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Cardiorespiratory fitness (CRF), measured by VO2max, is an indicator of vascular 
functioning that can influence the integrity of brain microstructural white matter 
tracts in aging. How CRF is related to regional patterns of white matter bundles 
for magnetic resonance imaging (MRI) diffusion metrics (axial diffusivity, AD; radial 
diffusivity, RD; mean diffusivity, MD; fractional anisotropy, FA) has been less studied. 
We used a multivariate analysis method, the Scaled Subprofile Model (SSM), to 
identify network patterns of MRI tract-specific white matter integrity (WMI) for AD, 
RD, MD, and FA related to VO2max and to evaluate their relation to demographic, 
vascular health, and dementia risk factors in 167 cognitively unimpaired older 
adults, ages 50 to 88. We identified four CRF-related regional patterns of WMI 
characterized by enhanced integrity in commissural pathways that connect areas 
within anterior brain regions (prefrontal body of the corpus callosum), connect 
subcortical regions to one another (fornix), and include selected association tracts 
(arcuate fasciculus, superior longitudinal fasciculus). Greater white matter lesion 
load, in addition to age, was associated with reduced expression of all four CRF-
WMI patterns, while high vascular risk level was further associated with reduced 
expression of the RD, MD, and FA patterns. The regional patterns of RD and FA 
were most strongly associated with CRF. The results suggest that in healthy older 
adults, enhanced CRF is differentially associated with regional patterns of WMI, 
which are related to age and further impacted by macrostructural white matter 
lesion load and vascular risk. These findings support the use of the multivariate 
SSM in identifying regional patterns of white matter tracts that may provide markers 
of brain aging and cerebrovascular health.
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1 Introduction

Advanced age is associated with greater incidence of 
cardiovascular disease (Rodgers et al., 2019). Maintaining vascular 
health in old age may help to reduce the effects of brain aging. 
Cardiovascular health conditions have been shown to negatively 
impact structural brain volumes and quality of life, as well as increase 
the risk for dementia (Kivipelto et al., 2001; Viswanathan et al., 2009). 
Directly assessing cardiorespiratory fitness (CRF) by obtaining 
VO2max (maximal oxygen consumption) through cardiopulmonary 
exercise testing can provide an important indicator of vascular health. 
Both genetic factors and modifiable lifestyle behaviors are significant 
contributors to the composition and trainability of CRF, as well as its 
role in healthy aging (Bouchard et  al., 2015; Zadro et  al., 2017; 
Sarzynski et al., 2022).

Aging in the absence of cognitive impairment or dementia (i.e., 
healthy aging) has been associated with differences in brain structure 
(Alexander et al., 2006; Raz and Rodrigue, 2006; Farokhian et al., 
2017), including the integrity of white matter tracts. Magnetic 
resonance imaging (MRI) metrics of microstructural white matter 
integrity (WMI) derived from diffusion-weighted imaging have 
included measures of axial diffusivity (AD), radial diffusivity (RD), 
mean diffusivity (MD), and fractional anisotropy (FA). These have 
been suggested to reflect aspects of axonal loss and demyelination in 
the context of healthy aging (Lu et al., 2011; Salat, 2011; Soares et al., 
2013). Reductions in RD and MD have consistently been shown to 
reflect enhanced WMI while increases in FA indicate better tract 
integrity. AD’s association with aging has been more variable, with 
age-related increases and decreases being reported (Bennett et al., 
2010; Burzynska et al., 2010).

In healthy older adults, greater VO2max has been associated with 
enhanced microstructural integrity in tracts connecting regions in 
the frontal and parietal lobes (Colcombe et al., 2006; Gordon et al., 
2008; Voss et  al., 2013). Greater CRF levels have been related to 
enhanced FA and decreased RD (Johnson et al., 2012; Zhu et al., 
2015), even in the absence of significant effects of physical activity 
levels on WMI metrics (Chen et al., 2020; Strömmer et al., 2020; 
d'Arbeloff et al., 2020). CRF and engagement in physical activity have 
also been shown to have distinct associations with aspects of 
structural and functional brain measures, including gray matter 
volume and thickness and functional connectivity (Voss et al., 2016; 
Raichlen et al., 2020; Olivo et al., 2021), such that CRF has been 
associated with enhanced brain structure and function separate from 
physical activity. The associations have also involved white matter 
tracts connected to anterior brain regions, including the genu of the 
corpus callosum, superior longitudinal fasciculus, inferior 
longitudinal fasciculus, and uncinate fasciculus (Johnson et al., 2012; 
Hayes et  al., 2015; Oberlin et  al., 2016; Ding et  al., 2018). These 
studies have typically relied on univariate analytic methods that may 
limit the ability to fully characterize the regionally distributed 
associations of CRF with WMI in the context of healthy aging. 
Further research, using multivariate statistical methods that may 
be more sensitive in identifying patterns of tract-specific regional 
brain differences (Alexander and Moeller, 1994; Gazes et al., 2016; 
Geeraert et al., 2019, 2020), may help to better elucidate the relation 
of CRF to WMI in bundles preferentially vulnerable to aging. Such 
multivariate network analyses provide a way to test regional WMI 
tract associations with CRF, without the need to control for multiple 

comparisons while having the opportunity to statistically adjust for 
related health and demographic characteristics. Given previous 
evidence of preferential alterations for selected white matter tracts 
with age, evaluating multivariate regional patterns of tract-specific 
metrics of integrity may help to better characterize the potential 
influence of CRF on regional WMI in the healthy aging population 
(Bennett and Madden, 2014; de Groot et al., 2015; Bender et al., 2016).

Clinical vascular health risk factors (e.g., hypertension, 
hyperlipidemia, smoking, and diabetes) increase the risk of 
cerebrovascular disease (CVD) and can adversely impact WMI 
(Fuhrmann et al., 2019). Poor vascular health has also been shown to 
increase risk for developing Alzheimer’s disease (Meng et al., 2014; 
O’Brien and Markus, 2014). The common genetic risk factor for late-
onset Alzheimer’s disease, the apolipoprotein E (APOE) ε4 allele, has 
specifically been associated with increased risk of coronary heart 
disease and CVD, as well as detrimental effects on white matter 
(Kaprio et al., 1991; Fullerton et al., 2000; Raichlen and Alexander, 
2014; Wang et al., 2015). Multiple cardiovascular risk factors often 
co-exist in older adults (Genest Jr and Cohn, 1995). There is evidence 
that the contributions of these risk factors can be additive, such that 
the risk of cognitive impairment increases with each additional risk 
factor (Luchsinger et al., 2005). Moreover, having a greater number of 
cardiovascular risk factors has been associated with greater brain 
atrophy and poorer white matter health (Cox et al., 2019). Among 
older adults, the presence of multiple vascular risk factors has been 
associated with greater reductions in cerebral blood flow compared to 
those with one or no vascular risk factors and has been further 
associated with poorer cognitive performance (Bangen et al., 2014). 
White matter hyperintensity (WMH) volumes on MRI, that reflect 
chronic small vessel disease, increase with both age and with vascular 
health risk factors and may be  an indicator of disrupted WMI 
(Gunning-Dixon and Raz, 2000; Habes et al., 2016).

