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Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative

disease characterized by the rapid loss of motor neurons. Given the

significant global economic impact of ALS, effective preventive measures are

urgently needed to reduce the incidence of this devastating disease. Recent

meta-analyses have explored potential links between environmental factors,

biomarkers, and ALS occurrence. However, the findings of these studies have

been inconsistent and controversial. Therefore, we present a comprehensive

umbrella review of recent meta-analyses to systematically summarize the

available epidemiological evidence and evaluate its credibility.

Methods: A systematic search was conducted in PubMed and Embase from

inception until 01 October 2024, to identify meta-analyses of observational

studies examining associations between environmental risk factors, protective

factors, biomarkers, and ALS susceptibility. For each meta-analysis, summary

effect estimates, 95% confidence intervals (CIs), 95% prediction intervals,

study heterogeneity, small study effects, and excess significance biases were

calculated independently by two investigators. The methodological quality was

evaluated using the AMSTAR 2 criteria. The strength of the epidemiological

evidence was categorized into five levels based on predefined criteria.

Results: Out of 1,902 articles identified, 43 met the inclusion criteria, resulting

in 103 included meta-analyses. These analyses covered 46 environmental

risk and protective factors (344,597 cases, 71,415,574 population) and 57

cerebrospinal fluid (CSF) and serum biomarkers (30,941 cases, 2,180,797

population). The evidence was classified as convincing (Class I) for the regular

use of antihypertensive drugs (OR: 0.85, 95% CI: 0.81–0.88) and highly

suggestive (Class II) for premorbid body mass index (OR: 0.97, 95% CI: 0.95 to

0.98), trauma (OR: 1.51, 95% CI: 1.32 to 1.73), CSF NFL levels (SMD: 2.06, 95%

CI: 1.61 to 2.51), serum NFL levels (SMD: 1.57, 95% CI: 1.29 to 1.85), ferritin levels
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(SMD: 0.66, 95% CI: 0.50 to 0.83), and uric acid levels (SMD: −0.72; 95% CI:

−0.98 to −0.46).

Discussion: This umbrella review offers new insights into the epidemiological

evidence regarding the associations between environmental factors,

biomarkers, and ALS susceptibility. We aim for our study to enhance the

understanding of the roles of environmental factors and biomarkers in ALS

occurrence and assist clinicians in developing evidence-based prevention and

control strategies.

KEYWORDS

amyotrophic lateral sclerosis, environmental risk factors, biomarkers, meta-analysis,
umbrella review

1 Introduction

Amyotrophic lateral sclerosis (ALS) is a deadly
neurodegenerative disease resulting from the deterioration of
motor neurons in the brain and spinal cord. It is typically
characterized by progressive muscle weakness and atrophy
in adults (Feldman et al., 2022). Globally, the incidence and
prevalence rates of ALS were estimated to be 1.59 and 4.42
per 100,000, respectively (Xu et al., 2020). Recent studies have
indicated that the national cost associated with ALS ranges from
$149 million to $1,329 million, imposing a significant financial
burden on families and society (Achtert and Kerkemeyer, 2021).
Moreover, most ALS patients lack effective treatment, and the
median survival time from clinical symptoms to death is 20–
48 months (Paulukonis et al., 2015). Therefore, it is crucial to
investigate and develop more efficient strategies for the early
detection and prevention of this devastating disease.

To date, the causes of ALS have been suggested to be
multifactorial, with various genetic predispositions and
environmental factors intricately linked to its development.
While significant progress has been achieved in investigating the
genetic factors associated with ALS (Rosen et al., 1993; Savage
et al., 2019), the connection between environmental factors and
biomarkers of ALS susceptibility remains unclear. Consequently,
numerous systematic reviews and meta-analyses of observational
studies have examined potential associations between diverse
environmental factors, biomarkers, and ALS incidence. However,
the consistency and conclusiveness of the epidemiological evidence
from these meta-analyses have not always been consistent and
conclusive.

Umbrella reviews are increasingly popular for summarizing
and evaluating evidence from published meta-analyses. They play
a crucial role in investigating relationships between environmental
factors, biomarkers, and diseases such as inflammatory bowel
diseases, autism spectrum disorder, and multiple sclerosis (Belbasis
et al., 2015; Kim et al., 2019; Piovani et al., 2019). In Belbasis
et al. (2016)conducted an umbrella review on ALS susceptibility,
consolidating eight meta-analyses to explore potential associations
between environmental factors and ALS. Numerous meta-analyses
on ALS have been published, prompting us to conduct a

comprehensive umbrella review of all recently published meta-
analyses. This review aims to systematically summarize the
epidemiological evidence available and assess its credibility.
We anticipate that our umbrella review will assist healthcare
professionals and policymakers in devising effective strategies for
the early diagnosis and prevention of ALS.

2 Materials and methods

2.1 Search strategy and eligibility criteria

The systematic literature search for our umbrella review
adhered to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines (Moher et al., 2009).
We systematically searched the PubMed and Embase databases
from their inception to 01 October 2024, using the following
search strategy: (“amyotrophic lateral sclerosis” OR “motor neuron
disease”) AND (“systematic review” OR “meta-analysis”). Besides
the database searches, we conducted manual screening of the
reference lists of the retrieved articles to guarantee comprehensive
coverage of relevant studies.

2.2 Inclusion and exclusion criteria

Our umbrella review comprised meta-analyses examining
the relationships between environmental risk factors, protective
factors, and biomarkers of susceptibility to ALS. We considered
meta-analyses from observational studies (cohort, case-control,
and cross-sectional) focusing on high versus low exposure or
dose-response relationships. Eligible meta-analyses are needed to
provide sufficient data for calculating summary effect estimates,
95% confidence intervals (CIs), and 95% prediction intervals
(PIs), as well as information on heterogeneity, small-study effects,
and excess significance bias for further analysis. Only studies
published in English were included, while meta-analyses based on
randomized controlled trials were excluded. Our study specifically
excluded research on prognostic factors and biomarkers related
to ALS survival, focusing instead on factors associated with ALS
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occurrence. Studies lacking raw data for calculating summary risk
estimates, 95% CIs, or 95% PIs, such as systematic reviews without
meta-analyses, were excluded. Publications categorized as reviews,
editorials, letters, or conference abstracts were disregarded due
to the absence of original data, and duplicate publications were
likewise excluded.

2.3 Data extraction and methodological
quality assessment

Two researchers independently extracted the following
information for each eligible meta-analysis: name of the first
author; journal and publication year; original article retrieval
time; environmental risk factors; protective factors or biomarkers
of interest (ALS); quality appraisal tool; funding information;
conflicts of interest; number of studies included; number of
participants and cases; and study design of the original study.
Additionally, we gathered the most adjusted effect estimates (odds
ratio [OR], relative risk [RR], hazard ratio [HR], weighted mean
difference [WMD], and standardized mean difference [SMD])
along with the corresponding 95% CIs from the original studies.
The most common adjustment factors comprised age, sex, body
mass index (BMI), education, physical activity, smoking, alcohol
consumption, and occupation.

The methodological quality of the included meta-analyses
was evaluated using the robust and validated AMSTAR-2 tool
(a measurement tool to assess systematic reviews). This tool
rigorously evaluated the risk of bias, including ratings of
search quality, reporting, analytics, and transparency. The overall
methodological quality of each eligible meta-analysis was graded as
high, moderate, low, or critical low (Shea et al., 2017).

