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Guangzhou, China, 2Guangdong Provincial Clinical Research Center for Rehabilitation Medicine,
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Background: Repetitive transcranial magnetic stimulation (rTMS) is emerging

as a promising non-invasive intervention for Alzheimer’s disease (AD), yet

therapeutic outcomes remain inconsistent across studies. This meta-analysis

aimed to evaluate the cognitive benefits of rTMS in AD patients, with a specific

focus on stimulation targets and protocols variations.

Methods: A systematic literature search was conducted in PubMed, Web of

Science, Embase, and Cochrane Library for relevant English-language studies

published up to 31 May 2024. Cognitive outcomes were assessed using the

Mini-Mental State Examination (MMSE) and Alzheimer’s Disease Assessment

Scale-Cognitive Section (ADAS-Cog). Data were pooled using a random-effects

model, with standardized mean difference (SMD) or mean differences (MD) and

95% confidence intervals (CI) calculated. Subgroup analyses were performed to

examine the effects of stimulation targets, protocol variations and population

demographics on rTMS efficacy.

Results: Twenty-two studies involving 874 participants were included in

this meta-analysis. Overall, rTMS significantly improved cognitive function

(SMD = 0.27; 95% CI = 0.14–0.41; p < 0.0001), showing that the efficacy of

rTMS varied by stimulation target and protocol. Stimulation of the dorsolateral

prefrontal cortex (DLPFC) led to significant cognitive improvement (SMD = 0.49,

95% CI = −0.26 to 0.73; p < 0.0001), whereas bilateral DLPFC stimulation

showed no significant improvement (SMD = 0.13; 95% CI = −0.40 to 0.66;

p = 0.62). Stimulating the parietal lobe or associated regions produced moderate

cognitive benefits (SMD = 0.29; 95% CI = 0.03–0.55; p = 0.03). Notably, multi-

target stimulation over the bilateral DLPFC, parietal lobes, Wernicke’s area,

and Broca’s area also showed substantial cognitive improvement (MD = 2.85;

95% CI = 1.69–4.00; p < 0.00001). Additionally, subgroup analysis based on

geographical background revealed greater effects in studies conducted in Asia

(SMD = 0.40, 95% CI = 0.14–0.65; p < 0.003).

Conclusion: rTMS is an effective intervention for cognitive enhancement in

AD, with its efficacy significantly influenced by stimulation target and protocol.

Notably, the greater cognitive benefits observed in Asian populations suggest

a potential role of genetic and demographic factors that warrant further

investigation. These findings contribute to the development of optimized,

personalized rTMS protocols for AD treatment.
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Introduction

Alzheimer’s disease (AD) is the most common cause of
dementia (Plassman et al., 2007), emerging as one of the most
pressing global health challenges of the 21st century. Currently,
approximately 50 million people worldwide are affected by AD,
with projections indicting a rise to 150 million by 2050 (Lane et al.,
2018). AD is characterized by a progressive decline of cognitive
functions (e.g., memory, language, executive function, and
visuospatial skill) that are accompanied by widespread disruptions
in functional connectivity within crucial neural networks (Chou
et al., 2022). Despite decades of research, pharmacological
interventions remain largely ineffective in mitigating disease
progression, offering only symptomatic relief with minimal impact
on underlying neurodegenerative mechanisms (Canter et al., 2016;
Livingston et al., 2017). This therapeutic gap highlights the urgent
need to explore and develop alternative, more effective treatment
strategies.

A growing body of research suggests that AD is not only
a disorder of neuronal loss but also a disease of large-scale
network dysfunction, affecting both structural and functional
connectivity (Dennis and Thompson, 2014). Specifically, impaired
connectivity within major neural networks, including the default
mode network (DMN), dorsal attention network (DAN), salience
network (SAL), executive control network (ECN), and sensory-
motor network (SMN), has been strongly linked to cognitive
deterioration in AD (Brem et al., 2020). The DMN, which includes
the posterior cingulate cortex, precuneus, medial prefrontal
cortex, inferior parietal lobule, and bilateral temporal cortex,
has received particular attention due to its important role in
memory consolidation, self-referential thinking, and cognitive
processing (Horn et al., 2014; Whitfield-Gabrieli and Ford, 2012).
Studies have revealed a close relationship between functional
connectivity abnormalities in the DMN and cognitive impairments
in AD. For example, Talwar et al. (2021) found that AD patients
exhibited widespread impairment of functional connectivity, with
the precuneus and posterior cingulate cortex being severely
affected. Similarly, Zheng et al. (2019) reported disruptions in the
posterior parts of the DMN in AD patients. In addition, Sorg et al.
(2007) found that patients with mild cognitive impairment (MCI)
exhibited impaired connectivity in the left posterior cingulate
cortex and the right medial prefrontal cortex of the DMN as
well as the bilateral superior parietal lobules and inferior frontal
gyri of the ECN. Interestingly, compensatory increase in ECN
connectivity was observed in AD patients (Agosta et al., 2012).
These studies highlight the complex interplay between cognitive
impairments in AD and disruptions in network connectivity.
Therefore, modulating these disrupted neural networks holds