The present study used a multivariate network covariance analysis 
method, the Scaled Subprofile Model (SSM; Moeller et  al., 1987; 
Alexander and Moeller, 1994) to identify regional patterns of WMI 
related to CRF, as measured by VO2max, to evaluate which white 
matter bundles and which integrity metrics (i.e., FA, MD, RD, AD) 
may be most sensitive to differences in CRF in healthy aging. The 
multivariate SSM has been used in many structural neuroimaging 
studies to identify patterns of regional gray matter differences 
associated with age and multiple health factors (Alexander et al., 2006, 
2008, 2012, 2020; Bergfield et al., 2010; Kern et al., 2017; Song et al., 
2023; Van Etten et al., 2024). Differences in WMI using the SSM have 
been evaluated in relation to aging and cognitive function (Gazes 
et al., 2016), but this analytic method has yet to be directly applied to 
CRF with regional measures of WMI. We sought to apply multivariate 
SSM to directly investigate the relationship between CRF and regional 
tracts of WMI in the context of healthy aging. This study also sought 
to examine how (1) demographics (i.e., age and sex), (2) vascular 
health and dementia risk, including clinical vascular risk factors and 
APOE ε4 carrier status, and (3) WMH lesion load were each associated 
with the identified regional SSM network patterns of CRF-related 
WMI. We hypothesized that greater integrity in white matter bundles 
connecting anterior and posterior brain regions, such as the genu of 
the corpus callosum and superior longitudinal fasciculus, would 
be related to elevated CRF. Further, we hypothesized that patterns of 
CRF-related WMI would be  negatively impacted by poorer 
vascular health.
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2 Methods

2.1 Participants

Healthy adults (N = 167; Age = 69.0 ± 10.4 years) ages 50–88, 
underwent cardiopulmonary exercise testing and brain MRI scans. 
The sample was cognitively unimpaired, as indicated by the Mini 
Mental Status Exam (MMSE = 28.98 ± 1.26; Folstein et al., 1975), and 
included 78 females (46.7%) and predominantly (93.4%) non-Hispanic 
white participants. To exclude significant neurological, medical, and 
psychiatric disorders, participants underwent an extensive medical 
screen, and a physical and neurological examination performed by a 
neurologist (GAH) who specializes in aging and dementia. 
Participants were excluded if they had a MMSE score less than 26 or 
a Hamilton Depression Rating Scale (HAM-D; Hamilton, 1960) score 
greater than 9. The present participants comprise a subsample of a 
larger cohort of 210 older adults, including only those who were able 
to complete a treadmill test of CRF and diffusion-weighted MRI scans. 
Fourteen participants were excluded based on inability to complete 
VO2max testing, 16 additional participants were excluded due to not 
undergoing neuroimaging, and 13 participants were excluded based 
on poor data quality for the MRI scans (described in Section 2.5.1). 
Sixty participants (35.9%) were determined to have high 
cardiovascular risk based on endorsement of two or more available 
risk factors: history of cardiac arrest, hypertension, high cholesterol, 
diabetes, and historical or current smoker status (Bangen et al., 2014; 
Boutzoukas et al., 2022; see Table 1). All procedures were approved by 
the Institutional Review Board at the University of Arizona and all 
participants provided informed written consent.

2.2 Exercise testing

Participants completed a treadmill graded exercise test at the 
Pulmonary Function Laboratory at the University of Arizona Medical 
Center (Tucson, AZ). Each treadmill session began at a low intensity 

with a speed of 1 mph and an incline grade of 0%. Speed and grade 
were gradually increased based on the modified Naughton treadmill 
protocol during exercise (Berry et al., 1996; Strzelczyk et al., 2001). 
Expiratory gasses were measured using a metabolic cart and standard 
techniques of open-circuit spirometry and oxygen uptake was 
obtained using indirect calorimetry. Maximal oxygen consumption 
(VO2max [ml/kg/min]) to assess CRF was considered achieved when 
two of the following three criteria were satisfied: (1) plateau in VO2 
with an increase in workload; (2) respiratory exchange ratio of 1:1 
(VCO2: VO2) or higher; and (3) heart rate within 10 beats of the 
age-predicted maximum. Termination criteria were consistent with 
the guidelines of the American College of Sports Medicine (Pescatello 
et al., 2014).

2.3 Genetic testing

APOE genotyping was performed at the Translational Genomics 
Research Institute (TGen, Phoenix, AZ, United States) from venous 
blood samples and was determined using restriction-fragment-length 
polymorphisms (RFLP), which has been described in previous studies 
(Van Etten et  al., 2021; Song et  al., 2023). Briefly, high molecular 
weight DNA were extracted, assayed, and then amplified using 
AmpliTaq Gold Fast PCR Master Mix (Applied Biosystems: Thermo 
Fisher Scientific, Waltham, MA). Samples were assessed for 
characteristic banding patterns of the six common APOE genotypes 
according to previously published methods (Addya et al., 1997). In the 
present cohort, there were 49 APOE ε4 carriers (29.3%) and 118 
non-carriers (70.7%).

2.4 Image acquisition

T1-weighted Spoiled Gradient Echo (SPGR) MRI scans (slice 
thickness = 1.0 mm, TR = 5.3 ms, TE = 2.0 ms, TI = 500 ms, flip 
angle = 15°, matrix = 256×256, FOV = 25.6 cm) and T2 Fluid-
Attenuated Inversion Recovery (FLAIR) scans (slice 
thickness = 2.6 mm, TR = 11,000 ms, TE = 120 ms, TI = 2,250 ms, flip 
angle = 90°, matrix = 256×256, FOV = 25.0 cm) were acquired on a 
3 T GE Signa scanner (HD Signa Excite, General Electric, Milwaukee, 
WI). Diffusion-weighted images (DWI) in 51 directions with 8 B0 
images (b = 1,000 s/mm2, slice thickness = 2.6 mm, TR = 12,500 ms, 
TE = 70 ms, flip angle = 90°, matrix = 128 × 128, FOV = 25 cm, and 
58 slices) were also acquired during the same MRI session.

2.5 Image processing

2.5.1 Diffusion tensor imaging
Pre-processing of diffusion MRI data involved eddy current 

correction (Smith et al., 2004) and EPI distortion correction using 
Brainsuite’s INVERSION method (Bhushan et al., 2015). These images 
were processed using TRACULA (Yendiki et al., 2011; Maffei et al., 
2021) for automated global probabilistic tractography of 42 white 
matter bundles using a diffusion model capable of modeling crossing 
fibers (Behrens et al., 2007) and extraction of standard diffusivity 
measures (AD, RD, MD, and FA). Briefly, this involved using the 
specific structural brain regions of interest created by the FreeSurfer 

TABLE 1 Participant characteristics.