2.4 Statistical analysis

First, we recalculated summary effect sizes and their 95%
CIs for each eligible meta-analysis using random- and fixed-
effect models to assess associations between environmental factors
and biomarkers and ALS risk. When reporting weighted mean
difference (WMD) in the included meta-analyses, we converted
it to SMD according to an established formula (Carvalho et al.,
2020). We also computed the 95% PIs, the probability range within
which we predicted the effect size of the association would lie for
95% of similar future studies (Higgins et al., 2009). Subsequently,
we performed Cochran’s Q test and calculated the I2 statistic to
further assess statistical heterogeneity among the original studies.
A p-value < 0.10 and I2 > 50% were considered to indicate
significant heterogeneity. Additionally, Egger’s test was applied to
evaluate publication bias and small-study effects, with a p-value
less than 0.10, which was judged to be significant evidence of
small-study effects. Finally, we applied an excess significance test to
investigate whether the observed number of statistically significant
studies was greater than expected (Ioannidis and Trikalinos, 2007).
All statistical analyses were performed using STATA version 15.0.
A p-value less than 0.05 was considered statistically significant for
all tests, except for heterogeneity, small-study effects, and excess
significant bias.

2.5 Credibility of epidemiologic evidence

In line with previously published umbrella reviews (Belbasis
et al., 2015; Kim et al., 2019; Kim et al., 2020; Kim et al.,
2022), we categorized the epidemiologic evidence regarding the
relationship between environmental factors and biomarkers with
ALS susceptibility into five strength levels based on specific
assessment criteria (Supplementary Table 1). Convincing evidence
(Class I) necessitated highly significant associations (P < 10−6 by
random effects model), over 1,000 ALS cases, the largest study
reporting a statistically significant result (P < 0.05), a 95% PI
excluding the null value, no substantial heterogeneity (I2 < 50%),
absence of excess significance bias (P > 0.10), and no significant
small study effects (P > 0.10). Highly suggestive evidence (Class II)
required statistically significant associations (P < 10−6 by random
effects model) with more than 1,000 ALS cases, and the primary
study component showed a statistically significant result (P< 0.05).
Suggestive evidence (Class III) mandated only P < 10−3 by random
effects model and over 1,000 cases. All other associations with
nominal significance (P < 0.05) were classified as weak (Class
IV). Lastly, evidence was deemed non-significant if no significance
threshold was met (P > 0.05). Furthermore, for associations
rated as convincing or highly suggestive, we conducted sensitivity
analyses exclusively on nested case-control and cohort studies
to evaluate any changes in the robustness of the epidemiologic
evidence.

3 Results

3.1 Study identification

From database inception to 01 October 2024, we initially
identified 1,902 articles by systematically searching PubMed
and Embase. First, 890 repetitive and 859 irrelevant articles
were excluded by reviewing the titles and abstracts. After full-
text screening, 82 articles were excluded, comprising 38 non-
meta-analyses of observational studies, 21 letters, conference
abstracts, and reviews; 12 not focusing on ALS risk; 8 unrelated
to environmental factors or cerebrospinal fluid (CSF)/serum
biomarkers; and 3 not in English. To identify meta-analyses, the
selection prioritized the meta-analysis with the most individual
studies when multiple meta-analyses focused on the same
association. In cases where multiple meta-analyses included the
same largest number of studies, the most recently published meta-
analysis was chosen. Subsequently, 28 articles were excluded due
to the publication of a larger meta-analysis on the same topic.
A list of all excluded publications is available in Supplementary
Table 2. Therefore, 43 eligible articles published between 2013 and
2024 were included in this umbrella review. In total, 103 unique
associations (46 potential environmental factors and 57 CSF/serum
biomarkers) were extracted and are presented in Tables 1, 2 and
Supplementary Tables 3, 4, respectively. The random-effects meta-
analyses and corresponding funnel plots for all 103 associations
are presented in Supplementary Datasheets 1, 2. The flow chart
of the process of selecting eligible meta-analyses is presented in
Figure 1.
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TABLE 1 Characteristics of included meta-analyses evaluating associations between environmental factors and ALS risk.

Environmental
factors

References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study
SMD

(95% CI)

Heterogeneity Egger
p-value

Excess
significance
p-value

95% PI

OR/RR (95%
CI)

P-
value

P-value I2

Class I

Anti-hypertensives Hu and Ji,
2022

OR 4 250,871 11,594 0.85 (0.81 to 0.88) < 10−6 0.85 (0.81 to
0.88)

0.580 0.00% 0.756 1.000 0.78 to 0.93

Class II

Trauma Gu et al., 2021 OR 29 6,537,781 18,390 1.51 (1.32 to 1.73) < 10−6 1.43 (1.33 to
1.54)

< 0.001 78.10% 0.657 1.000 0.87 to 2.63

Premorbid body
mass index

Zeng et al.,
2019

OR 11 5,314,782 5,673 0.97 (0.95 to 0.98) < 10−6 0.98 (0.97 to
0.99)

0.017 52.50% 0.447 < 0.001 0.93 to 1.00

Class III

Farming
occupation

Kang et al.,
2014

OR 10 2,621,006 9,338 1.42 (1.17 to 1.73) < 0.001 1.20 (1.02 to
1.41)

0.080 41.70% 0.858 0.312 0.90 to 2.25

Pesticides Kang et al.,
2014

OR 15 3,732,028 9,534 1.44 (1.22 to 1.70) < 0.001 1.20 (1.02 to
1.41)

0.048 41.30% 0.165 0.140 0.94 to 2.20

Head injury Watanabe and
Watanabe,

2017

OR 16 510,802 11,692 1.46 (1.20 to 1.74) < 0.001 1.19 (0.88 to
1.61)

0.057 38.80% 0.933 0.790 0.88 to 2.39

Leisure time
activity

Zheng et al.,
2023

OR 8 10,569 3,327 1.08 (1.04 to 1.12) < 0.001 1.07 (1.02 to
1.12)

0.519 0.00% 0.619 0.170 1.03 to 1.13

Anti-diabetes Duan et al.,
2023

OR 3 5,180 1,248 0.56 (0.41 to 0.78) < 0.001 0.51 (0.43 to
0.60)

0.221 33.70% 0.525 0.043 0.02 to
12.68

Diabetes mellitus Wannarong
and

Ungprasert,
2020

OR 11 5,410,951 11,961 0.68 (0.55 to 0.84) < 0.001 0.98 (0.85 to
1.13)

< 0.001 81.10% 0.310 0.016 0.34 to 1.36

Kidney diseases Duan et al.,
2023

OR 3 136,375 11,735 0.84 (0.78 to 0.91) < 0.001 0.84 (0.78 to
0.91)

0.650 0.00% 0.639 0.138 0.51 to 1.38

Smoking Kim et al.,
2024

OR 32 3,287,035 20,947 1.14 (1.06 to 1.23) < 0.001 1.18 (1.07 to
1.30)

0.005 44.10% 0.531 0.557 0.88 to 1.47

Metals Wang et al.,
2014

OR 13 3,787 1,685 1.87 (1.51 to 2.33) < 0.001 1.52 (0.95 to
2.42)

0.339 10.60% 0.040 0.418 1.29 to 2.72
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TABLE 1 (Continued)

Environmental
factors

References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study
SMD

(95% CI)

Heterogeneity Egger
p-value

Excess
significance
p-value

95% PI

OR/RR (95%
CI)

P-
value

P-value I2

Class IV

Heavy metals Duan et al.,
2023

OR 7 7,285 1,311 1.80 (1.28 to 2.52) 0.001 1.45 (1.00 to
2.10)

0.083 46.40% 0.977 1.000 0.75 to 4.32

Lead Meng et al.,
2020

OR 12 25,872 4,246 1.46 (1.16 to 1.83) 0.001 1.07 (0.85 to
1.35)

0.019 51.80% 0.041 < 0.001 0.78 to 2.72

Annual PM2.5
exposure

Gong et al.,
2023

OR 2 387,737 6,486 1.83 (1.01 to 3.35) 0.048 1.79 (1.00 to
3.39)