potential for improving cognitive function in AD patients (Pennisi
et al., 2011).

Non-invasive brain stimulation (NIBS) techniques have
emerged as promising tools for modulating cortical excitability
(Di Pino et al., 2014) and inducing neuroplasticity (Cirillo et al.,
2017). Among these techniques, repetitive transcranial magnetic
stimulation (rTMS) has received significant attention for its ability
to modulate neural activity and functional connectivity (Brignani
et al., 2008; Maeda et al., 2000), offering a therapeutic potential
for neurological and psychiatric disorders (Esposito et al., 2022).
The neurophysiological effects of rTMS are highly dependent
on stimulation parameters, including frequency, intensity, target,
and duration. High-frequency rTMS (HF-rTMS, ≥ 10 Hz) and
intermittent theta-burst stimulation (iTBS) are known to induce
long-term potentiation (LTP)-like plasticity, enhancing synaptic
strength. In contrast, low-frequency rTMS (LF-rTMS, ≤ 1 Hz)
and continuous theta-burst stimulation (cTBS) typically induce
long-term depression (LTD)-like plasticity, reducing cortical
excitability (Fox et al., 1997). Note that conventional rTMS faces
limitations in spatial focality, as the widely used international
10–20 EEG-based targeting approach contributes to variability
in treatment outcomes. Neuronavigation-guided rTMS is thus
increasingly employed, integrating individualized neuroimaging
data to optimize stimulation precision and maximize therapeutic
outcomes (Lefaucheur et al., 2014; Lefaucheur et al., 2020; Terao
and Ugawa, 2002).

A growing body of evidence supports rTMS as a promising
intervention for neurodegenerative disorders including AD
(Anderkova and Rektorova, 2014; Hsu et al., 2015; Luber and
Lisanby, 2014; Zhang W. et al., 2022), showing sustained cognitive
improvements in memory, attention, and executive function that
can persist beyond the treatment phase (Sabbagh et al., 2020).
To date, six meta-analyses have examined the cognitive effects of
rTMS in AD patients (Dong et al., 2018; Liao et al., 2015; Lin et al.,
2019; Wang et al., 2020; Wei Z. et al., 2022; Zhang T. et al., 2022).
While these studies generally support the therapeutic effects of
HF-rTMS in enhancing cognitive function, their findings exhibited
considerable variability due to heterogeneity in stimulation
parameters such as frequency, intensity, target, and duration.
Notably, much attention has been given to optimizing rTMS
frequencies, but fewer studies have systematically examined the
role of stimulation target. Single-site rTMS over the DLPFC has
shown efficacy in improving memory and executive functions in
AD patients (Wang et al., 2014). However, emerging evidence
suggests that alternative targets, such as the parietal lobe, may also
play a crucial role in modulating cortical-hippocampal networks
essential for memory function (Wang et al., 2014). Despite
these promising findings, there remains a lack of a systematic
comparisons evaluating the cognitive benefits of rTMS across
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different cortical regions in AD. To address this gap, we conducted
a comprehensive systematic meta-analysis to assess the cognitive
effects of rTMS over different cortical targets in AD patients. By
examining how different stimulation targets influence cognitive
improvements, this study provides critical insights for refining
rTMS protocols, thereby guiding the development of optimized,
personalized neuromodulation strategies for effective treatment of
cognitive impairment in AD.