N 167

Age [years; M (SD)] 68.99 (10.41)

Education [years; M (SD)] 15.76 (2.58)

Sex (F/M) 78/89

MMSE [M (SD)] 28.98 (1.26)

VO2max [ml/kg/min; M (SD)] 24.43 (5.40)

Cardiac arrest (Y/N) 5/161†

Hypertension (Y/N) 55/112

Hyperlipidemia (Y/N) 73/94

Diabetes (Y/N) 8/159

Smoking history (Y/N) 66/101

Vascular risk level (H/L) 60/107

APOE ε4 Status (Y/N) 49/118

Means (standard deviations) for the sample. F/M, Female/Male; Y/N, Yes/No; MMSE, Mini 
Mental Status Exam; APOE, apolipoprotein E ε4; H/L, High/Low, High = two or more 
vascular risk factors, Low = less than two vascular risk factors. †One participant with missing 
data for cardiac arrest history (n = 166).
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processing stream (Fischl et al., 2002) in conjunction with a manually 
labeled training dataset of WM pathway priors to estimate the 
posterior probability distribution for the 42 WM tracts for each 
participant. To delineate the seed regions, TRACULA uses the 
specified WM pathway endpoints from the training set and transforms 
them into each individual’s native space (Yendiki et al., 2011; Maffei 
et  al., 2021). Streamlines from the seed regions are generated by 
TRACULA with a Bayesian framework that models the entire pathway 
globally, using splines simultaneously fitted to the diffusion orientation 
data from voxels along the length of the pathway. Voxel-wise diffusion 
orientation is produced using the multi-compartment ball-and-stick 
model (Behrens et al., 2007), which is capable of modeling crossing 
fibers. Curvature constraints for pathways are implicitly derived from 
the control points mapped from the training data to the native space, 
along with neighborhood information along the pathway (Yendiki 
et al., 2011; Maffei et al., 2021). This modeling procedure leverages 
regional neighborhood information along the length of the tract, 
produced by FreeSurfer’s automated cortical parcellation and 
subcortical segmentation of each participant’s corresponding 
T1-weighted MRI scan (Fischl et al., 2002; Yendiki et al., 2011; Maffei 
et al., 2021). Quality control procedures for outputs of TRACULA 
involved visual inspection of tracts flagged for low volume (< 1 SD 
below the mean). Such tracts were re-initialized to re-sample from 
their posterior distribution. Participants were excluded if: (1) Visual 
inspection of re-initialized tracts continued to include anatomically 
mis-specified or partially reconstructed streamlines, (2) during visual 
inspection, any tract contained just one streamline or many incorrect 
streamlines, (3) more than one of the four diffusion metrics were 
extreme values (beyond 3 IQR) for a tract, or (4) any of the four 
diffusion metrics were extreme values (beyond 3 IQR) on more than 
one tract. Based on these parameters, 13 participants were excluded 
for poor DWI data quality. Estimates of total intracranial volume 
(TIV) were obtained in native brain space from each of the T1 images 
using Statistical Parametric Mapping (SPM12; Wellcome Trust Center 
for Neuroimaging, London, United Kingdom) by calculating the sum 
of the total gray matter, white matter, and cerebrospinal fluid segments 
(Alexander et al., 2012).

2.5.2 WMH volume
The volume of WMH lesions were computed using T1 and 

T2-FLAIR scans and the lesion segmentation toolbox (LST; Schmidt 
et al., 2012) with SPM12. WMH probability maps were generated with 
the multispectral lesion growth algorithm by LST in a subset of the 
sample at a range of values for the optimization parameter kappa and 
spatially compared with reference WMH maps to determine the 
optimal threshold (0.35) for the present cohort of cognitively 
unimpaired older adults (Franchetti et al., 2020; Van Etten et al., 2021). 
Voxel volumes in the WMH maps were summed to compute the total 
WMH volume in milliliters (ml) and the global values were log 
transformed for subsequent analyses (Franchetti et al., 2020; Van Etten 
et al., 2021).

2.6 Statistical analyses

2.6.1 Network covariance patterns
Regional SSM network analysis (Moeller et al., 1987; Alexander 

and Moeller, 1994; Habeck et al., 2008; Alexander et al., 2012) was 

performed using MATLAB (Math Works, Natick, Massachusetts, 
United States). First, diffusivity metrics for each white matter bundle 
underwent natural log transformation and mean values across regions 
and participants were subtracted at each tract. Next, a principal 
component analysis (PCA) was performed, producing a set of regional 
covariance pattern components and corresponding network subject 
scores, which reflected the degree to which each participant expressed 
the identified regional pattern. The Bayesian Information Criterion 
(BIC; Schwarz, 1978) was used as a model selection method to identify 
the best set of SSM components for each diffusion metric. This 
method was chosen as it accounts for sample size differences in 
selecting the best model, providing a conservative selection of 
components for identifying the covariance pattern that may provide 
for greater generalizability and reproducibility of the network pattern 
across samples (Dziak et al., 2020). A bootstrap re-sampling procedure 
(Efron and Tibshirani, 1994) with 10,000 iterations was applied in the 
SSM analysis (Gazes et al., 2016; Habeck et al., 2008; Alexander et al., 
2012) to provide reliability estimates for the regional white matter 
integrity values for the observed pattern weights related to tract-
specific diffusion metrics and VO2max. The linearly combined SSM 
pattern weights with bootstrap resampling provide information on the 
meaningful contribution of each regional white matter bundle to the 
SSM patterns for each of the four WMI metrics. Influence of TIV was 
subsequently assessed for each WMI SSM pattern using multiple 
regression to test the association of CRF-related WMI pattern 
expression with VO2max after adjusting for TIV. Standardized 
regression coefficients were used to aid interpretation across the four 
WMI metrics. Network analyses were also followed by univariate 
regression for the individual tracts in relation to VO2max for the four 
diffusion metrics to assess how each tract identified as significant in 
the SSM analyses contributed to the CRF-related network patterns, 
with false discovery rate (FDR) correction for multiple comparisons 
(Benjamini and Hochberg, 1995).

2.6.2 Regressions with demographic and health 
factors

Block-wise multiple linear regression analyses in SPSS (v22, 
Chicago, IL, USA) were used to test how demographic and vascular 
health and dementia risk factors were associated with expression of 
each CRF-related WMI pattern. While adjusting for TIV in block one, 
age and sex were entered into block two to evaluate their association 
with CRF-related WMI pattern expression. Vascular risk level (0 or 1 
vs. 2 or more clinical vascular risk factors) and APOE ε4 status (e4 
non-carrier vs. carrier) were then added in block three to evaluate 
their associations with expression of the SSM patterns. Global WMH 
volume was subsequently added as the final covariate in block 4 to 
evaluate the impact of macrostructural white matter lesion load on 
the models.

Follow-up sensitivity analyses were conducted by adding 
individual vascular risk factors (i.e., history of cardiac arrest, 
hypertension, high cholesterol, diabetes, and historical or current 
smoker status) to the models in place of vascular risk level to (1) assess 
for differential contributions of individual risk factors to expression of 
the CRF-WMI patterns and (2) evaluate the potential unique additive 
effect of vascular risk factors on the network patterns. Follow-up 
analyses were also performed with use of hypertensive medication 
status as a separate covariate to further assess potential 
hypertension effects.
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3 Results

3.1 Network covariance patterns

The SSM analyses with BIC model selection criteria identified the 
linear combination of components that best predicted CRF (i.e., 
VO2max [ml/kg/min]) for each diffusion metric. The CRF-related AD 
pattern included the first six components and accounted for 11.2% of 
the variance in CRF (β = 0.342, p = 6.00E-7) with higher expression 
of the network pattern associated with greater CRF. Bootstrap 
resampling of the linearly combined regional pattern was characterized 
by reductions of AD in the bilateral arcuate fasciculus, bilateral frontal 
aslant, and bilateral superior longitudinal fasciculus (SLF) 2 and 3 
tracts, with relative increases in the left anterior thalamic radiation, 
right external capsule, left optic radiation, and bilateral uncinate 
fasciculus tracts (Figure  1). After adjustment for TIV, pattern 

expression remained significantly associated with CRF (β = 0.313, 
adjusted R2 change = 0.094, p = 1.20E-5). Follow-up univariate 
analyses revealed that AD in bilateral arcuate fasciculus, bilateral 
frontal aslant, bilateral SLF 2, and bilateral SLF 3 were negatively 
associated with VO2max, indicating greater WMI in these tracts with 
enhanced CRF (Table 2). Tracts identified as relative increases in the 
SSM pattern all showed significant decreases univariately: left anterior 
thalamic radiation, right external capsule, left optic radiation, and 
bilateral uncinate fasciculus, suggesting that these tracts reflect 
relatively less enhanced integrity with increasing CRF (Table 2).

The CRF-related RD pattern included the first four components 
and accounted for 30.2% of the variance in VO2max (β = 0.553, 
p = 8.88E-15) with higher expression of the network pattern related to 
greater CRF. This pattern was characterized by reductions in RD 
(lower RD indicates better tract integrity) in the prefrontal body of the 
corpus callosum with relative increases in the bilateral arcuate 

FIGURE 1

(A) White matter tracts identified as significant loadings in the cardiorespiratory fitness (CRF)-related axial diffusivity (AD) network pattern. (B) CRF-AD 
network subject scores and CRF. The subject scores of the CRF-AD network pattern derived from the first six SSM components. The scatterplots show 
that greater CRF was associated with higher expression of the network pattern. Adjusted R2 and p values are displayed. (C) CRF-related tract-specific 
AD loadings for the SSM network pattern of AD. Blue bars indicate point estimates for the loadings and red lines indicate the 95% confidence intervals. 
Asterisks reflect significant ROIs contributing to the covariance pattern. SSM, Scaled Subprofile Model; R, right; L, left; Mid Cer Ped, middle cerebellar 
peduncle; Unc Fas, uncinate fasciculus; SLF, superior longitudinal fasciculus; Opt Rad, optic radiation; MLF, middle longitudinal fasciculus; ILF, inferior 
longitudinal fasciculus; Fron Asl, frontal aslant; Ext Cap, external capsule; CST, corticospinal tract; Cing Bun V, cingulum bundle ventral; Cing Bun D, 
cingulum bundle dorsal; Ant Thal, anterior thalamic radiation; Acou Rad, acoustic radiation; Arc Fas, arcuate fasciculus; CC, corpus callosum; Body T, 
temporal body; Body PM, premotor body; Body PF, prefrontal body; Body P, body parietal; Body C, body central; Ant Comm, anterior commissure.
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TABLE 2 Univariate associations of CRF with white matter tracts within SSM network patterns.

CRF-related pattern White matter tract β p-FDR 95% confidence interval

AD L Arc Fas −0.334 2.90E-5 (−53.0, −20.9)

R Arc Fas −0.346 1.60E-5 (−50.8, −20.9)

L Fron Asl −0.345 1.60E-5 (−49.2, −20.2)

R Fron Asl −0.337 2.60E-5 (−47.9, −19.1)

L SLF 2 −0.328 3.70E-5 (−42.7, −16.5)

R SLF 2 −0.297 1.76E-4 (−39.3, −13.3)

L SLF 3 −0.315 7.30E-5 (−48.5, −17.8)

R SLF 3 −0.350 1.20E-5 (−53.1, −22.2)

L Ant Thal −0.252 0.001 (−49.4, −12.8)

R Ext Cap −0.207 0.008 (−50.8, −7.99)

L Opt Rad −0.165 0.033 (−41.8, −1.75)

L Unc Fas −0.193 0.013 (−51.6, −6.30)

R Unc Fas −0.237 0.003 (−58.9, −13.3)

RD CC Body PF −0.463 2.96E-10 (−30.4, −16.6)

L Arc Fas −0.292 2.00E-4 (−36.8, −12.2)

R Arc Fas −0.307 1.00E-4 (−41.0, −14.6)

L Acou Rad −0.198 0.011 (−29.6, −4.02)

R Acou Rad −0.219 0.005 (−34.2, −6.42)

L SLF 1 −0.315 7.30E-5 (−33.8, −12.4)

L SLF 3 −0.296 1.79E-4 (−35.2, −11.8)

R SLF 3 −0.384 2.00E-6 (−43.0, −19.8)

L CST −0.036 0.641 (−15.9, 9.81)

R CST −0.056 0.473 (−16.6, 7.76)

MD CC Body PF −0.446 1.51E-9 (−41.7, −22.0)

CC Genu −0.368 5.00E-6 (−39.7, −17.5)

L Fron Asl −0.371 5.00E-6 (−44.0, −19.6)

R Fron Asl −0.369 5.00E-6 (−43.2, −19.1)

L Fornix −0.292 2.00E-4 (−13.7, −4.51)

L Acou Rad −0.231 0.004 (−41.3, −8.84)

R Acou Rad −0.251 0.001 (−42.8, −11.0)

L Opt Rad −0.275 4.67E-4 (−43.6, −13.1)

R Opt Rad −0.313 7.80E-5 (−46.3, −16.8)

Mid Cer Ped −0.250 0.001 (−43.4, −11.0)

L CST −0.122 0.118 (−32.8, 3.71)

R CST −0.119 0.126 (−33.9, 4.21)

FA CC Body PF 0.346 1.51E-9 (13.1, 31.8)

R Fornix 0.351 1.20E-5 (9.92, 23.7)

R Arc Fas 0.041 0.599 (−8.62, 14.9)

R Acou Rad −0.012 0.876 (−15.0, 12.8)

L CST −0.110 0.155 (−28.1, 4.52)

R CST −0.046 0.554 (−20.5, 11.0)

R MLF 0.042 0.593 (−10.0, 17.5)

White matter tracts identified in the CRF-WMI SSM network patterns. β represents the standardized coefficient. False discovery rate (FDR) corrected p values are displayed. Key: Acou Rad, 
acoustic radiation; AD, axial diffusivity; Ant Thal, anterior thalamic radiation; Arc Fas, arcuate fasciculus; Body PF, prefrontal body; CC, corpus callosum; CRF, cardiorespiratory fitness; CST, 
corticospinal tract; Ext Cap, external capsule; FA, fractional anisotropy; Fron Asl, frontal aslant; L, left; MD, mean diffusivity; Mid Cer Ped, middle cerebellar peduncle; MLF, middle 
longitudinal fasciculus; Opt Rad, optic radiation; RD, radial diffusivity; R, right; SLF, superior longitudinal fasciculus; SSM, Scaled Subprofile Model; Unc Fas, uncinate fasciculus.
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fasciculus, bilateral acoustic radiation, bilateral corticospinal tract 
(CST), left SLF 1, and bilateral SLF 3 bundles (Figure  2). After 
adjusting for TIV, pattern expression was significantly associated with 
CRF (β = 0.511, adjusted R2 change = 0.253, p = 9.21E-14). 
Univariately, the prefrontal body of the corpus callosum was negatively 
associated with CRF. Tracts showing relative increases in the SSM 
pattern were also negatively associated with CRF, including the 
bilateral arcuate fasciculus, bilateral acoustic radiation, left SLF 1, and 
bilateral SLF 3. Bilateral CST was not significantly related to CRF 
(Table 2). These results suggest that the relative reductions in the 
prefrontal body of the corpus callosum observed in the SSM RD 
pattern reflects greater integrity in relation to increasing CRF, whereas 
the tracts identified as relative increases in the SSM pattern reflect 
relatively less enhanced WMI with greater CRF.

The CRF-related MD pattern included the first six components 
and accounted for 18.2% of the variance in VO2max (β = 0.432, 

p = 5.45E-9) with higher expression of the network pattern related to 
greater CRF. The pattern was characterized by reductions in MD 
(lower values indicate better tract integrity) in the prefrontal body of 
the corpus callosum, the genu of the corpus callosum, bilateral frontal 
aslant, and left fornix bundles with relative increases in the bilateral 
acoustic radiation, bilateral CST, bilateral optic radiation, and middle 
cerebellar peduncle (Figure  3). After TIV adjustment, pattern 
expression was significantly associated with CRF (β = 0.412, adjusted 
R2 change = 0.166, p = 4.05E-9). Follow-up univariate analyses 
revealed that MD in the prefrontal body of the corpus callosum, genu 
of the corpus callosum, bilateral frontal aslant, and left fornix were 
significantly negatively associated with VO2max. MD in tracts 
identified as relative increases in the SSM pattern showed significant 
univariate decreases with CRF, including the bilateral acoustic 
radiation, bilateral optic radiation, and middle cerebellar peduncle. 
MD values in bilateral CST were not significantly associated with 

FIGURE 2

(A) White matter tracts identified as significant loadings in the cardiorespiratory fitness (CRF)-related radial diffusivity (RD) network pattern. (B) CRF-RD 
network subject scores and CRF. The subject scores of the CRF-RD network pattern were derived from the first four SSM components. The scatterplots 
show that greater CRF was associated with higher expression of the network pattern. Adjusted R2 and p values are displayed. (C) CRF-related tract-
specific RD loadings for the SSM network pattern of RD. Blue bars indicate point estimates for the loadings and red lines indicate the 95% confidence 
intervals. Asterisks reflect significant ROIs contributing to the covariance pattern. SSM, Scaled Subprofile Model; R, right; L, left; Mid Cer Ped, middle 
cerebellar peduncle; Unc Fas, uncinate fasciculus; SLF, superior longitudinal fasciculus; Opt Rad, optic radiation; MLF, middle longitudinal fasciculus; 
ILF, inferior longitudinal fasciculus; Fron Asl, frontal aslant; Ext Cap, external capsule; CST, corticospinal tract; Cing Bun V, cingulum bundle ventral; 
Cing Bun D, cingulum bundle dorsal; Ant Thal, anterior thalamic radiation; Acou Rad, acoustic radiation; Arc Fas, arcuate fasciculus; CC, corpus 
callosum; Body T, temporal body; Body PM, premotor body; Body PF, prefrontal body; Body P, body parietal; Body C, body central; Ant Comm, anterior 
commissure.
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VO2max (Table  2). White matter bundles identified as relative 
decreases in the SSM MD pattern reflect regions with greater integrity 
with increasing CRF, while those identified as relative increases reflect 
tracts with relatively less enhanced integrity with greater CRF.

The CRF-related FA pattern included the first eight components 
and accounted for 25.7% of the variance in CRF (β = 0.512, p = 1.60E-
12) with higher expression of the network pattern related to greater 
fitness. The pattern was characterized by relative reductions in FA 
(higher FA indicates better tract integrity) in the right arcuate 
fasciculus, right acoustic radiation, bilateral CST, and right middle 
longitudinal fasciculus (MLF) with increases in the prefrontal body of 
the corpus callosum and right fornix bundles (Figure  4). After 
adjustment for TIV, pattern expression remained significantly 
associated with CRF (β = 0.478, adjusted R2 change = 0.223, p = 3.94E-
12). Follow-up univariate analyses revealed that FA in the prefrontal 
body of the corpus callosum and right fornix were significantly 

positively associated with VO2max (Table 2). No FA values in tracts 
identified in the pattern as relative decreases were significantly 
associated with VO2max univariately, including right arcuate 
fasciculus, right acoustic radiation, bilateral CST, and right MLF 
(Table 2). These results suggest that the observed relative increases in 
the SSM FA pattern in the prefrontal body of the corpus callosum and 
right fornix reflect greater WMI with increasing CRF, whereas those 
areas identified as relative FA decreases in the pattern reflect relatively 
less enhanced tract integrity with increasing CRF.

Overall, the network covariance patterns consistently identified 
several white matter bundles that demonstrated greater tract integrity 
with greater VO2max values across multiple WMI diffusion metrics, 
including the prefrontal body of the corpus callosum, genu of the 
corpus callosum, bilateral fornix, bilateral arcuate fasciculus, and 
bilateral frontal aslant. The SSM patterns also identified covarying 
white matter bundles that are relatively less associated with greater 

FIGURE 3

(A) White matter tracts identified as significant loadings in the cardiorespiratory fitness (CRF)-related mean diffusivity (MD) network pattern. (B) CRF-MD 
network subject scores and CRF. The subject scores of the CRF-MD network pattern were derived from the first six SSM components. The scatterplots 
show that greater CRF was associated with higher expression of the network pattern. Adjusted R2 and p values are displayed. (C) CRF-related tract-
specific MD loadings for the SSM network pattern of RD. Blue bars indicate point estimates for the loadings and red lines indicate the 95% confidence 
intervals. Asterisks reflect significant ROIs contributing to the covariance pattern. SSM, Scaled Subprofile Model; R, right; L, left; Mid Cer Ped, middle 
cerebellar peduncle; Unc Fas, uncinate fasciculus; SLF, superior longitudinal fasciculus; Opt Rad, optic radiation; MLF, middle longitudinal fasciculus; 
ILF, inferior longitudinal fasciculus; Fron Asl, frontal aslant; Ext Cap, external capsule; CST, corticospinal tract; Cing Bun V, cingulum bundle ventral; 
Cing Bun D, cingulum bundle dorsal; Ant Thal, anterior thalamic radiation; Acou Rad, acoustic radiation; Arc Fas, arcuate fasciculus; CC, corpus 
callosum; Body T, temporal body; Body PM, premotor body; Body PF, prefrontal body; Body P, body parietal; Body C, body central; Ant Comm, anterior 
commissure.
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CRF, indicating relatively less enhanced integrity with increasing levels 
of VO2max, including the bilateral CST, bilateral acoustic radiation, 
and bilateral uncinate fasciculus.

3.2 Demographics and vascular health risk 
factors

Expression of each CRF-related WMI network pattern was then 
tested with multiple linear regression for associations with TIV 
(block 1), age and sex (block 2), vascular risk level and APOE ε4 status 
(block 3), and global WMH volume (block 4). Full results for each 
pattern are shown in Table 3 (AD pattern results), 4 (RD pattern 
results), 5 (MD pattern results), and 6 (FA pattern results). Only 
CRF-related RD pattern expression was significantly associated with 
TIV in the first models (AD: β = 0.093, p = 0.231; RD: β = 0.163, 

p = 0.035; MD: β = 0.066, p = 0.396; FA: β = 0.117, p = 0.131). After 
adding age and sex to the models, age was significantly inversely 
related for all SSM patterns (AD: β = −0.390, p = 5.02E-7; RD: 
β = −0.547, p = 1.00E-13; MD: β = −0.470, p = 8.38E-10; FA: 
β = −0.628, p = 2.93E-18). Neither TIV (AD: β = −0.084, p = 0.379; 
RD: β = 0.052, p = 0.546; MD: β = −0.078, p = 0.397; FA: β = −0.073, 
p = 0.369) nor sex (AD: β = 0.182, p = 0.055; RD: β = 0.035, p = 0.679; 
MD: β = 0.108, p = 0.235; FA: β = 0.142, p = 0.080) were significant 
predictors for any patterns in model 2 (Tables 3–6).

After subsequently adding vascular risk and APOE ε4 status to the 
models, we found that vascular risk level was inversely associated with 
expression of the RD and FA patterns (AD: β = −0.058, p = 0.434; RD: 
β = −0.132, p = 0.048; MD: β = −0.140, p = 0.051; FA: β = −0.161, 
p = 0.010) while APOE ε4 status did not significantly contribute 
predictive value for any patterns (AD: β = −0.019, p = 0.797; RD: 
β = 0.018, p = 0.786; MD: β = −0.012, p = 0.863; FA: β = −0.007, 

FIGURE 4

(A) White matter tracts identified as significant loadings in the cardiorespiratory fitness (CRF)-related fractional anisotropy (FA) network pattern. 
(B) CRF-FA network subject scores and CRF. The subject scores of the CRF-FA network pattern were derived from the first eight SSM components. The 
scatterplots show that greater CRF was associated with higher expression of the network pattern. Adjusted R2 and p values are displayed. (C) CRF-
related tract-specific FA loadings for the SSM network pattern of RD. Blue bars indicate point estimates for the loadings and red lines indicate the 95% 
confidence intervals. Asterisks reflect significant ROIs contributing to the covariance pattern. SSM, Scaled Subprofile Model; R, right; L, left; Mid Cer 
Ped, middle cerebellar peduncle; Unc Fas, uncinate fasciculus; SLF, superior longitudinal fasciculus; Opt Rad, optic radiation; MLF, middle longitudinal 
fasciculus; ILF, inferior longitudinal fasciculus; Fron Asl, frontal aslant; Ext Cap, external capsule; CST, corticospinal tract; Cing Bun V, cingulum bundle 
ventral; Cing Bun D, cingulum bundle dorsal; Ant Thal, anterior thalamic radiation; Acou Rad, acoustic radiation; Arc Fas, arcuate fasciculus; CC, corpus 
callosum; Body T, temporal body; Body PM, premotor body; Body PF, prefrontal body; Body P, body parietal; Body C, body central; Ant Comm, anterior 
commissure.
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p = 0.915). In these models, age remained significant across all 
patterns (AD: β = −0.385, p = 8.78E-7; RD: β = −0.533, p = 3.39E-13; 
MD: β = −0.456, p = 2.27E-9; FA: β = −0.612, p = 8.82E-18), sex 
emerged as a significant predictor for AD and FA patterns with greater 
pattern expression associated with male sex (AD: β = 0.193, p = 0.045; 
RD: β = 0.060, p = 0.484; MD: β = 0.135, p = 0.143; FA: β = 0.172, 
p = 0.033), and TIV was not a significant predictor for all regional 
diffusion patterns (AD: β = −0.095, p = 0.326; RD: β = 0.035, 
p = 0.686; MD: β = −0.100, p = 0.279; FA: β = −0.098, p = 0.229).

Finally, adding global WMH volume to the models to assess the 
association of macrostructural WMI with expression of the 
CRF-related WMI patterns revealed that WMH volume was 
significantly negatively associated with SSM participant scores across 
all diffusion patterns (AD: β = −0.260, p = 0.005; RD: β = −0.285, 
p = 5.99E-4; MD: β = −0.191, p = 0.034; FA: β = −0.165, p = 0.036). In 
these final models, TIV remained non-significant across all patterns 

(AD: β = −0.031, p = 0.752; RD: β = 0.105, p = 0.221; MD: β = −0.053, 
p = 0.572; FA: β = −0.057, p = 0.489), age remained a significant 
predictor across all patterns (AD: β = −0.221, p = 0.020; RD: 
β = −0.353, p = 3.30E-5; MD: β = −0.336, p = 2.91E-4; FA: β = −0.508, 
p = 1.81E-9), sex remained a significant predictor in AD and FA 
pattern models (AD: β = 0.199, p = 0.035; RD: β = 0.066, p = 0.423; 
MD: β = 0.139, p = 0.126; FA: β = 0.176, p = 0.028), vascular risk level 
emerged as a significant predictor for expression of the MD pattern 
and remained a significant predictor for the RD and FA patterns (AD: 
β = −064, p = 0.377; RD: β = −0.139, p = 0.032; MD: β = −0.144, 
p = 0.041; FA: β = −0.165, p = 0.008), and APOE ε4 status remained 
non-significant across all patterns (AD: β = −0.007, p = 0.919; RD: 
β = 0.030, p = 0.632; MD: β = −0.004, p = 0.958; FA: β = 0.001, 
p = 0.990). In follow-up sensitivity analyses, no individual vascular 
risk factors (p’s > 0.05) or use of hypertensive medication (p > 0.05) 
was significantly associated with CRF-WMI pattern expression. 

TABLE 3 Summary of multiple regression analyses for variables predicting the CRF-AD network pattern.

Variable Model 1 Model 2 Model 3 Model 4

β B SE p β B SE p β B SE p β B SE p

TIV 0.093 0.066 0.055 0.231 −0.084 −0.059 0.067 0.379 −0.095 −0.067 0.068 0.326 −0.031 −0.022 0.069 0.752

Age −0.390 −0.003 0.000
5.02E-

7
−0.385 −0.003 0.000

8.78E-

7
−0.221 −0.001 0.001 0.020

Sex 0.182 0.025 0.013 0.055 0.193 0.027 0.013 0.045 0.199 0.027 0.013 0.035

Vascular risk 

level
−0.058 −0.008 0.011 0.434 −0.064 −0.009 0.010 0.377

APOE −0.019 −0.003 0.011 0.797 −0.007 −0.001 0.011 0.919

WMH −0.260 −0.041 0.015 0.005

Adjusted R2 0.003 0.139 0.133 0.169

F for R2 1.44 0.231 9.97
5.00E-

6
6.08

3.50E-

5
6.61

3.00E-

6

β represents the standardized coefficient and B the unstandardized coefficient. SE indicates t and standard error of natural log-transformed B. Sex, vascular risk level, and APOE ε4 status were 
dummy coded 1 for males, high vascular risk level, and APOE ε4 carriers, respectively. Bolded variables are significant (p < 0.05). Key: APOE, apolipoprotein E; TIV, total intracranial volume; 
WMH, white matter hyperintensity volume.

TABLE 4 Summary of multiple regression analyses for variables predicting the CRF-RD network pattern.

Variable Model 1 Model 2 Model 3 Model 4

β B SE p β B SE p β B SE p β B SE p

TIV 0.163 0.142 0.067 0.035 0.052 0.045 0.075 0.546 0.035 0.031 0.075 0.686 0.105 0.092 0.075 0.221

Age −0.547 −0.004 0.001
1.00E-

13
−0.533 −0.004 0.001

3.39E-

13
−0.353 −0.003 0.001

3.30E-

5

Sex 0.035 0.006 0.014 0.679 0.060 0.010 0.015 0.484 0.066 0.011 0.014 0.423

Vascular risk 

level
−0.132 −0.023 0.012 0.048 −0.139 −0.025 0.011 0.032

APOE 0.018 0.003 0.012 0.786 0.030 0.006 0.012 0.632

WMH −0.285 −0.055 0.016
5.99E-

4

Adjusted R2 0.021 0.300 0.308 0.353

F for R2 4.51 0.035 24.7
3.28E-

13
15.8

1.25E-

12
16.1

1.87E-

14

β represents the standardized coefficient and B the unstandardized coefficient. SE indicates t and standard error of natural log-transformed B. Sex, vascular risk level, and APOE ε4 status were 
dummy coded 1 for males, high vascular risk level, and APOE ε4 carriers, respectively. Bolded variables are significant (p < 0.05). Key: APOE, apolipoprotein E; TIV, total intracranial volume; 
WMH, white matter hyperintensity volume.
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Significant results were unchanged after additionally controlling for 
the time interval between exercise testing and MRI acquisition 
(25.9 ± 3.14 days), which was not associated with expression of any 
CRF-WMI pattern (p’s > 0.05).

4 Discussion

The present study used a multivariate network covariance 
approach to identify regional patterns of tract-specific WMI associated 
with CRF in a healthy aging cohort. Across the identified regional 
patterns of diffusion WMI metrics, including for AD, RD, MD, and 
FA, greater VO2max was associated with enhanced integrity in white 
matter bundles primarily connecting anterior portions of the brain, as 
well as in wider association areas. Multivariate patterns of MD and FA 
additionally identified white matter bundles connecting subcortical 
brain regions related to greater CRF. These results extend previous 

studies, which have identified both frontal (Gordon et al., 2008; Voss 
et al., 2013) and subcortical associations of CRF with WMI in tracts 
vulnerable to brain aging (Davis et al., 2009; Burgmans et al., 2010; 
Meier et al., 2012; Tian et al., 2014).

Specifically, relative reductions of AD were observed in white 
matter tracts connecting frontal regions to temporal and parietal 
regions, as well as connecting inferior frontal gyrus to superior 
frontal gyrus, indicating better integrity with increased CRF. The 
pattern also identified relative increases, which reflected 
comparatively less decreases relative to greater CRF based on 
univariate follow-up analyses, in tracts connecting the thalamus to 
frontal and occipital cortices, tracts connecting basal ganglia 
structures, and those connecting temporal and frontal regions. While 
previous studies have not always found CRF associations with AD 
(Johnson et al., 2012; Voss et al., 2013), the results are consistent with 
other studies that have demonstrated a relationship between AD and 
CRF in SLF 1 (Ding et al., 2018). AD, a measurement of diffusivity 

TABLE 5 Summary of multiple regression analyses for variables predicting the CRF-MD network pattern.

Variable Model 1 Model 2 Model 3 Model 4

β B SE p β B SE p β B SE p β B SE p

TIV 0.066 0.052 0.061 0.396 −0.078 −0.061 0.072 0.397 −0.100 −0.079 0.072 0.279 −0.053 −0.042 0.074 0.572

Age −0.470 −0.003 0.001
8.38E-

10
−0.456 −0.003 0.001

2.27E-

9
−0.336 −0.002 0.001

2.91E-

4

Sex 0.108 0.017 0.014 0.235 0.135 0.021 0.014 0.143 0.139 0.021 0.014 0.126

Vascular risk 

level
−0.140 −0.022 0.011 0.051 −0.144 −0.023 0.011 0.041

APOE −0.012 −0.002 0.012 0.863 −0.004 −0.001 0.012 0.958

WMH −0.191 −0.033 0.016 0.034

Adjusted R2 −0.002 0.196 0.206 0.223

F for R2 0.723 0.396 14.5
2.09E-

8
9.60

4.95E-

8
8.94

2.06E-

8

β represents the standardized coefficient and B the unstandardized coefficient. SE indicates t and standard error of natural log-transformed B. Sex, vascular risk level, and APOE ε4 status were 
dummy coded 1 for males, high vascular risk level, and APOE ε4 carriers, respectively. Bolded variables are significant (p < 0.05). Key: APOE, apolipoprotein E; TIV, total intracranial volume; 
WMH, white matter hyperintensity volume.

TABLE 6 Summary of multiple regression analyses for variables predicting the CRF-FA network pattern.

Variable Model 1 Model 2 Model 3 Model 4

β B SE p β B SE p β B SE p β B SE p

TIV 0.117 0.122 0.080 0.131 −0.073 −0.076 0.085 0.369 −0.098 −0.102 0.084 0.229 −0.057 −0.059 0.086 0.489

Age −0.628 −0.006 0.001
2.93E-

18
−0.612 −0.006 0.001 8.82E-18 −0.508 −0.005 0.001

1.81E-

9

Sex 0.142 0.029 0.016 0.080 0.172 0.035 0.016 0.033 0.176 0.036 0.016 0.028

Vascular risk 

level
−0.161 −0.034 0.013 0.010 −0.165 −0.035 0.013 0.008

APOE −0.007 −0.001 0.014 0.915 0.001 0.000 0.014 0.990

WMH −0.165 −0.038 0.018 0.036

Adjusted R2 0.008 0.371 0.389 0.402

F for R2 2.31 0.131 33.6
5.88E-

17
22.1 7.81E17 19.6

4.66E-

17

β represents the standardized coefficient and B the unstandardized coefficient. SE indicates t and standard error of natural log-transformed B. Sex, vascular risk level, and APOE ε4 status were 
dummy coded 1 for males, high vascular risk level, and APOE ε4 carriers, respectively. Bolded variables are significant (p < 0.05). Key: APOE, apolipoprotein E; TIV, total intracranial volume; 
WMH, white matter hyperintensity volume.

https://doi.org/10.3389/fnagi.2025.1542458
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Smith et al. 10.3389/fnagi.2025.1542458

Frontiers in Aging Neuroscience 12 frontiersin.org

that extends parallel to WM tracts, is generally thought to reflect 
axonal integrity (Concha et  al., 2006). Disruptions to AD may 
additionally be influenced by macrostructural effects, such as the 
formation of WMH, due to disrupted diffusion of water molecules 
(Bennett et al., 2010; Salat, 2011). This was shown in the follow-up 
regression analyses in the present study, where expression of the 
CRF-AD pattern was significantly negatively associated with global 
WMH volume while accounting for age, sex, and cardiovascular and 
dementia risk factors (i.e., vascular risk level, APOE status). Although 
a decrease in AD can also be  seen following acute axonal injury 
(Budde et al., 2009), the present study sample was screened to exclude 
individuals with significant neurologic conditions that may be more 
associated with these types of acute infarcts. The reduced AD relative 
to increased CRF for selected tracts connecting frontal, temporal, and 
parietal brain regions in the present results may be more likely to 
reflect enhanced tract integrity for AD, which is also consistent with 
other reports in healthy aging (Sullivan et al., 2008; Zahr et al., 2008; 
Kumar et al., 2013). Further research is needed to help clarify the 
directional relation of AD with enhanced integrity in healthy older 
adults. These findings additionally indicate that multivariate statistical 
methods, like the SSM, may be  able to detect subtle regional 
differences in tract-specific WMI related to CRF that univariate 
methods may not.

The CRF-RD pattern revealed relative reductions in the 
prefrontal body of the corpus callosum (connecting rostral middle 
frontal regions between hemispheres) with relative increases, 
which again appeared as comparatively less decreases, in tracts 
connecting frontal to temporal regions, thalamus to temporal 
regions, spinal tract to frontal areas, and anterior to posterior 
regions. These results are consistent with previous work that 
found lower RD associated with greater CRF levels in the corpus 
callosum and pre-motor areas (Johnson et al., 2012; Tarumi et al., 
2022). RD is commonly thought to reflect myelin integrity 
through measurement of diffusion perpendicular to WM tracts 
(Song et al., 2023). Thus, the CRF-RD pattern may indicate WM 
bundles with enhanced or preserved myelination related to greater 
CRF in addition to bundles with preferentially less reductions in 
diffusivity. Additionally, expression of the pattern was significantly 
associated with age, vascular risk level, and global WMH volume, 
such that greater pattern expression was related to younger age, 
lower vascular risk, and lower overall WMH lesion load. 
Compared to the CRF-AD pattern, the CRF-RD pattern was more 
strongly associated with cardiovascular health in this healthy 
older adult cohort.

The CRF-MD pattern was characterized by reductions in the 
prefrontal body and genu of the corpus callosum (connecting 
rostral middle and mid-anterior frontal regions between 
hemispheres) and tracts connecting frontal regions to one another 
as well as connecting hippocampal and midbrain structures with 
relative increases in tracts connecting the thalamus to temporal and 
occipital areas, spinal tract to frontal regions, and cerebellar 
hemispheres to the contralateral cortex. MD represents a 
combination of AD and RD, reflecting the average rate (Madden 
et al., 2009; Bennett and Madden, 2014), magnitude (Salat, 2011), 
and motility of water diffusion, independent of the directionality 
(Sullivan et al., 2008). The CRF-MD pattern displayed significant 
overlap with the AD and RD patterns but also uniquely detected 
CRF associations in the fornix connecting subcortical regions. 

Similarly to the CRF-RD pattern, greater expression of the CRF-MD 
was significantly associated with younger age, lower cardiovascular 
risk levels, and lower global WMH volume.

Finally, unlike AD, RD, and MD, higher values of FA indicate 
better directional tract integrity. The CRF-FA pattern was 
characterized by increases in the prefrontal body of the corpus 
callosum and bundles connecting hippocampal and midbrain 
structures. The pattern also identified relative reductions (i.e., tracts 
with comparatively less increases in FA) in the tract connecting the 
thalamus, parietal regions, and frontal regions with temporal areas 
as well as connecting spinal tract to frontal regions. Although FA is 
sensitive to directional white matter microstructural differences, it 
lacks specificity for the type of white matter alterations that may 
be present (Alexander et al., 2011). These findings are consistent 
with previous studies showing that CRF levels have been related to 
enhanced FA in tracts connecting anterior brain regions (Johnson 
et al., 2012; Zhu et al., 2015). The pattern also suggests a potential 
hemispheric difference in FA for associations with CRF in the right 
hemisphere. Greater expression of this pattern was significantly 
associated with younger age, male sex, lower vascular health risk, 
and reduced macrostructural white matter lesion load.

While the patterns differed for some identified tracts, several were 
shared across diffusion metric patterns, including the prefrontal body 
of the corpus callosum, fornix, and superior longitudinal fasciculus, 
suggesting these bundles may be especially sensitive to CRF-related 
differences across several MRI diffusion measures of WMI. Results 
additionally suggest that RD and FA may be  most sensitive to 
differences in the integrity of white matter related to risk factors for 
cardiovascular health, as these patterns were most strongly associated 
with both VO2max and vascular risk level in this cohort of healthy 
older adults. This is consistent with previous studies that have found 
significant associations with CRF in both RD and FA in the absence 
of AD and MD relationships (Johnson et al., 2012). Together, these 
findings support network regional covariance patterns of brain white 
matter tracts sensitive to CRF differences in healthy aging. Moreover, 
these patterns may represent useful neuroimaging biomarkers of 
cardiovascular health in older age.

Previous literature has been mixed on the extent to which CRF 
impacts white matter in healthy aging, as well as which bundles are 
sensitive to differences in cardiovascular health. Multivariate 
statistical approaches have been useful for detecting local, tract-
specific associations of aging and CRF, while reducing the need for 
multiple comparisons and accounting for shared variance between 
closely related white matter tracts (De Santis et al., 2014a; Geeraert 
et al., 2019, 2020). The present results indicate that greater CRF was 
mainly associated with preferential preservation of WMI in the 
prefrontal body and genu of the corpus callosum, arcuate fasciculus, 
superior longitudinal fasciculus, frontal aslant tract, and fornix, 
suggesting that these bundles are sensitive to CRF differences in a 
cognitively unimpaired, generally healthy aging sample. Follow-up 
regression analyses revealed that all CRF-related WMI patterns 
were significantly associated with age, with increasing age related 
to reduced expression of the patterns, and each reflecting greater 
WMI with increasing CRF. Additionally, reduced expression of the 
RD, MD, and FA patterns was related to vascular risk level, such 
that those with at least two clinical vascular risk factors displayed 
less preservation of the CRF-related WMI above and beyond effects 
of age, sex, and TIV. Notably, greater expression of the AD and FA 

https://doi.org/10.3389/fnagi.2025.1542458
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Smith et al. 10.3389/fnagi.2025.1542458

Frontiers in Aging Neuroscience 13 frontiersin.org

patterns in males was observed after adjusting for other covariates. 
Future research is warranted for evaluation of potential sex 
differences in WMI related to CRF. Although previous work has 
shown detrimental effects of APOE ε4 on WMI (Heise et al., 2024), 
none of the present CRF-WMI patterns were significantly associated 
with APOE ε4 status in our generally healthy cognitively unimpaired 
cohort. These results provide support for multiple clinical vascular 
risk factors associated with added risk for brain aging. It has been 
hypothesized that CRF may attenuate age-related cognitive decline 
via increased delivery and upregulation of neurotrophins and other 
supporting factors in brain regions particularly vulnerable to 
demyelination in old age (Stimpson et al., 2018). Other potential 
mechanisms include increased cerebral perfusion, synaptogenesis, 
and angiogenesis (Maass et al., 2015; Tsai et al., 2016; Stimpson 
et al., 2018). CVD and associated risk factors may interfere with 
these processes. Thus, high CRF may help attenuate age-related 
effects on myelin and subsequently associated cognitive functions. 
Follow-up research studies are needed to determine the impact of 
CRF on white matter and associated aspects of cognition. 
Longitudinal data would be  especially important to better 
understand the relationship between CRF and WMI over time and 
the extent to which this relationship can be modified by different 
lifestyle factors (e.g., diet, exercise).

Global WMH volume was a significant predictor of all four SSM 
CRF-related patterns while we  controlled for age, sex, vascular 
health, and APOE ε4 carrier status. These findings suggest that 
chronic small vessel disease may further disrupt WMI sensitive to 
CRF in older age, distinct from the accumulation of common 
cardiovascular health risk factors. Although the exact mechanisms 
remain unclear, it has been suggested that WMH can disrupt local 
and distal WMI by alterations in water mobility in the interstitial 
space (Wardlaw et  al., 2013), increased blood–brain barrier 
permeability (Farrall and Wardlaw, 2009), and/or Wallerian 
degeneration (Pierpaoli et al., 2001).

The present study has several limitations. First, the sample was 
largely homogenous with primarily non-Hispanic white, highly 
educated participants with relatively low cardiovascular health 
burden compared to the general population of older adults. Given 
evidence of racial/ethnic and socioeconomic disparities in WMI 
outcomes (Weiss et al., 2024), further research with more diverse 
samples in dimensions of race/ethnicity, education, socioeconomic 
status, and cardiovascular health is needed to further evaluate the 
generalizability of our findings. Additionally, the present results rely 
on evaluating the associations of CRF with brain metrics from one 
time point, which does not allow for the assessment of causality. 
Future research would benefit from evaluating longitudinal changes 
in CRF and WMI in older adults to better understand the dynamics 
of these relationships throughout both the healthy and pathological 
aging process. It would be important for future studies to evaluate 
whether and how lifestyle behavioral interventions can help to 
modify these dynamics, as well as the extent to which they are 
associated with cognitive and clinical outcomes. