of these associations,
with further refinements made to the models by adjusting
for additional factors: actual age, gender, level of education,
BMI, sleep status, physical activity levels, smoking behavior, and
alcohol consumption.

To determine the associations between Age and Age-Acc, and
both all-cause and cause-specific mortality, we employed Cox
proportional hazards models, making comparable adjustments
in each. To further solidify these associations, we conducted
multiple sensitivity analyses. Finally, we presented the association
analysis between DBA Acceleration and cause-specific mortality
using a forest plot.

All analytical tasks and visualizations were carried out utilizing
Python version 3.11.5 and R version 4.5.3. The P-values were
calculated on a two-tailed basis, and statistical significance was
established at p < 0.05.

3 Results

3.1 Characteristics of study population

The fundamental attributes of the study participants at
baseline are outlined in Table 1. This investigation included
24,985 individuals, with 15,011 participants designated as healthy,
representing the entirety of this cohort. The median age of the
healthy cohort was 38, while the median age of all participants
was 46 years. The gender distribution was balanced, with females
comprising 52.8% of the healthy cohort and 52.4% of the all
participants.

The median DBA was 45.35 (IQR: 30.18; 95% CI: 21.58,
79.63), demonstrating a strong correlation with chronological age
(R2 = 0.95, p < 0.0001). The median EnBA was 45.71 (IQR:
30.30; 95% CI: 22.32, 81.76), showing a strong correlation with
chronological age (R2 = 0.93, p < 0.0001). The median PhenoAge
V1 was 35.99 (IQR: 29.43; 95% CI: 37.71, 38.19), indicating a strong
correlation with chronological age (R2 = 0.91, p < 0.0001). The
median PhenoAge V2 was 43.29 (IQR: 30.40; 95% CI: 16.07, 82.56),
indicating a strong correlation with chronological age (R2 = 0.92,
p < 0.0001). The median DBA-Acc was −0.289, with an IQR of
2.41. The median EnBA-Acc was −0.139, with an IQR of 5.36. The
median PhenoAge-Acc V2 was −0.917, with an IQR of 6.31. The
median PhenoAge-Acc V2 was −0.254, with an IQR of 6.24.
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TABLE 1 Characteristics of study population.

Characteristics Healthy (n/%) All (n/%)

Total 15,011 24,985

Age [median (IQR)] 38 [28.0.50.0] 46 (33.0, 62.0)

Gender (%)

Male 7,078 (47.2) 11,900 (47.6)

Female 7,933 (52.8) 13,085 (52.4)

Ethnicity level (%)

Mexican American 3,484 (23.2) 5,074 (20.3)

Non-Hispanic White 7,133 (47.5) 12,479 (49.9)

Other Hispanic 2,619 (17.4) 4,762 (19.1)

Non-Hispanic Black 1,775 (11.8) 2,670 (10.7)

Family PIR (%)

< 1 3,131 (20.9) 5,040 (20.2)

≥ 1 11,880 (79.1) 19,945 (79.8)

Education level (%)

Primary school degree or less 3,979 (26.5) 7,216 (28.9)

High school degree or less 3,478 (23.2) 5,881 (23.6)

College degree or higher 7,539 (50.3) 11,862 (47.5)

Marital status (%)

Unmarried or other 5,448 (36.9) 9,181 (36.7)

Married or living with a partner 9,563 (63.7) 15,804 (63.3)

Smoking (%)

Current 2,942 (19.6) 5,519 (22.1)

Former 3,668 (24.4) 6,247 (25.0)

Never 8,396 (56.0) 13,210 (52.9)

Alcohol (%)

Yes 4,021 (26.8) 7,429 (29.7)

No 10,990 (73.2) 17,556 (70.3)

Trouble sleeping (%)

Yes 1,556 (10.4) 3,396 (13.6)

No 13,455 (89.6) 21,589 (86.4)

Physical activity (%)

Moderate work 3,820 (25.4) 6,570 (26.3)

None 6,586 (43.9) 11,980 (47.9)

Vigorous work 4,605 (30.7) 6,435 (25.8)

BMI (kg/m2, %)

< 25 5,424 (36.1) 7,529 (30.1)

≥ 30 5,392 (35.9) 8,660 (34.7)

25–30 4,195 (27.9) 8,796 (35.2)

Death and causes

All-cause (%) 978 (6.5) 4,032 (16.1)

Cardiovascular and cerebrovascular
death (%)

367 (2.4) 1,773 (7.1)

Cancer (%) 375 (2.5) 1,239 (5.0)

Diabetes (%) 23 (0.2) 209 (0.8)

(Continued)

TABLE 1 (Continued)

Characteristics Healthy (n/%) All (n/%)

Chronic lower respiratory diseases (%) 95 (0.6) 331 (1.3)

Alzheimer’s disease (%) 72 (0.5) 230 (0.9)

Influenza and pneumonia (%) 25 (0.2) 124 (0.5)

Nephritis nephrotic syndrome and
nephrosis (%)

21 (0.1) 126 (0.5)

3.2 Prediction performance of biological
age

Both DBA and EnBA successfully forecasted CA, with DBA
attaining an MAE of 2.98 years and EnBA achieving an MAE of
3.58 years. After excluding five characteristics, the biometric-only
versions of DBA and EnBA achieved MAEs of 3.26 and 4.59 years,
respectively. Furthermore, DBA and CA demonstrated comparable
performance in predicting mortality, with DBA achieving an
AUC of 0.896 (95% CI: 0.891–0.901) and CA achieving an
AUC of 0.893 (95% CI: 0.888–0.898) (Figure 1A, Models 1
and 2). When gender and CA were added to the model based
on DBA (Figure 1A, Model 3), the AUC slightly increased to
0.901 (95% CI: 0.896–0.906). Model 4, which included DBA, CA,
gender, education level, BMI, alcohol use, smoking status, physical
activity, and sleep status, showed an AUC of 0.906 (95% CI:
0.901–0.911).

Ensemble Biological Age and PhenoAge V2 were also
evaluated using Cox proportional hazards models (Figures 1B, C).
Both demonstrated strong predictive performance for mortality
prediction. The AUC for EnBA was 0.889 (95% CI: 0.884–
0.894), while the AUC for PhenoAge V2 was 0.902 (95% CI:
0.898–0.907). Furthermore, Age-Acc alone did not demonstrate
strong predictive power for mortality, as shown by DBA-Acc
with an AUC of 0.530 (95% CI: 0.520–0.541) and EnBA-Acc
with an AUC of 0.549 (95% CI: 0.538–0.560). However, after
adjusting for the same covariates as the Age-based model,
the Age-Acc-based model showed similarly excellent predictive
performance, with DBA-Acc achieving an AUC of 0.908 (95% CI:
0.903–0.912).

These findings illustrated that while BAs are a significant
predictor of mortality, the integration of additional
sociodemographic variables substantially improved the predictive
accuracy of the regression model. The improvement in
performance due to these covariate adjustments was particularly
pronounced in the Age-Acc-based models. Furthermore, we
selected the top 10 variables based on SHAP values and included
them as predictors in the Cox proportional hazards model.
The resulting ROC curve achieved an AUC of 0.81 (95% CI:
0.802–0.817). The biometric-only DBA model achieved an AUC
of 0.892 (95% CI: 0.885–0.9) in predicting all-cause mortality,
whereas its full-feature counterpart demonstrated significantly
improved discriminative ability [AUC = 0.902 (95% CI: 0.895–
0.91)] (Supplementary Figure 2). Similarly, the full-feature EnBA
model outperformed its biometric-only version [AUC = 0.895
(0.887–0.902) vs. 0.884 (0.876–0.891)], highlighting the added
value of integrating non-biometric domains—such as income
level and alcohol use—into aging clocks. These results align
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FIGURE 1

ROC curves. Model 1 predicts mortality based on Deep Biological Age (DBA) (A), Ensemble Biological Age (EnBA) (B), Phenotypic Age Version 2
(PhenoAge V2) (C). Model 2 is based on chronological age (CA). Model 3 is based on Model 1, adjusting for CA and gender. Model 4 is based on
Model 3, further adjusting for education, BMI, drinking, smoking, sleep, and physical activity.

TABLE 2 Associations of age acceleration (Age-Acc) with all-cause mortality.

Age-Acc Participants Number of death HR (95% CI)

DBA-Acc 24,985 4,032 1.059 (1.050, 1.068)

EnBA-Acc 24,985 4,032 1.039 (1.032, 1.045)

PhenoAge-Acc V2 24,985 4,032 1.073 (1.067, 1.079)

DBA-Acc 12,060 1,979 1.066 (1.052, 1.080)

EnBA-Acc 12,060 1,979 1.036 (1.027, 1.046)

DBA (biometric only)-Acc 12,060 1,979 1.032 (1.025, 1.038)

EnBA (biometric only)-Acc 12,060 1,979 1.026 (1.017, 1.035)

PhenoAge-Acc V2 12,060 1,979 1.073 (1.067, 1.079)

PhenoAge-Acc V1 12,060 1,979 1.055 (1.049, 1.061)

HR, hazard ratio; CI, confidence interval. The model was based on age accelerations, adjusting for age, gender, education level, BMI, smoking, drinking, sleep, and exercise status.

with the observed performance gap between full-feature and
biometric-only models, where the inclusion of behavioral and
socioeconomic traits enhanced predictive accuracy by ∼1%
(1AUC = 0.01). Notably, the full-feature DBA model exhibited
superior AUC compared to PhenoAge V1 [AUC = 0.901 (0.894–
0.908)], underscoring its potential as a more robust biomarker of
aging-related mortality risk.

3.3 Association with all-cause mortality

Adopting the same approach, we explored the associations
between Age-Acc and mortality rates (Table 2). In our full cohort
(n = 24,985, 4,032 deaths), after accounting for various covariates
including age, gender, education level, BMI, alcohol consumption,
smoking, sleep, and physical activity, the link between Age-
Acc and mortality risk remained statistically significant. Each
additional year of DBA-Acc was associated with a 5.9% increase
in mortality risk (HR = 1.059, 95% CI: 1.050–1.068). Similarly,
EnBA-Acc correlated with a 3.9% rise in mortality risk (HR = 1.039,
95% CI: 1.032–1.045), while PhenoAge-Acc V2 showed a 7.3%
augmentation in mortality risk (HR = 1.073, 95% CI: 1.067–1.079).

In the sub cohort without blood glucose (n = 12,060),
biometric-only models demonstrated reduced predictive power
compared to full-feature versions: DBA (Biometric Only)-Acc
had a minimal HR of 1.032 (95% CI: 1.025–1.038), whereas

full DBA-Acc retained a higher HR of 1.066. Similarly, EnBA
(Biometric Only)-Acc (HR = 1.026) underperformed relative to
EnBA-Acc (HR = 1.036).

Additional analysis of models’ evolution revealed distinct
patterns across adjustment models. In Model 1 (unadjusted), DBA
demonstrated the highest hazard ratio (HR = 1.123) among all
metrics, outperforming PhenoAge V1 (HR = 1.084) and PhenoAge
V2 (HR = 1.103). After adjusting for chronological age and gender
(Model 2), DBA retained superior predictive power (HR = 1.066)
compared to PhenoAge V1 (HR = 1.056). Further multivariable
adjustment (Model 3, including education, BMI, lifestyle factors)
marginally reduced HRs for most metrics, but DBA still showed the
strongest association (HR = 1.053) among biomarker-based clocks,
significantly surpassing PhenoAge V1 (HR = 1.044).

Notably, the Biometric Only versions of DBA and EnBA
exhibited stark performance declines. For instance, DBA
(Biometric Only) showed a near-null HR in Model 3 (HR = 0.998,
95% CI: 0.998–0.999), indicating loss of predictive validity after
adjusting for non-biometric confounders.

In contrast, the full-feature DBA and EnBA models maintained
robust associations (DBA: HR = 1.053; EnBA: HR = 1.036),
underscoring the critical role of behavioral and socioeconomic
domains in refining risk estimates. Similarly, EnBA (Biometric
Only) demonstrated weaker HRs across all models (e.g., Model 3:
HR = 1.039) compared to its full-feature counterpart (HR = 1.036),
though the gap was smaller than in DBA. These findings
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FIGURE 2

Forest plot. (A) DBA-Acc; (B) EnBA-Acc; (C) PhenoAge-Acc V2. The model was based on age acceleration (Age-Acc), adjusting for age, gender,
education level, e Body Mass Index (BMI), smoking, drinking, sleep, and exercise status.

confirm that integrating biometric baselines with contextual
factors significantly enhances the predictive validity of biological
age clocks, with DBA emerging as the top-performing metric
against PhenoAge V1.

3.4 Cause-specific mortality

Utilizing Cox proportional hazards models, we uncovered
significant correlations between DBA-Acc and heightened cause-
specific mortality rates from cardiovascular and cerebrovascular
diseases, cancer, diabetes, chronic lower respiratory diseases,
influenza and pneumonia, nephritis, nephrotic syndrome, and
nephrosis (Figure 2A).

More precisely, an increment of one year in DBA-Acc notably
elevated the risk of mortality stemming from cardiovascular and
cerebrovascular diseases (HR = 1.067, 95% CI: 1.053–1.082). DBA-
Acc was also significantly associated with an increased mortality
rate for individuals dying from cancer, with the HR rising by 3.1%
(HR = 1.031, 95% CI: 1.015–1.047).

Ensemble Biological Age-Acc showed statistically significant
associations with the mortality risk of all specific chronic diseases
monitored in the NHANES dataset (Figure 2B). The results for
PhenoAge Acceleration V2 were similar to those for DBA-Acc,
showing significant associations with increased mortality risk from
various chronic diseases, except for Alzheimer’s disease (Figure 2C).

3.5 SHAP for DBA

The SHAP values for each feature’s contribution to DBA were
illustrated in Figure 3, showing the top 10 most significant variables
selected by the DBA model (Figure 3A). These values quantified the
impact of each variable on the cumulative predictive performance,
with higher values indicating greater influence. Each dot represents
a single participant’s SHAP value (impact on predicted BA); Color
indicates feature value (red = high, blue = low); Position on
the x-axis shows whether that value contributes to increasing
(positive, right) or decreasing (negative, left) BA. Consistent with
expectations, the key biomarkers reflecting medical conditions and
prescription medication usage emerged as the primary predictor
among all evaluated features, followed by hepatitis B surface
antibody, vigorous activity, and hepatitis A antibody. Prescription
medication use was assessed in NHANES via a binary question

covering all therapeutic classes except vitamins and minerals.
Elevated serum creatinine levels were linked to a heightened risk
of mortality, underscoring that potential liver function impairment
is a major factor contributing to decreased DBA (Figure 3B).

4 Discussion

In this study, we developed and validated two novel aging
clocks, the DBA model and EnBA, using DNN and ensemble
learning techniques, leveraging data from NHANES, including
blood and urine biochemical indicators, physical examination data,
behavioral information, and demographic and socio-economic
characteristics. Our findings demonstrated that both DBA and
EnBA alone exhibit outstanding predictive performance in
mortality prediction. This comprehensive approach not only
deepened our understanding of the factors influencing aging but
also provided supports to interventions aimed at promoting healthy
aging and reducing premature mortality.

Identifying aging biomarkers is crucial for assessing an
individual’s physiological aging, with the fundamental concept
tracing back to the first biological age proposition in 1988,
extending to contemporary research (Baker and Sprott, 1988).
Our study considered comprehensive feature inclusion approaches
and selected 30 features, including biochemistry, behaviors
and socioeconomic agents which impact aging trajectories and
mortality risk (Argentieri et al., 2025; Huang et al., 2025;
Lawrence et al., 2020). Previous studies have often focused
on identifying key aging factors in blood biomarkers or other
laboratory tests for constructing aging clocks (Mamoshina et al.,
2018; Mamoshina et al., 2019; Putin et al., 2016). For instance,
Mamoshina constructed an aging clock utilizing blood test data
from populations in three different regions, with external validation
through NHANES using Cox regression in all-cause mortality risk
[MAE = 9.93, 95% CI: (10.36–9.35)] (Mamoshina et al., 2018).
Over the years, PhenoAge was innovatively developed by screening
biomarkers associated with mortality, directly related to diseases or
mortality rather than relying on CA predictions (Jia et al., 2024;
Wang et al., 2016; Wang et al., 2023). This method, often referred to
as the Levine Method, utilizes a set of clinical biomarkers along with
CA to estimate biological age. Moreover, while the Levine Method
considers CA and clinical biomarkers, the calculation of PhenoAge
requires follow-up and mortality data from the study population
(Vetter et al., 2022). Compared to PhenoAge V1 and V2, our DBA
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FIGURE 3

Shapley Additive exPlanation (SHAP) values on the DNNs model. (A) SHAP summary plot, (B) Feature importance ranking by mean SHAP value. Each
dot represents a single participant’s SHAP value (impact on predicted biological age). Color indicates feature value (red = high, blue = low). Position
on the x-axis shows whether that value contributes to increasing (positive, right) or decreasing (negative, left) biological age.

and EnBA, which consider a broader range of indicators, more
accurately predict changes in actual age (Pearson’s r 0.97 vs. 0.96
and 0.96, R2 0.95 vs. 0.92 and 0.93), and do not rely on follow-up
data, offering greater clinical applicability.

In the past, researchers have developed biological age models
using methods ranging from initial multiple linear regression
(Cabral et al., 2022) and PCA (Nakamura et al., 1988) to
more complex approaches like the Levine method (Jia et al.,
2024; Wang et al., 2023). These methods were limited by the
complex non-linear relationships in large datasets and struggle
to maintain close correlation with CA while providing robust
mortality prediction capabilities. ML and DL algorithms excelled
in autonomously deriving models and identifying complex patterns
from extensive datasets, proving superior to traditional methods
through their powerful predictive abilities (Mudabbiruddin and
Mosavi, 2023). Gialluisi et al. (2022) initially developed a DNN-
based aging clock using 33 circulating blood biomarkers in
an Italian population, tested for predicting all-cause mortality
[MAE = 6.47; HR = 1.05, 95% CI: (1.04–1.05)]. We developed
the DBA model, which exhibited excellent performance in
the association of its acceleration with all-cause mortality risk
[HR = 1.059, 95% CI: (1.050–1.068)], following adjustments for
various covariates such as CA, gender, education level, BMI, alcohol
consumption, smoking, sleep, and physical activity. In terms of
predicting mortality after adjusting for baseline covariates, the
DBA model achieved an AUC of 0.902, slightly lower than that of
PhenoAge V2 (AUC = 0.906) but superior to EnBA (AUC = 0.895)
and PhenoAge V1 (AUC = 0.901). Our study conducted long-
term follow-up in a general population and expanded the range
of included features, making DBA more accurate than previous
similar studies (MAE = 2.98). Notably, the Biometric Only versions
of DBA (AUC = 0.892) and EnBA (AUC = 0.884) exhibited stark
performance declines. At the same time, we linked DBA-Acc with
cause-specific mortality risk.

Our study identified the top 10 features intrinsically linked to
aging through the SHAP method, with Prescription Medication
Usage, Hepatitis B Surface Antibody, Vigorous Activity ranking as
the top three contributors (Figure 3). When the top 10 features were
used as variables in the Cox regression model, the corresponding
ROC curve had an AUC of 0.802 (95% CI: 0.792–0.813). It
is widely accepted that improved healthcare conditions lead to
significant increases in lifespan and reductions in mortality (Nayan

et al., 2018). Hepatitis B Surface Antibody (HBsAb) indicates
the degree of Hepatitis B Virus (HBV) infection, serving as a
pivotal factor in the morbidity and mortality linked to chronic
hepatitis B (CHB), which ranks among the top ten causes of death
worldwide (Huang et al., 2023; Iloeje et al., 2007). Approximately
15%–25% of individuals who are chronic carriers of HBV develop
chronic liver disease, which may include cirrhosis, liver failure,
or liver cancer, which are the primary pathways through which
HBV infection impacts aging and mortality (Ganem and Prince,
2004). A UK Biobank (UKB) study using wearable devices and
machine learning found that brief, intense non-exercise physical
activity was significantly associated with a 38%–40% decrease
in all-cause and cancer mortality risk, as well as a 48%–49%
reduction in cardiovascular disease mortality risk (Stamatakis et al.,
2022). Research has also shown that around one hour of vigorous
activity per week is the optimal dose for reducing health risks
(Ahmadi et al., 2022).

Our study encompassed a broad cohort of 24,985 individuals,
spanning various age demographics, each with comprehensive
clinical biomarker data. A methodological advantage was the
application of the SHAP method, which addresses the challenge of
interpretability constraints in opaque algorithmic models (Ribeiro
et al., 2016). Rigorous analytical methods were implemented,
including ten-fold cross-validation on the training set and internal
validation on the test cohort. Compared to the Levine Method,
which requires follow-up and mortality data for the calculation of
PhenoAge, our DBA and EnBA models offer a significant advantage
by relying solely on cross-sectional data and over performed to
original PhenoAge version. Notably, clinicians can easily access the
data for the key factors identified in our model through electronic
health records, eliminating the need for additional documentation
or supplementary diagnostic procedures for patients.

Despite its strengths, this study acknowledges certain
limitations. First, although the evaluation of BAs encompasses
multiple dimensions, the NHANES dataset has a limited scope
of data collection, precluding a comprehensive assessment
that includes various modalities such as diagnostic imaging.
This limitation may affect the model’s accuracy and precision.
Moreover, since this study was conducted within the United States
population, the fitting and extrapolation potential of this predictive
model to other racial and regional populations remain unverified.
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5 Conclusion

Our study developed and validated two biological age
estimators using blood and urine biomarkers, physical exam
data, behavioral information, and socio-economic characteristics.
These estimators accurately predicted all-cause and specific
chronic disease mortality among NHANES participants and were
compared with PhenoAge. Notably, our models have shown
better performance than original PhenoAge version at predicting
mortality. Although slightly less effective at predicting mortality
than PhenoAge V2, our models aligned more closely with actual age
and did not require follow-up data, making them practical for use
with physical exams and electronic health records. Further research
is needed to validate these models across different populations and
optimize them with multimodal data for a more comprehensive
assessment of aging.
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