Materials and methods

Search strategy

This study protocol was registered in the PROSPERO
database (CRD42023434084) and conducted in accordance with
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines, specifically following the Cochrane
extension statement. A systematic literature search was performed
across PubMed, Web of Science, and EMBASE databases to
identify relevant studies published between 1 January 2010
and 31 May 2024. The search strategy incorporated controlled
vocabulary and free-text keywords using the following query
structure: (Alzheimer’s disease OR Alzheimer Dementia OR related
MeSH entry terms) AND (Transcranial Magnetic Stimulation
OR Magnetic Stimulation, Transcranial OR related MeSH entry
terms) AND (filters for maximum sensitivity in identifying
controlled trials).

Inclusion and exclusion criteria

Studies were included in this meta-analysis if they met
the following criteria: (1) participants were diagnosed with
AD based on clinical diagnostic criteria; (2) rTMS was the
sole intervention; (3) cognitive function was assessed as the
primary outcome measure; (4) study design included either
a parallel-group or crossover sham-controlled group; (5)
published in English in a peer-reviewed journal; (6) patients
were allowed to continue their standard medication regimens,
provided these remained unchanged throughout the rTMS
treatment. Initial screening was conducted based on titles and
abstracts, and full-text review was performed for studies with
unclear eligibility. Studies were excluded if they were irrelevant,
lacked a sham-control condition, or did not report cognitive
outcomes. If relevance or eligibility remained uncertain, the
full text of the paper was reviewed. Additionally, conference
abstracts, case reports, and non-peer-reviewed publications were
systematically excluded.

Primary outcomes

The primary outcome measure was cognitive function, assessed
using the Mini-Mental State Examination (MMSE) and the
Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-
Cog). The analysis focused on evaluating the effect of rTMS
on cognitive function across different stimulation targets. For

continuous outcome data, results were synthesized using the mean
and standard deviation (Mean ± SD) of changes in cognitive
measurements following rTMS administration.

Evaluation of risk of bias

The risk of bias in the included studies was assessed using
a modified Cochrane Risk of Bias tool. The assessment focused
on the following factors: (1) adherence to standardized diagnostic
criteria for AD; (2) random sequence generation and allocation
concealment; (3) blinding of participants and study personnel;
(4) blinding of outcome assessments; (5) baseline comparability
between rTMS and sham groups; and (6) completeness of data
reporting, including dropout rates and handling of missing data.
Each study was assigned a qualitative risk rating for each domain:
Low risk (1), High risk (0), or Unclear (unreported information).
Studies with higher cumulative scores were considered to have
a lower overall risk of bias. In cases of discrepancies in risk
assessment, a third independent reviewer (YJJ) was consulted to
reach a consensus.

Data analysis

All statistical analyses were performed using RevMan 5.3
software (Review Manager of Cochrane Collaboration) and R
language. For continuous outcomes, effect sizes were expressed as
either the standardized mean difference (SMD) or mean difference
(MD) with 95% confidence intervals (CIs). Heterogeneity among
studies was assessed using the I2 statistic, where I2 < 50%
indicated low heterogeneity and a fixed-effects model was applied.
I2 > 50% indicated substantial heterogeneity, resulting in the use
of a random-effects model unless heterogeneity could be reduced
through subgroup or sensitivity analyses. If heterogeneity persisted
despite these adjustments, results were reported descriptively.
Forest plots were used to visually represent the findings, with each
study displayed as a colored circle (red, pink or blue) indicating
SMD, MD, or risk ratio, while the overall pooled effect size was
shown as a hollow orange diamond.

Results

Search and selection of studies

A comprehensive literature research across PubMed, Web of
Science, EMBASE, and the Cochrane Library yielded 196 studies.
After removing duplicates and screening titles and abstracts for
relevance, 38 articles were selected for full-text review. Following
rigorous eligibility assessment, 22 studies (Ahmed et al., 2012;
Bagattini et al., 2020; Brem et al., 2020; Chen et al., 2023; Cotelli
et al., 2011; Hu et al., 2022; Jia et al., 2021; Koch et al., 2018;
Lee et al., 2016; Leocani et al., 2020; Li et al., 2021; Padala et al.,
2020; Rabey et al., 2013; Saitoh et al., 2022; Vecchio et al., 2022;
Wei L. et al., 2022; Wu et al., 2015; Wu et al., 2022; Yao et al.,
2022; Zhang et al., 2019; Zhao et al., 2017; Zhou et al., 2022) met
the inclusion criteria and were included in the meta-analysis. The
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FIGURE 1

Flow diagram showing the search and selection procedure that was
used for this meta-analysis.

study selection process is detailed in Figure 1, and the primary
clinical and demographic characteristics of the included studies are
summarized in Table 1.

Global cognitive function (immediately
after the intervention)

A total of 22 studies encompassing 874 participants with AD
evaluated the effects of rTMS on global cognitive function. If both
MMSE and ADAS-Cog were reported, MMSE was prioritized as
the primary outcome measure. The results showed that rTMS
significantly improved cognitive function score in AD patients,
with an SMD of 0.27 (95% CI = 0.14–0.41; z = 3.95; p < 0.0001)
and moderate heterogeneity (I2 = 38%; p < 0.03) (see Figure 2).
To further explore the potential sources of heterogeneity, additional
subgroup analyses were conducted considering stimulation targets,
rTMS protocols, and genetic backgrounds.

Subgroup analysis of global cognitive
function (rTMS on different targets)

Subgroup analyses were conducted to assess the effects of
rTMS over different stimulation targets. Across all three subgroups,
the experimental group showed significantly greater improvement
in global cognitive function than the sham group (p < 0.05)
(see Figure 3). DLPFC stimulation resulted in an SMD of 0.25
(95% CI = 0.07–0.44; z = 2.67; p = 0.008) with moderate
heterogeneity (I2 = 37%; p = 0.09). Stimulation over the parietal
lobe or its associated areas showed a slightly greater effect, with
an SMD of 0.29 (95% CI = 0.03–0.55; z = 2.22; p = 0.03)
and moderate heterogeneity (I2 = 42%; p = 0.12). Additionally,
multi-target stimulation over the bilateral DLPFC, Broca’s area,
Wernicke’s area, and bilateral parietal lobes yielded the greatest
cognitive improvement, with an MD of 2.85 (95% CI = 1.69–
4.02; z = 4.78; p < 0.00001) and low heterogeneity (I2 = 0%;
p = 0.79).

Subgroup analysis of global cognitive
function (rTMS on different protocols)

The effects of different stimulation protocols were further
analyzed (see Figure 4). Excitatory rTMS significantly improved
cognitive function, with an SMD of 0.27 (95% CI = 0.08–0.47;
z = 0.78; p = 0.005) and moderate heterogeneity (I2 = 41%; p = 0.08).
Bilateral DLPFC stimulation did not show improvement compared
to the sham group, with an SMD of 0.13 (95% CI = −0.40–0.66;
z = 0.49; p = 0.62) and high heterogeneity (I2 = 70%; p = 0.01).
In contrast, left DLPFC stimulation yielded significant cognitive
improvement, with an SMD of 0.49 (95% CI = 0.26–0.73; z = 4.11;
p < 0.0001) and low heterogeneity (I2 = 0%; p = 0.78).

Subgroup analysis of global cognitive
function (rTMS on different genetic
backgrounds)

To evaluate the impact of genetic background, subgroup
analyses were conducted based on geographic origin (see Figure 5).
Among the included studies, 14 were conducted in Asia, one
in Africa, six in Europe, and one in North America. The Asian
subgroup demonstrated a significant cognitive benefit, with an
SMD of 0.42 (95% CI = 0.16–0.67; z = 3.21; p = 0.001) and moderate
heterogeneity (I2 = 56%; P = 0.004). In contrast, studies conducted
in Europe, Africa, and North America did not yield significant
effects, which may be due to variability in sample size, treatment
protocols, and genetic factors.

Risk of bias assessment

The risk of bias assessment was conducted independently by
two reviewers, following the Cochrane Intervention Systematic
Review Manual 5.1.0. Any discrepancies were resolved through
consultation with a third reviewer. Overall, the included studies
were rated as having low to moderate risk of bias, as summarized
in Figure 6.

Discussion

This systematic meta-analysis, synthesizing data from 22
randomized, sham-controlled trials involving 874 participants,
provided a comprehensive evaluation of the efficacy of rTMS
on cognitive function in AD. Our findings confirmed that
rTMS significantly enhanced global cognitive performance, with
therapeutic effects varying based on stimulation targets. Notably,
unilateral DLPFC and parietal lobe stimulation produced moderate
cognitive improvements, whereas bilateral DLPFC stimulation did
not yield significant effects. In contrast, multi-target rTMS over the
bilateral DLPFC, parietal lobes, Wernicke’s area, and Broca’s area
produced the most pronounced cognitive benefits. These findings
demonstrate the potential of rTMS as a therapeutic intervention for
AD, with multi-site stimulation strategies offering greater efficacy
than single-site approaches by enhancing network-level plasticity
and promoting functional connectivity across cognitive domains.
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TABLE 1 Overview of studies included in the meta-analysis.

References Country No. of participants Mean age (y) Treatment
duration

(wk)

Intervention method Target Outcome
indicator

Experimental Sham Experimental Sham Experimental Sham

Ahmed et al., 2012 Egypt 15 15 65.9 ± 5.9 68.3 ± 4.9 1 week 20 Hz-rTMS Sham Bilateral DLPFC MMSE

Ahmed et al., 2012 Egypt 15 15 68.6 ± 6.7 68.3 ± 4.9 1 week 1 Hz-rTMS Sham Bilateral DLPFC MMSE

Youichi Saitoh-120%, 2022
(Saitoh et al., 2022)

Japan 15 12 76.2 75.8 4 weeks 10 Hz-120%
RMT-rTMS

Sham Bilateral DLPFC MMSE,
ADAS-Cog

Youichi Saitoh-90%, 2022,
(Saitoh et al., 2022)

Japan 13 12 77.2 75.8 4 weeks 10 Hz-90%
RMT-rTMS

Sham Bilateral DLPFC MMSE,
ADAS-Cog

Bagattini et al., 2020 Italy 27 23 73.56 ± 4.91 73.35 ± 1.09 4 weeks 20 Hz-
rTMS + COG

Sham + COG Left DLPFC MMSE

Cotelli et al., 2011 Italy 5 5 71.2 ± 6.1 74.4 ± 3.8 2 weeks 20 Hz-rTMS Sham Left DLPFC MMSE

Li et al., 2021 China 37 38 65.97 ± 8.47 64.58 ± 7.88 6 weeks 20 Hz-rTMS Sham Left DLPFC MMSE,
ADAS-Cog

Padala et al., 2020 United States 9 11 74.3 ± 5.7 79.6 ± 7.7 4 weeks iTBS-rTMS Sham Left DLPFC MMSE

Wu et al., 2022 China 24 23 66.46 ± 8.25 66.35 ± 7.99 2 weeks iTBS-rTMS Sham Left DLPFC MMSE

Yao et al., 2022 China 15 12 63.87 ± 6.85 67.60 ± 7.88 4 weeks 5 Hz-rTMS Sham Bilateral
cerebellum

ADAS-Cog

Koch et al., 2018 Italy 7 7 70.0 ± 5.1 70.0 ± 5.1 2 weeks 20 Hz-rTMS Sham Bilateral PC MMSE

Lee et al., 2016 Korea 18 8 72.1 ± 7.6 70.3 ± 4.8 6 weeks 10 Hz-
rTMS + COG

Sham + COG Six-location MMSE,
ADAS-Cog

Zhao et al., 2017 China 17 13 69.3 ± 5.8 71.4 ± 5.2 6 weeks 20 Hz-rTMS Sham Bilateral parietal
and posterior

temporal

MMSE,
ADAS-Cog

Hu et al., 2022 China 21 21 76.86 ± 6.07 75.33 ± 5.73 4 weeks 40 Hz-rTMS Sham Bilateral AG MMSE,
ADAS-Cog

Chen et al., 2023 China 18 6 66.67 ± 7.48 67.17 ± 8.75 4 weeks 20 Hz-rTMS Sham Left AG MMSE

Jia et al., 2021 China 35 34 71.41 ± 8.85 73.41 ± 7.73 2 weeks 10 Hz-rTMS Sham Left parietal MMSE

Wei L. et al., 2022 China 29 27 70.00 ± 8.63 71.67 ± 7.16 2 weeks 10 Hz-rTMS Sham Left lateral
parietal

MMSE

Zhang et al., 2019 China 15 13 69.00 ± 8.19 68.54 ± 7.93 4 weeks 10 Hz-
rTMS + COG

Sham + COG Left DLPFC and
lateral parietal

MMSE
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AD is characterized by profound cognitive impairments,
accompanied by widespread structural and functional disruptions
in brain networks. Alterations in functional connectivity between
the parietal and frontal cortices have been closely linked to
cognitive decline in AD (Jia et al., 2021; Velioglu et al., 2021).
The parietal lobe, particularly the precuneus, plays an important
role in the cortical-hippocampal network that supports memory
processing and higher-order cognitive functions (Cavanna and
Trimble, 2006). Likewise, the DLPFC is a key hub in the DMN
and the ECN essential for working memory, executive function,
and cognitive control (Andrews-Hanna et al., 2010; Cai et al.,
2017; Cavanna and Trimble, 2006; Crippa et al., 2011). Given the
progressive dysfunctions of these networks observed in AD, rTMS
over these key regions offers a promising approach to enhancing
functional connectivity and attenuating cognitive decline.

Our meta-analysis showed that HF-rTMS over the left DLPFC
was effective in improving cognitive function in AD patients.
However, several studies (Ahmed et al., 2012; Saitoh et al., 2022;
Zhou et al., 2022) employing bilateral DLPFC stimulation yielded
inconsistent results, potentially due to differences in stimulation
parameters. For example, Ahmed et al. (2012) examined the effects
of 20, 1 Hz, or sham rTMS over the bilateral DLPFC, showing that
HF-rTMS significantly improved cognitive function whereas LF-
rTMS did not elicit cognitive enhancement. These findings suggest
that excitatory rTMS is more effective in AD, possibly due to
its role in promoting LTP-like plasticity and enhancing synaptic
efficiency. Similarly, Saitoh et al. (2022) reported that HF-rTMS
over the bilateral DLPFC resulted in cognitive improvements,
while another study (Cotelli et al., 2006) found enhanced action
naming abilities following bilateral DLPFC stimulation. The neural
basis for these effects may involve rTMS-induced modulation of
functional connectivity across the DMN, ECN, and FPN, thereby
strengthening network integration and cognitive performance
(Yuan et al., 2021).

Notably, differential effects of unilateral DLPFC stimulation
have also been reported. Zhou et al. (2022) found that 20 Hz rTMS
over the left DLPFC combined with 1 Hz rTMS over the right
DLPFC led to significant cognitive improvements. This finding
aligns with research suggesting that inhibitory rTMS over the right
DLPFC may counteract dysfunctional network activity, thereby
restoring functional balance in patients with MCI (Fregni and
Pascual-Leone, 2007). Given that the right DLPFC is involved in
cognitive inhibition (Anderson et al., 2004), LF-rTMS over this
region has been shown to reduce hyperactive frontoparietal activity,
suppress DMN overactivation (Cui et al., 2019; Wang et al., 2012),
and ultimately enhance episodic memory (Turriziani et al., 2019)
and recognition performance (Turriziani et al., 2012).

The present study incorporated six studies (Chen et al.,
2023; Hu et al., 2022; Jia et al., 2021; Koch et al., 2018; Wei
L. et al., 2022; Zhao et al., 2017) that examined the effects
of rTMS over the parietal regions such as the left parietal
cortex, bilateral parietal lobes, bilateral angular gyrus (AG),
and precuneus. Neuroimaging evidence highlights the critical
role of the parietal cortex in cognitive processing, particularly
in memory consolidation, language processing, and large-scale
network integration. Notably, HF-rTMS over the AG has been
shown to significantly enhance functional connectivity between
the AG and language-related regions such as the left inferior
frontal gyrus (IFG) and anterior middle temporal gyrus (aMTG)
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FIGURE 2

Forest plot shows the SMD (Standardized Mean Difference) and 95% CI (Confidence Interval) for all included studies compared to the sham group.
Different effects are color-coded for clarity: red indicates a positive effect, blue signifies a negative effect, and pink denotes no effect. The orange
diamond symbolizes the overall effect. If the diamond does not intersect the line of no effect, the overall effect is statistically significant; otherwise, it
is not statistically significant.

(Garcia et al., 2022). This network-level modulation may underlie
the rTMS-induced improvements in verbal fluency and semantic
processing observed in AD patients. Additionally, HF-rTMS over
the left AG has been found to increase connectivity with the dorsal
medial prefrontal cortex (dMPFC), which plays a fundamental role
in memory retrieval and executive function (Chen et al., 2023).
There is evidence showing that parietal lobe stimulation induces
multiple neurophysiological changes, including increased regional

cerebral blood flow, enhanced cortical-subcortical connectivity,
and activation of residual hippocampal neurons, all of which
contribute to improved synaptic plasticity (Wang et al., 2014).
These effects further support the therapeutic potential of this
novel stimulation target (Jia et al., 2021). Beyond the AG, the
precuneus has emerged as another promising stimulation site
due to its central role in episodic memory retrieval (Nellessen
et al., 2015). Structural and functional neuroimaging studies
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FIGURE 3

Forest plot shows the SMD (Standardized Mean Difference) or the MD (Mean Difference) and 95% CI (Confidence Interval) for three subgroups:
(A) Dorsolateral prefrontal cortex (DLPFC), (B) Parietal lobe or associated regions, and (C) Multi-target, each compared to the sham group. Different
effects are color-coded for clarity: red indicates a positive effect, blue signifies a negative effect, and pink denotes no effect. The orange diamond
symbolizes the overall effect. If the diamond does not intersect the line of no effect, the overall effect is statistically significant; otherwise, it is not
statistically significant.
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FIGURE 4

Forest plot shows the SMD (Standardized Mean Difference) and 95% CI (Confidence Interval) for three subgroups: (A) Excitatory stimulation,
(B) Bilateral dorsolateral prefrontal cortex (DLPFC) stimulation, and (C) Left DLPFC stimulation, each compared to the sham group. Different effects
are color-coded for clarity: red indicates a positive effect, blue signifies a negative effect, and pink denotes no effect. The orange diamond
symbolizes the overall effect. If the diamond does not intersect the line of no effect, the overall effect is statistically significant; otherwise, it is not
statistically significant.
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FIGURE 5

Forest plot shows the SMD (Standardized Mean Difference) and 95% CI (Confidence Interval) for two subgroups: (A) the Asian studies group and (B)
the Europe-America-Africa studies group, each compared to the sham group. Different effects are color-coded for clarity: red indicates a positive
effect, blue signifies a negative effect, and pink denotes no effect. The orange diamond symbolizes the overall effect. If the diamond does not
intersect the line of no effect, the overall effect is statistically significant; otherwise, it is not statistically significant.

have consistently shown that AD patients exhibit reduced
precuneus thickness, abnormal task-related activation, and
impaired functional connectivity within this region (Chen et al.,
2017). Notably, HF-rTMS over the precuneus has been shown

to restore DMN connectivity (Wei L. et al., 2022) and modulate
long-term memory function (Bonnì et al., 2015; Koch et al., 2018),
providing a potential basis for cognitive improvement in AD
patients.
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FIGURE 6

(A) Risk of bias summary and (B) Risk of bias graph present the
quality of included studies.

Our findings support and extend previous meta-analytic
evidence demonstrating the beneficial effects of rTMS on cognitive
functions in AD. A large-scale meta-analysis incorporating nine
clinical trials with 361 participants demonstrated that rTMS over
the DLPFC significantly improved cognitive function in AD
patients (Zhang T. et al., 2022). Two additional studies provide

compelling evidence that rTMS over the left lateral parietal cortex
enhanced functional connectivity within neural networks and
improved memory-related cognitive outcomes (Jia et al., 2021;
Velioglu et al., 2021). These converging findings underscore the
therapeutic potential of combining DLPFC and parietal cortex
stimulation, suggesting that multi-target rTMS protocols may be
more effective than single-site stimulation for cognitive restoration
in AD.

Notably, one study (Yao et al., 2022) included in our meta-
analysis explored the effects of HF-rTMS over the bilateral
cerebellum, showing that rTMS-induced neuroplastic changes in
cerebellar nodes selectively enhanced connectivity with key cortical
regions, particularly the DLPFC, cingulate cortex, and medial
frontal cortex. These network-level enhancements were associated
with significant cognitive improvements, particularly in memory
consolidation and language processing. These findings highlight
the role of the cerebellum role in higher-order cognitive functions,
suggesting that its extensive connectivity with cerebral cortical
networks may contribute to rTMS-induced cognitive benefits in
AD.

Cognitive impairment in AD is predominantly driven by
deficits in synaptic plasticity and neural network dysfunction
within the DMN (Brier et al., 2012; Grieder et al., 2018; Menon,
2023). This network encompasses key regions such as the
frontal lobes (affected by cholinergic neuron degeneration), the
cingulate cortex, posterior parietal areas (including the precuneus),
and temporal regions (Boublay et al., 2016; Mohan et al., 2016).
Applying rTMS to these regions may enhance network connectivity
and functional integration, thereby supporting cognitive
improvements in AD patients. Neuroimaging studies provide
further insights into the network-level alterations observed in AD.
For example, AD-related network disruptions primarily involve
bilateral prefrontal-parietal disconnections, as well as disrupted
dominant-hemisphere connectivity between posteroinferior
frontal and superior temporal regions (Alcalá-Lozano and
Garza-Villarreal, 2018; Nguyen et al., 2018).

Our meta-analysis provides one of the first comprehensive
evaluations of multi-target rTMS protocols in AD treatment. The
subgroup analysis included three studies employing multi-target
stimulation, specifically targeting the bilateral DLPFC, Broca’s and
Wernicke’s areas, and bilateral parietal somatosensory association
cortex (pSAC). These studies followed a structured sequential
stimulation approach, selecting three distinct targets daily with no
repetition of stimulation sites across consecutive days. Participants
underwent 30 treatment sessions over 6 weeks (five sessions/week).
While Brem et al. (2020), applied suprathreshold stimulation to
all six targets, other studies (Lee et al., 2016; Rabey et al., 2013)
employed subthreshold stimulation for Broca’s area and bilateral
DLPFC, while using suprathreshold stimulation for other targets.
These findings demonstrate significant cognitive improvements
across multiple domains, including syntax processing, grammatical
comprehension, and spatial memory. The neurobiological
mechanisms underlying multi-target rTMS-induced cognitive
improvements may involve several neural pathways. The frontal
lobe is integral to episodic memory processing (Budson and Price,
2005), while the medial temporal lobe regulates recent memory
formation. Additionally, the left prefrontal cortex is critical for
verbal working memory tasks (Barbey et al., 2013). Accumulating
evidence suggests that rTMS can enhance synaptic plasticity
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through repeated stimulation of specific neural circuits, leading
to cognitive improvements (Brem et al., 2020; Casarotto et al.,
2023; Luber and Lisanby, 2014) and strengthening functional
connectivity (Johansen et al., 2014). Further, enhanced functional
connectivity between the orbitofrontal cortex, DLPFC, and parietal
regions facilitates the integration of rewards processing, executive
control, and spatial attention during reinforcement learning (Jarbo
and Verstynen, 2015).

A large-scale meta-analysis of 831 fMRI studies focused on
DLPFC activation patterns demonstrated significant co-activation
between the left DLPFC and several key regions, including
the right DLPFC, bilateral pSAC, and the anterior cingulate
cortex (Alcalá-Lozano and Garza-Villarreal, 2018). These findings
highlight the potential of rTMS applied to specific cortical sites
to modulate functionally connected neural networks, thereby
enhancing cognitive and linguistic capabilities. This effect is
thought to be mediated by mechanisms of LTP and LTD, both
of which are fundamental to synaptic plasticity and network
reorganization (Andersen et al., 2017). HF-rTMS applied in a
multi-target sequential stimulation paradigm has been shown to
increase synaptic efficacy, elicit LTP-like effects, and strengthen
interregional connectivity (Buch et al., 2011; Koch et al., 2013).
These mechanisms suggest that network-based rTMS approaches
may drive lasting cognitive improvements in AD by enhancing
synaptic plasticity and restoring disrupted functional connectivity.

Limitations

This study has several limitations that should be acknowledged.
First, the limited number of included studies and small sample
sizes constrained the scope of our subgroup analyses, particularly
regarding the differential effects of rTMS on distinct cognitive
domains. Second, we did not distinguish between left- and right-
hemispheric stimulation or different frequency protocols (e.g.,
HF- vs. LF-rTMS), factors that may contribute to variability in
treatment efficacy. Third, cognitive outcomes were predominantly
assessed using the MMSE and ADAS-Cog. These measures exhibit
variations in sensitivity and reliability across different stages of
AD, which may lead to an overestimation or underestimation
of the therapeutic effects of rTMS. Future studies incorporating
multimodal cognitive assessments, functional neuroimaging
markers, and standardized rTMS protocols are essential for
refining our understanding of optimal stimulation targets and
individual treatment responses in AD.

Conclusion

This meta-analysis provides a comprehensive synthesis of
existing evidence on the effects of rTMS on cognitive function in
AD. Despite variability across studies, our findings demonstrate
that rTMS targeting the DLPFC and parietal lobe leads to
significant cognitive improvements. Notably, multi-target rTMS
stimulation engaging both prefrontal and parietal regions enhances
cognitive outcomes more effectively than single-site stimulation.
These results underscore the therapeutic promise of targeted
rTMS interventions in mitigating AD-related cognitive decline.

Future research should focus on optimizing stimulation protocols,
integrating neuroimaging-guided targeting, and exploring
individualized approaches to maximize the clinical efficacy of
rTMS in the treatment of AD.
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