0.650 0.00% NA < 0.001 NA

Competitive
organized sports

Blecher et al.,
2019

RR 23 100,864 17,029 1.78 (1.11 to 2.86) 0.015 1.52 (1.03 to
2.25)

< 0.001 84.00% 0.789 0.581 0.23 to
13.78

Vigorous physical
activity

Zheng et al.,
2023

OR 17 9,088 2,849 1.26 (1.06 to 1.49) 0.008 1.03 (1.01 to
1.05)

< 0.001 74.50% 0.059 < 0.001 0.71 to 2.22

Occupational-
related
activity

Zheng et al.,
2023

OR 12 12,277 4,025 1.14 (1.04 to 1.24) 0.005 1.06 (1.03 to
1.09)

< 0.001 77.90% 0.052 < 0.001 0.91 to 1.42

Unclassified
physical activity

Zheng et al.,
2023

OR 7 9,196 2,943 1.05 (1.02 to 1.09) 0.001 1.06 (1.04 to
1.09)

0.241 24.70% 0.517 0.016 0.99 to 1.12

Military personnel Tai et al., 2017 OR 9 2,116,690 10,492 1.27 (1.06 to 1.54) 0.006 1.31 (1.09 to
1.58)

0.014 55.10% 0.748 0.761 0.77 to 2.16

Heavy physical
work

Gunnarsson
and Bodin,

2018

RR 9 494,435 2,097 1.89 (1.27 to 2.81) 0.002 0.95 (0.88 to
1.02)

< 0.001 87.20% 0.006 0.020 0.51 to 7.04

Chemicals Gunnarsson
and Bodin,

2018

RR 13 2,160,038 6,534 1.20 (1.06 to 1.35) 0.003 1.07 (0.93 to
1.23)

0.006 56.70% 0.060 0.002 0.85 to 1.68

Environmental and
occupational
solvents

Zhang and
Zhou, 2023

OR 13 179,686 6,365 1.29 (1.08 to 1.55) 0.001 0.92 (0.77 to
1.09)

0.002 59.70% 0.159 0.035 0.78 to 2.19

ELF-MF Jalilian et al.,
2021

RR 27 11,207,625 22,673 1.20 (1.04 to 1.38) 0.008 1.09 (1.00 to
1.19)

< 0.001 66.30% 0.034 0.030 0.73 to 1.99
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TABLE 1 (Continued)

Environmental
factors

References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study
SMD

(95% CI)

Heterogeneity Egger
p-value

Excess
significance
p-value

95% PI

OR/RR (95%
CI)

P-
value

P-value I2

Stroke Duan et al.,
2023

OR 6 138,016 14,158 1.25 (1.06 to 1.47) 0.007 1.29 (1.15 to
1.44)

0.123 42.30% 0.782 0.057 0.67 to 2.35

ω-3
Polyunsaturated
fatty acid intake

Fitzgerald
et al., 2014

RR 5 1,056,837 994 0.66 (0.54 to 0.82) < 0.001 0.64 (0.43 to
0.95)

0.923 0.00% 0.425 0.015 0.50 to 1.01

Carotenoids Fitzgerald
et al., 2013

RR 5 1,053,575 1,093 0.92 (0.87 to 0.97) 0.002 0.93 (0.86 to
1.01)

0.708 0.00% 0.623 0.475 0.86 to 0.98

Acetaminophen Chang et al.,
2020

OR 2 425,754 1,104 0.80 (0.67 to 0.96) 0.019 0.87 (0.71 to
1.07)

0.249 24.60% NA 1.000 NA

Living in urban Duan et al.,
2023

OR 5 16,262 1,167 0.69 (0.48 to 1.00) 0.047 1.00 (0.83 to
1.20)

0.029 62.90% 0.121 0.023 0.01 to
63.81

NS

Occupation in
industry

Zhu et al., 2023 OR 3 866 264 1.24 (0.81 to 1.91) 0.328 1.48 (0.80 to
2.74)

0.665 0.00% 0.156 < 0.001 0.08 to
20.37

Annual PM10
exposure

Gong et al.,
2023

OR 2 3,763 969 3.51 (0.63 to 19.36) 0.150 7.09 (0.79 to
64.83)

0.321 0.00% NA < 0.001 NA

Rural residence Kang et al.,
2014

OR 5 1,591 559 1.25 (0.84 to 1.87) 0.273 0.80 (0.54 to
1.18)

0.044 59.30% 0.635 0.219 0.35 to 4.51

Work with
electricity

Gunnarsson
and Bodin,

2018

RR 10 5,766,217 14,752 1.16 (1.00 to 1.36) 0.053 0.99 (0.90 to
1.09)

0.001 65.70% 0.235 < 0.001 0.74 to 1.82

Alcohol
consumption

Duan et al.,
2023

OR 11 12,110 4,430 1.02 (0.78 to 1.32) 0.895 0.72 (0.62 to
0.84)

< 0.001 84.40% 0.175 0.066 0.41 to 2.52

hypertension Duan et al.,
2023

OR 5 925,227 12,349 1.03 (0.98 to 1.08) 0.308 1.05 (1.01 to
1.10)

0.370 6.40% 0.290 1.000 0.88 to 1.19

NSAIDs Duan et al.,
2023

OR 3 31,753 1,880 1.08 (0.82 to 1.42) 0.581 1.04 (0.87 to
1.25)

0.007 17.70% 0.290 0.040 0.44 to 2.68

Welding Gunnarsson
and Bodin,

2018

RR 6 9,607,980 18,482 0.95 (0.70 to 1.29) 0.740 0.71 (0.57 to
0.89)

< 0.001 82.40% 0.154 1.000 0.34 to 2.61
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TABLE 1 (Continued)

Environmental
factors

References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study
SMD

(95% CI)

Heterogeneity Egger
p-value

Excess
significance
p-value

95% PI

OR/RR (95%
CI)

P-
value

P-value I2

Electric shocks Jalilian et al.,
2021

RR 8 2,273,307 14,036 0.97 (0.80 to 1.17) 0.754 0.73 (0.67 to
0.79)

< 0.001 80.50% 0.237 < 0.001 0.56 to 1.69

Statins Hu and Ji,
2022

OR 10 3,588,732 27,698 0.91 (0.78 to 1.07) 0.166 0.87 (0.83 to
0.91)

< 0.001 92.00% 0.967 1.000 0.60 to 1.42

Aspirin Chang et al.,
2020

OR 3 793,588 1,548 0.94 (0.75 to 1.17) 0.583 1.04 (0.90 to
1.21)

0.077 61.10% 0.925 0.212 0.09 to
10.05

High vitamin diet Duan et al.,
2023

OR 3 1,171 409 0.95 (0.72 to 1.27) 0.740 1.08 (0.70 to
1.66)

0.723 0.00% 0.417 1.000 0.15 to 5.99

Sport-related
activity

Zheng et al.,
2023

OR 18 12,607 4,898 0.98 (0.76 to 1.26) 0.844 0.93 (0.72 to
1.20)

< 0.001 77.80% 0.419 0.002 0.37 to 2.58

AMI/IS Duan et al.,
2023

OR 6 162,136 16,371 0.96 (0.88 to 1.05) 0.412 0.96 (0.88 to
1.05)

0.606 0.00% 0.396 0.603 0.85 to 1.10

Cerebrovascular
disease

Zhu et al., 2023 OR 2 51,293 1,238 0.99 (0.75 to 1.29) 0.928 1.12 (1.04 to
1.19)

0.004 88.10% NA 0.513 NA

Occupation in
service industry

Zhu et al., 2023 OR 2 580 205 0.47 (0.19 to 1.17) 0.105 0.33 (0.19 to
0.56)

0.129 56.60% NA 0.005 NA

Coffee drinking Duan et al.,
2023

OR 3 960,249 1,819 0.80 (0.58 to 1.10) 0.169 0.98 (0.85 to
1.11)

0.005 81.20% 0.285 0.162 0.02 to
34.32

OR, odds ratio; RR, relative risk; CI, confidence intervals; PI, prediction interval; NA: not available; NS, not significant; ELF-MF, exposure to extremely-low frequency magnetic fields; NSAIDs, non-steroidal anti-inflammatory drugs; AMI/IS, acute myocardial
infarction/ischemic stroke.
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TABLE 2 Characteristics of included meta-analyses evaluating associations between biomarkers and ALS risk.

Biomarkers References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study

SMD/OR
(95% CI)

Heterogeneity Egger
p-

value

Excess
significance
p-value

95% PI

SMD/OR
(95%
CI)

P-value P value I2

Class II

CSF NFL Sferruzza
et al., 2022

SMD 23 2,887 1,901 2.06 (1.61 to 2.51) < 10−6 0.87 (0.67 to
1.08)

< 0.001 94.80% < 0.001 0.717 −0.16 to
4.28

Serum NFL Sferruzza
et al., 2022

SMD 15 1,781 1,074 1.57 (1.29 to 1.85) < 10−6 1.45 (1.13 to
1.78)

< 0.001 81.80% 0.077 1.000 0.48 to 2.67

Serum ferritin Cheng et al.,
2021

SMD 9 2,880 1,661 0.66 (0.50 to 0.83) < 10−6 0.46 (0.31 to
0.60)

< 0.001 70.80% 0.504 0.013 0.16 to 1.17

Serum uric acid Zhang et al.,
2018

SMD 8 2,559 1,168 −0.72 (−0.98 to
−0.46)

< 10−6
−1.07

(−1.20 to
−0.94)

< 0.001 87.90% 0.503 0.091 −1.58 to
0.14

Class III

Serum
transferrin

Wang et al.,
2020

SMD 6 1,837 1,129 −0.27 (−0.39 to
−0.16)

< 0.001 −0.30
(−0.44 to
−0.17)

0.347 10.80% 0.844 1.000 −0.47 to
−0.08

Class IV

CSF CHIT1 Xu et al., 2024 SMD 6 798 580 1.92 (0.78 to 3.06) < 0.001 0.92 (0.59 to
1.26)

< 0.001 96.50% 0.201 0.519 0.03 to 3.81

CSF cystatin C Zhu et al.,
2018

SMD 6 396 246 −1.40 (−2.43 to
−0.36)

0.008 −0.29
(−0.64 to

0.06)

< 0.001 94.50% 0.079 0.018 −4.84 to
2.04

CSF TNF-α Chen et al.,
2018

SMD 6 318 175 0.36 (0.04 to 0.67) 0.028 0.66 (0.20 to
1.12)

0.095 46.70% 0.211 0.002 −0.44 to
1.15

CSF MIP-1α Chen et al.,
2018

SMD 6 490 292 0.90 (0.10 to 1.71) 0.028 2.09 (1.69 to
2.48)

< 0.001 93.60% 0.365 < 0.001 −1.81 to
3.61

CSF MCP-1 Chen et al.,
2018

SMD 7 509 283 0.58 (0.40 to 0.75) < 10−6 0.43 (0.10 to
0.75)

0.588 0.00% 0.745 0.450 0.35 to 0.80

CSF IL-17 Chen et al.,
2018

SMD 5 267 151 0.74 (0.49 to 0.99) < 10−6 0.71 (0.25 to
1.17)

0.631 0.00% 0.863 0.665 0.39 to 1.10

CSF IL-15 Chen et al.,
2018

SMD 4 241 120 0.46 (0.03 to 0.88) 0.035 0.00 (−0.45
to −0.45)

0.067 58.00% 0.734 0.014 −0.80 to
1.71

(Continued)
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TABLE 2 (Continued)

Biomarkers References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study

SMD/OR
(95% CI)

Heterogeneity Egger
p-

value

Excess
significance
p-value

95% PI

SMD/OR
(95%
CI)

P-value P value I2

CSF G-CSF Chen et al.,
2018

SMD 5 417 251 0.55 (0.35 to 0.76) < 0.001 0.30 (−0.03
to 0.62)

0.374 5.70% 0.269 0.107 0.22 to 0.89

CSF IL-2 Chen et al.,
2018

SMD 5 417 251 0.34 (0.02 to 0.66) 0.039 0.32 (−0.01
to 0.64)

0.050 57.90% 0.678 1.000 −0.55 to
1.22

CSF NFH Xu et al., 2016 SMD 6 710 443 1.01 (0.54 to 1.49) < 0.001 0.36 (0.08 to
0.64)

< 0.001 84.30% 0.007 0.006 −0.49 to
2.52

CSF TDP-43 Gambino
et al., 2023

SMD 7 472 254 0.66 (0.23 to 1.10) 0.003 0.32 (−0.03
to 0.67)

< 0.001 79.10% 0.227 0.012 −0.71 to
2.03

CSF
homocysteine

Hu and
Wang, 2023

SMD 3 338 169 2.78 (0.61 to 4.95) 0.012 0.67 (0.17 to
1.17)

< 0.001 97.90% 0.110 1.000 −6.67 to
12.23

CSF t-tau Thapa et al.,
2023

SMD 7 1,100 634 1.76 (0.52 to 2.99) 0.005 −0.55
(−0.82 to
−0.27)

< 0.001 98.50% 0.026 0.020 −2.56 to
6.07

CSF CHI3L1 Xu et al., 2024 SMD 5 556 369 3.16 (1.25 to 5.06) 0.001 0.85 (0.41 to
1.29)

< 0.001 97.40% 0.208 < 0.001 −3.37 to
9.68

Serum 8-OHdG Wang et al.,
2019

SMD 2 79 18 2.20 (0.56 to 3.83) 0.009 3.02 (2.14 to
3.90)

0.012 84.20% NA 1.000 −15.22 to
19.61

Serum GSH Wang et al.,
2019

SMD 2 79 18 2.20 (0.56 to 3.83) 0.009 3.02 (2.14 to
3.90)

0.012 84.20% NA 1.000 −15.22 to
19.61

Serum AOPP Wang et al.,
2019

SMD 2 280 147 0.56 (0.32 to 0.79) < 0.001 0.54 (0.20 to
0.87)

0.876 0.00% NA 1.000 −0.99 to
2.10

Serum MDA Wang et al.,
2019

SMD 5 243 123 1.17 (0.81 to 1.52) < 10−6 0.97 (0.56 to
1.38)

0.216 30.80% 0.411 1.000 0.37 to 1.97

Serum lead Farace et al.,
2022

SMD 9 984 409 0.60 (0.12 to 1.07) 0.013 0.50 (0.30 to
0.70)

< 0.001 88.90% 0.567 1.000 −0.99 to
2.18

Serum TNF-α Hu et al., 2017 SMD 12 822 456 0.66 (0.28 to 1.03) 0.001 0.50 (0.20 to
0.79)

< 0.001 82.70% 0.328 0.781 −0.67 to
1.98

(Continued)
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TABLE 2 (Continued)

Biomarkers References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study

SMD/OR
(95% CI)

Heterogeneity Egger
p-

value

Excess
significance
p-value

95% PI

SMD/OR
(95%
CI)

P-value P value I2

Serum TNFR1 Hu et al., 2017 SMD 3 246 155 0.74 (0.47 to 1.01) < 10−6 0.71 (0.33 to
1.09)

0.965 0.00% 0.995 1.000 0.15 to 1.33

Serum IL-1β Hu et al., 2017 SMD 4 304 161 0.29 (0.01 to 0.58) 0.038 0.50 (0.20 to
0.79)

0.283 21.20% 0.500 0.627 −0.33 to
0.92

Serum IL-6 Hu et al., 2017 SMD 7 509 267 0.25 (0.07 to 0.43) 0.006 0.40 (0.11 to
0.69)

0.512 0.00% 0.808 0.434 0.03 to 0.47

Serum IL-8 Hu et al., 2017 SMD 6 434 242 0.45 (0.26 to 0.64) < 0.001 0.50 (0.20 to
0.79)

0.471 0.00% 0.868 0.692 0.20 to 0.70

Serum IL-17 Gautam et al.,
2023

SMD 2 79 50 0.64 (0.16 to 1.12) 0.009 0.78 (0.14 to
1.41)

0.517 0.00% NA 1.000 −2.46 to
3.75

Serum VEGF Hu et al., 2017 SMD 3 199 107 0.89 (0.29 to 1.49) 0.003 0.40 (0.01 to
0.79)

0.029 71.80% 0.368 0.044 −1.40 to
3.18

Serum FBG Cheng et al.,
2021

SMD 10 542 301 0.20 (0.01 to 0.40) 0.040 −0.02
(−0.30 to

0.27)

0.337 11.50% 0.066 0.404 −0.13 to
0.53

Serum CK Cheng et al.,
2021

SMD 5 2,072 229 0.74 (0.27 to 1.20) 0.002 0.72 (0.42 to
1.02)

0.034 61.70% 0.200 0.687 −0.53 to
2.00

Serum TSC Cheng et al.,
2021

SMD 3 1,344 858 0.23 (0.11 to 0.34) < 0.001 0.20 (0.06 to
0.34)

0.758 0.00% 0.509 1.000 −0.03 to
0.48

Serum TIBC Cheng et al.,
2021

SMD 3 540 236 −0.25 (−0.43 to
−0.07)

0.006 −0.16
(−0.42 to

0.09)

0.350 4.70% 0.141 0.490 −0.67 to
0.17

Serum
creatinine

Liu et al.,
2020b

SMD 5 1,920 983 −0.78 (−0.97 to
−0.60)

< 10−6
−0.78

(−0.90 to
−0.66)

0.031 62.40% 0.907 1.000 −1.30 to
−0.27

Serum folic Hu and
Wang, 2023

SMD 3 338 169 2.78 (0.61 to 4.95) 0.012 0.67 (0.17 to
1.17)

< 0.001 97.90% 0.110 1.000 −6.67 to
12.23

Serum miR-206 Liu et al., 2023 SMD 5 211 110 0.76 (0.49 to 1.04) < 10−6 0.63 (0.18 to
1.08)

0.494 0.00% 0.029 0.022 0.37 to 1.15

(Continued)
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TABLE 2 (Continued)

Biomarkers References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study

SMD/OR
(95% CI)

Heterogeneity Egger
p-

value

Excess
significance
p-value

95% PI

SMD/OR
(95%
CI)

P-value P value I2

Serum
miR-338-3p

Liu et al., 2023 SMD 3 252 139 0.47 (0.21 to 0.72) < 0.001 0.34 (0.001
to 0.69)

0.538 0.00% 0.29 0.250 −0.09 to
1.03

Serum miR-133b Liu et al., 2023 SMD 2 46 26 1.18 (0.56 to 1.79) < 0.001 1.04 (0.22 to
1.87)

0.624 0.00% NA 0.545 −2.81 to
5.17

Serum miR-133a Liu et al., 2023 SMD 2 46 26 0.77 (0.18 to 1.36) 0.010 0.68 (−0.12
to 1.47)

0.729 0.00% NA 1.000 −3.05 to
4.60

NS

CSF VEGF Chen et al.,
2018

SMD 9 619 365 0.51 (−0.001 to 1.01) 0.051 1.93 (1.55 to
2.32)

< 0.001 88.30% 0.043 < 0.001 −1.26 to
2.28

CSF lead Farace et al.,
2022

SMD 6 244 114 0.51 (−0.01 to 1.03) 0.057 0.10 (−0.35
to 0.55)

0.002 72.90% 0.124 0.315 −1.06 to
2.08

CSF p-tau Thapa et al.,
2023

SMD 6 933 577 0.12 (−0.38 to 0.62) 0.645 0.82 (0.72 to
0.94)

< 0.001 94.80% 0.043 < 0.001 −1.55 to
1.78

Serum NFH Xu et al., 2016 SMD 2 195 117 1.07 (−0.08 to 2.21) 0.068 0.53 (0.20 to
0.86)

0.005 87.50% NA 0.531 −11.24 to
13.37

Serum iron Wang et al.,
2020

SMD 7 1,796 1,055 0.48 (−0.07 to 1.03) 0.086 1.20 (1.05 to
1.35)

< 0.001 95.40% 0.22 0.003 −1.38 to
2.34

Serum HDL Cheng et al.,
2021

SMD 14 7,045 2,674 −0.01 (−0.19 to
0.17)

0.909 −0.02
(−0.13 to

0.09)

< 0.001 87.70% 0.480 < 0.001 −0.66 to
0.63

Serum LDL Liu et al.,
2020a

SMD 6 2,990 1,495 −0.01 (−0.12 to
0.10)

0.907 0.08 (−0.03
to 0.18)

0.152 38.10% 0.987 0.602 −0.26 to
0.24
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TABLE 2 (Continued)

Biomarkers References Effect
metrics

Studies
(n)

Subjects
(n)

Cases
(n)

Random effects model The
largest
study

SMD/OR
(95% CI)

Heterogeneity Egger
p-

value

Excess
significance
p-value

95% PI

SMD/OR
(95%
CI)

P-value P value I2

Serum TC Liu et al.,
2020a

SMD 6 2,981 1,495 −0.06 (−0.21 to
0.09)

0.453 0.06 (−0.05
to 0.17)

0.019 63.00% 0.952 0.121 −0.46 to
0.34

Serum TG Liu et al.,
2020a

SMD 8 3,727 1,918 −0.08 (−0.17 to
0.01)

0.080 −0.05
(−0.16 to

0.06)

0.194 29.30% 0.508 1.000 −0.27 to
0.11

Serum
homocysteine

Hu and
Wang, 2023

SMD 11 3,444 812 0.50 (0.04 to 0.97) 0.034 −0.03
(−0.21 to

0.14)

< 0.001 95.70% 0.223 < 0.001 −1.26 to
2.27

Serum vitamin
B12

Hu and
Wang, 2023

SMD 4 521 252 −0.00 (−0.20 to
0.19)

0.984 −0.16
(−0.39 to

0.08)

0.347 9.20% 0.345 1.000 −0.37 to
0.36

Serum galectin Ramos-
Martínez
et al., 2022

SMD 2 180 70 0.30 (−0.04 to 0.63) 0.085 0.17 (−0.21
to 0.54)

0.283 13.20% NA 1.000 −2.18 to
2.77

Serum selenium Zhou et al.,
2023

SMD 10 995 425 −0.27 (−1.09 to
0.55)

0.525 −2.08
(−2.34 to
−1.82)

< 0.001 96.10% 0.281 < 0.001 −3.35 to
2.81

Serum vitamin
D

Lanznaster
et al., 2020

SMD 4 439 163 −0.75 (−1.61 to
0.12)

0.090 −1.75
(−2.07 to
−1.42)

< 0.001 93.30% 0.598 0.450 −3.77 to
2.28

Serum ApoA1 Chalitsios
et al., 2024

OR 2 1,062,073 1,514 0.77 (0.60 to 1.00) 0.053 0.82 (0.72 to
0.94)

0.250 24.40% NA 1.000 NA

Serum ApoB Chalitsios
et al., 2024

OR 2 1,062,073 1,514 0.77 (0.60 to 1.00) 0.053 0.82 (0.72 to
0.94)

0.250 24.40% NA 1.000 NA

CSF, cerebrospinal fluid; SMD, standardized mean difference; CI, confidence intervals; PI, prediction interval; NA, not available; NFL, neurofilaments light chain; TNF, tumor necrosis factor; MIP, macrophage inflammatory proteins; MCP, monocyte chemoattractant
protein; IL, interleukin; G-CSF, granulocyte colony-stimulating factor; NFH, neurofilaments heavy chain; TDP-43, an RNA-binding protein; 8-OHdG, 8-hydroxyguanosine; GSH, glutathione; AOPP, Advanced Oxidation Protein Product; MDA, malondialdehyde;
TNFR1, TNF receptor 1; VEGF, vascular endothelial growth factor; FBG, fasting blood glucose; CK, creatine kinase; TSC, transferrin saturation coefficient; TIBC, total iron binding capacity; miR, microRNA; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
TC, total cholesterol; TG, triglyceride; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; t-tau, total tau; p-tau, phosphorylated-tau; CHIT1, chitotriosidase; CHI3L1, chitinase 3-like 1.
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FIGURE 1

Flow diagram of literature search.

3.2 Methodological quality assessment of
meta-analyses

The AMSTAR 2 quality assessment tool was utilized to evaluate
all 43 meta-analysis articles in our umbrella review. Among the
potential environmental factors, 2 out of 21 meta-analyses (10%)
were deemed high quality, 1 (5%) was rated as moderate quality, 6
(29%) were considered low quality, and 12 (57%) were classified
as critically low quality (Supplementary Table 5). Of the 22
meta-analysis articles focusing on potential biomarkers, only 3
(14%) were rated as moderate, 9 (41%) as low, and 10 (45%) as
critically low (Supplementary Table 5). Overall, most meta-analysis
researchers did not register protocols before conducting the review
(30 studies, 70%), which significantly impacts methodological
quality. Consequently, we performed a supplementary analysis that
did not consider the absence of a registered protocol as a critical
flaw when reassessing the methodological quality of the included
studies. The results of the supplementary analysis showed that
AMSTAR 2 ratings were reclassified as high in 3 studies (7%),
moderate in 10 studies (23%), and low (18 studies, 42%) or critically
low (12 studies, 28%) in 43 studies (Supplementary Table 6).

3.3 Environmental risk and protective
factors

The 46 associations between environmental factors and ALS
susceptibility were based on 344,597 ALS cases, a total population
of 71,415,574, a median of 4,664 ALS cases per meta-analysis
(interquartile range 1,370–11,904, range 205–27,698), and a median
of 215,279 subjects per meta-analysis (interquartile range 12,152–
2,149,201, range 580–11,207,625). Among these meta-analyses,
42 were case-control studies, with 26 including cohort studies.
The median number of study estimates was eight (interquartile
range 3–12, range 2–29). The effect metrics used to evaluate the
relationships between environmental factors and ALS risk were RR
and OR. Twenty-nine of the 46 associations (63%) were statistically

significant under the random effect model, with 13 (45%) having
P < 10−3 and 3 (10%) having P < 10−6. Of these 29 statistically
significant associations, 28 (97%) included more than 1,000 ALS
cases, and 13 (45%) exhibited substantial heterogeneity (I2 > 50%).
Additionally, 12 associations (41%) were statistically significant
without small study effects or excess significance bias, and the 95%
PI excluded the null value in 5 (17%) of the 29 associations.

As shown in Figure 2, the summary effect size, along with its
corresponding 95% CI, was calculated to assess the relationships
between various environmental factors and ALS risk. Out of
46 associations of environmental risk/protective factors, the sole
environmental protective factor classified as convincing evidence
(Class I) was the regular use of antihypertensive drugs (OR:
0.85, 95% CI: 0.81 to 0.88) (Donohue et al., 2022). Furthermore,
premorbid body mass index (OR: 0.97, 95% CI: 0.95 to 0.98)
(Zeng et al., 2019) and trauma (OR: 1.51, 95% CI: 1.32 to 1.73)
(Gu et al., 2021) were graded as highly suggestive evidence (class
II) for environmental protective and risk factors, respectively.
Nine environmental risk/protective factors were categorized as
suggestive evidence (Class III), among which farming occupation
(OR: 1.42, 95% CI: 1.17 to 1.73) (Kang et al., 2014), pesticides
exposure (OR: 1.44, 95% CI: 1.22 to 1.70) (Kang et al., 2014),
head injuries (OR: 1.46, 95% CI: 1.20 to 1.74) (Watanabe and
Watanabe, 2017), leisure time activity (OR: 1.08, 95% CI: 1.04 to
1.12) (Zheng et al., 2023), and metals exposure (OR: 1.87, 95% CI:
1.51 to 2.33) (Wang et al., 2014) were identified as environmental
risk factors. Conversely, anti-diabetes (OR: 0.56, 95% CI: 0.41 to
0.78) (Duan et al., 2023), diabetes mellitus (OR: 0.68, 95% CI: 0.55
to 0.84) (Wannarong and Ungprasert, 2020), smoking (OR: 1.14,
95% CI: 1.06 to 1.23) (Kim et al., 2024), and kidney diseases (OR:
0.84, 95% CI: 0.78 to 0.91) (Duan et al., 2023) were recognized as
environmental protective factors. Additionally, 13 other risk factors
and four protective factors were statistically significant but with
weak evidence certainty (Figure 2). Ultimately, it was determined
that the remaining 17 environmental factors had no significant
impact on ALS (P > 0.05).
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FIGURE 2

Summary estimates of environmental risk and protective factors for amyotrophic lateral sclerosis.

3.4 CSF and serum biomarkers

A total of 57 associations focusing on CSF/serum biomarkers
with ALS susceptibility were based on 30,941 ALS cases, 2,180,797
individuals in the total population, a median of 254 ALS cases per
meta-analysis (interquartile range 151–812, range 18–2,674), and
a median of 509 subjects per meta-analysis (interquartile range

267–1,781, range 46–7,045). All these studies were cohort, case-
control, or cross-sectional studies. The median number of study
estimates in each meta-analysis was five (interquartile range 3–
7, range 2–23). The effect metrics used to assess the association
between various biomarkers and ALS risk were SMD and OR.
Among 57 associations, 41 (72%) associations were nominally
statistically significant at P < 0.05, 19 of 57 (33%) at P < 10−3, and
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10 of 57 (18%) at P < 10−6. Among the 41 statistically significant
associations, five (12%) enrolled more than 1,000 ALS cases, and
22 (54%) exhibited large heterogeneity (I2 > 50%). Additionally,
15 (37%) statistically significant associations suggested hints for
small study effects or excessive significance bias. Lastly, in 13 (32%)
associations with P < 0.05, the 95% PI excluded the null value.

Among the 57 CSF/serum biomarker associations, 15 CSF
and 26 serum biomarkers were significantly associated with ALS
(Figure 3). Unfortunately, none of these biomarkers received a
grade of convincing evidence (Class I). Three serums and one
CSF biomarker exhibited highly suggestive evidence (Class II).
Specifically, serum levels of neurofilament light chains (NFL)
(SMD: 1.57, 95% CI: 1.29 to 1.85) (Sferruzza et al., 2022), CSF
NFL levels (SMD: 2.06, 95% CI: 1.61 to 2.51) (Sferruzza et al.,
2022), and serum ferritin levels (SMD: 0.66, 95% CI: 0.50 to 0.83)
(Cheng et al., 2021) were significantly higher in ALS patients, while
uric acid levels (SMD: −0.72; 95% CI: −0.98 to −0.46) (Wang
et al., 2019) were lower in ALS patients compared to controls.
Serum transferrin levels (SMD: −0.27; 95% CI: −0.39 to −0.16)
(Wang et al., 2020) were classified as suggestive evidence (Class
III). In contrast, 14 other CSF biomarkers were categorized as weak
evidence (Class IV), including CSF NFH, TDP-43, TNF-α, MIP-
1α, MCP-1, G-CSF, IL-2, IL-15, IL-17, cystatin C, CHIT1, CHI3L1,
t-tau, and homocysteine levels. Similarly, 22 serum biomarkers
were also considered weak evidence, encompassing serum 8-
OHdG, GSH, AOPP, MDA, TNF-α, TNFR1, IL-1β, IL-6, IL-8,
IL-17, VEGF, FBG, CK, TSC, TIBC, lead, creatinine, folic, miR-
133a, miR-133b, miR-206, and miR-338–3p levels. Furthermore,
no significant impact of the remaining 16 biomarkers on ALS was
detected (P > 0.05).

3.5 Results of sensitivity analysis

TTo evaluate the robustness of the seven associations
categorized as convincing or highly suggestive, we conducted
sensitivity analyses exclusively utilizing cohort and nested case-
control studies. The evidence supporting the link between trauma
history and ALS risk, comprising four cohort studies and one
nested case-control study, remained consistent (Class II, highly
suggestive). Conversely, the association between premorbid body
mass index and the onset of ALS was reclassified to suggestive
evidence. Regrettably, the meta-analysis on antihypertensive
drug usage incorporated solely one cohort study. Notably,
investigations on CSF NFL, serum NFL, ferritin, and uric
acid levels did not encompass any cohort or nested case-
control studies. Consequently, a sensitivity analysis for these
associations was infeasible.

4 Discussion

4.1 Principal findings

ALS is a fatal disease characterized by neuronal degeneration
that has garnered significant attention from numerous scholars.
An increasing number of meta-analyses have aimed to evaluate
the reliability and certainty of epidemiological evidence regarding

the association of various environmental factors and biomarkers
with ALS incidence. However, the published data often present
inconsistent or conflicting findings. Therefore, we conducted an
umbrella review that systematically assessed all recently published
meta-analyses investigating 103 potential associations between
ALS and different environmental factors and biomarkers. We
applied stringent criteria to evaluate the credibility of eligible
meta-analyses. Seven factors or biomarkers were identified as
providing convincing or highly suggestive evidence (trauma, use
of antihypertensive drugs, premorbid body mass index, CSF NFL
levels, serum NFL levels, ferritin levels, and uric acid levels),
indicating their potential significance in the development of ALS.
Among these factors, the use of antihypertensive drugs and
premorbid body mass index were associated with a decreased
risk of ALS, while trauma was linked to increased susceptibility.
Moreover, elevated CSF NFL levels, serum NFL levels, and ferritin
levels, as well as decreased serum uric acid levels, were observed
in ALS patients compared to controls, suggesting their potential
utility as reliable biomarkers for the onset and progression of
ALS. Belbasis et al. (2016) conducted a similar umbrella review in
2016, consolidating eight meta-analyses to explore 11 associations
between various environmental factors and ALS incidence. The
previous study identified long-term occupational exposure to lead
as a compelling environmental risk factor for ALS occurrence, with
head injury being considered highly suggestive. In contrast, our
study encompassed 43 meta-analyses involving 344,597 ALS cases
and 71 million participants. Following a meticulous evaluation
using robust methods, we reclassified the association of lead
exposure and head injury with ALS risk as weak and suggestive
evidence in our umbrella review.

4.2 Possible explanations

Antihypertensive medications can significantly decrease the
incidence of ALS, which may be attributed to multiple mechanisms.
First, hypertension has been linked to maladaptation of cerebral
circulation, resulting in dysregulation of cerebral blood flow and
disruption of the blood–brain barrier (BBB) (Ungvari et al.,
2021). BBB disruption permits the entry of neurotoxic blood-
derived debris, cells, and microbial pathogens into the brain,
triggering inflammation and immune responses that activate
various ALS pathways. BBB breakdown has been observed to
directly cause early motor neuron impairment and dysfunction
in ALS mouse models, and early preservation of BBB integrity
can postpone the onset of motor neuron injury and degeneration
(Winkler et al., 2014). Additionally, neuroimaging studies of living
human brains and postmortem tissue analyses have confirmed
BBB disruption in the initial states of ALS (Sweeney et al.,
2018; Mirian et al., 2022). Hence, antihypertensive medications
might lower the incidence of ALS by averting BBB dysfunction
(Kucuk et al., 2002; Katsi et al., 2020). Second, the most
commonly prescribed antihypertensive drugs, ACEIs, β-blockers,
and CCBs, could reduce the risk of ALS through distinct
neuroprotective mechanisms (Donohue et al., 2022). Specifically,
ACEI might promote neuronal survival by scavenging free radicals
and providing protection against glutamate-induced neurotoxicity
(Ravati et al., 1999; Sengul et al., 2011). β-blockers could diminish
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FIGURE 3

Summary estimates of cerebrospinal fluid and serum biomarkers for amyotrophic lateral sclerosis.

neuroinflammation by modulating macrophages and microglia
from pro-inflammatory to anti-inflammatory phenotypes, thereby
contributing to neuroprotective effects (Lin et al., 2020). Moreover,
calcium dysregulation can induce motor neuron degeneration
by directly or indirectly impacting crucial proteins involved in
ALS neurodegeneration, such as VAP-B, Matrin 3, and alsin
(Leal and Gomes, 2015). Therefore, individuals with ALS and
chronic hypertension may derive additional benefits beyond
blood pressure reduction from regular use of antihypertensive
medications, which should be recommended in forthcoming
clinical practice.

In our umbrella review, a history of trauma, graded as highly
suggestive, was linked to an increased risk of ALS. Trauma,
particularly repeated trauma, contributes to a sustained low-level
pro-inflammatory state in the body, resulting in the overexpression
of various circulating inflammatory factors such as IL-1, IL-6, and
TNF-α (Lenz et al., 2007). These pro-inflammatory cytokines can
lead to excessive activation of microglia in the central nervous
system (CNS), causing chronic neuroinflammation (Potgieter et al.,
2015; Ritzel et al., 2015). Activated microglia also release significant
amounts of pro-inflammatory factors, attracting more peripheral
immune cells to migrate to the CNS (Huang et al., 2021). Given
that neuroinflammation plays a crucial role in ALS pathogenesis,
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the close association between trauma and ALS susceptibility is
understandable.

Traumatic brain injury (TBI), a prevalent form of trauma,
could also increase the risk of developing ALS through various
mechanisms. Anomalous phosphorylation and translocation of
TDP-43 to the cytoplasm play crucial roles in ALS pathogenesis
(Dewey et al., 2011; Correia et al., 2015). A prior autopsy study
revealed TDP-43 inclusions in 61 out of 71 TBI cases across
multiple brain regions such as the brainstem, basal ganglia, and
diencephalon (Smith et al., 2013). Recent research has validated
that TBI can trigger ALS-related TDP-43 pathological alterations
in mouse models, possibly due to TBI-induced inflammation
promoting NF-κB-mediated TDP-43 overexpression (McKee et al.,
2009; McKee et al., 2013; Wiesner et al., 2018; Gao et al., 2022).
Additionally, a study using an ALS fly model indicated that TBI
may prompt stress granule formation in the brain, potentially
leading to motor neuron degeneration (Anderson et al., 2018). In
certain instances, TBI can directly compromise the BBB breakdown
(Shlosberg et al., 2010). Specifically, localized head trauma can
disrupt BBB regulation by damaging the endothelium of small
blood vessels (Rodríguez-Baeza et al., 2003). It is widely recognized
that the exacerbation of motor neuron damage resulting from BBB
impairment is a significant factor in ALS pathogenesis (Garbuzova-
Davis et al., 2011). Therefore, TBI could increase ALS susceptibility
by affecting several crucial pathophysiological processes involved
in ALS onset. Notably, our umbrella review encompassing a
meta-analysis of 11,692 ALS cases has substantiated a statistically
significant link between a history of head injury and ALS risk (OR
1.45, 95% CI 1.21 to 1.74). Unfortunately, the evidence level for this
correlation was deemed suggestive, as the p-value of 8.0 × 10−5 was
very close but did not reach 10−6.

In our study, highly suggestive evidence demonstrated that
premorbid BMI was inversely associated with the risk of ALS.
One possible explanation for this is that individuals susceptible
to ALS are more likely to be in a hypermetabolic state (low
BMI) (O’Reilly et al., 2013). Previous studies have shown that
mice with ALS exhibit increased energy expenditure, skeletal
muscle hypermetabolism, and reduced adipose tissue levels prior to
symptom onset (Dupuis et al., 2004). A recent observational study
showed that approximately 50% of patients were hypermetabolic
at diagnosis, and up to 80% had no change in metabolic status
during 2 years of follow-up, suggesting that in most cases,
hypermetabolism may occur early during ALS (Bouteloup et al.,
2009). Moreover, Mark et al. suggested that low-energy diets might
render motor neurons vulnerable to degeneration. In contrast,
high-energy diets could induce adaptive responses in neuronal
populations, activate signaling pathways that promote plasticity
and disease resistance, and initiate a neuroprotective response to
energy stress (Mattson et al., 2007). These findings suggest that
metabolic dysfunction plays a key role in the pathogenesis of ALS
(Batulan et al., 2003; Sinclair, 2005; Perera and Turner, 2016).
Another explanation is that BMI is closely related to type II diabetes
(T2D), and T2D is involved in ALS occurrence, indicating that BMI
may indirectly affect ALS susceptibility through the T2D pathway
(Corbin et al., 2016; D’Ovidio et al., 2018). Mechanistically, higher
blood glucose levels may act as unintentional compensation to
meet the higher energy expenditure of damaged motor neurons
(Fergani et al., 2007; Dupuis et al., 2011; Zhang et al., 2020).
Additionally, the potential anti-inflammatory effects of metformin

and sulphonylureas may suppress neuroinflammation in patients
with ALS (Han et al., 2018). However, the exact mechanisms
underlying the relationship between BMI and ALS are complex and
should be interpreted cautiously.

Regarding robust serum biomarkers, circulating ferritin levels
were significantly higher in patients with ALS than in healthy
controls. One possible explanation is that the disruption of iron
homeostasis may cause neuronal death, which plays an important
role in the pathogenesis of ALS (Rathore et al., 2012; Kim and
Connor, 2020; Obrador et al., 2020). The ferritin complex releases
the stored iron by triggering autophagy (Gao et al., 2016; Hou et al.,
2016). Subsequently, excessive iron may increase the generation of
reactive oxygen species through the Fenton reaction, thus inducing
ferroptosis and apoptosis due to the failure of redox control (Dixon
et al., 2012; Conrad and Pratt, 2019). Interestingly, serum uric
acid levels were reduced in patients with ALS compared with
controls, suggesting a protective effect of uric acid on ALS. This
can be explained by the following mechanism. First, uric acid can
assist in scavenging superoxides by inhibiting the degradation of
superoxide dismutase to reduce neurotoxicity, ultimately exerting
neuroprotective effects (Kutzing and Firestein, 2008). Second,
uric acid can also chelate iron, preventing increased free radical
production to further reduce oxidative damage (Davies et al., 1986).
Finally, uric acid has been demonstrated to protect neurons from
damage by reducing glutamate toxicity (Du et al., 2007).

Similarly, CSF and serum NFL levels were significantly
increased in patients with ALS compared to controls, which was
rated as highly suggestive evidence. In multiple animal models of
ALS, axonal damage precedes motor neuron death and symptom
onset (Fischer and Glass, 2007). As a crucial structural component
of axons, NFL is vital for maintaining normal axonal diameter and
conduction velocity (Brettschneider et al., 2006). Additionally, NFL
can be released into CSF and serum through axonal degeneration
(Brettschneider et al., 2006). In our umbrella review, patients
with ALS exhibited elevated CSF and serum NFL levels, reflecting
extensive damage to motor neurons and axons and serving as
important diagnostic markers (Bjornevik et al., 2021; Falzone et al.,
2021). While both CSF and serum NFL levels offer potential
diagnostic accuracy, serial lumbar puncture for monitoring NFL
levels is significantly less practical than blood collection, making
blood-borne NFL a more favorable surrogate marker for ALS
patients (Puentes et al., 2014; McCombe et al., 2015).

4.3 Strengths and limitations

To the best of our knowledge, our umbrella review offers the
most comprehensive and systematic evaluation of all published
meta-analyses on environmental risk factors, protective factors,
and biomarkers of ALS susceptibility. We applied stringent criteria
to assess the methodological quality and strength of evidence in
each eligible meta-analysis. Furthermore, we emphasized sensitivity
analysis and biological plausibility to enhance the accuracy of
evaluating each environmental factor and biomarker. However,
it is important to note several limitations of this study. First,
we focused solely on associations synthesized by published meta-
analyses, potentially overlooking important relationships not yet
evaluated using meta-analytic methods. Second, it is worth
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acknowledging that biomarker studies included relatively small
sample sizes, ranging from 46 to 7,045 cases without longitudinal
data. Therefore, there is a need for more multicenter, large-sample,
prospective biomarker studies. Third, in our umbrella review,
the AMSTAR 2 criteria revealed that among the 43 included
meta-analyses, two (5%) were rated as high quality, four (9%)
as moderate, 15 (35%) as low, and 22 (51%) as critically low
quality. A significant factor contributing to these lower-quality
ratings was the absence of protocol registration, noted in 30
(70%) of the included meta-analyses. While this methodological
concern did not substantially alter our overall findings, future
researchers are strongly encouraged to prospectively register study
protocols and adhere closely to standardized reporting guidelines
such as PRISMA and the Meta-analysis of Observational Studies
in Epidemiology (MOOSE) to enhance transparency and reliability
in this research field. Fourth, the original studies were susceptible
to confounding biases in observational meta-analyses. To mitigate
this issue, most original studies adjusted for known confounding
factors to minimize their impact on the results. Our umbrella
review extracted the fully adjusted effect estimates for further
analysis. However, due to variations in the adjustment models
across the original studies, we cannot completely rule out the
possibility of residual confounding in some effect estimates, which
could potentially distort the true effect sizes. Finally, out of
the 70 statistically significant associations, 35 (50%) exhibited
heterogeneity, which could compromise the robustness of our
results despite most estimates demonstrating significant effects
consistently. Therefore, it is advisable to exercise caution when
interpreting these results.

5 Conclusion

In summary, we provide a comprehensive overview of 103
potential environmental risk factors, protective factors, and
biomarkers for ALS susceptibility. Following rigorous criteria
to evaluate the epidemiological evidence, seven factors and
biomarkers show convincing or highly suggestive evidence,
including trauma, use of antihypertensive drugs, premorbid body
mass index, circulating NFL, ferritin, and uric acid levels, and CSF
NFL levels. Further research is needed to enhance understanding
of the complex mechanisms through which these factors impact
ALS development.
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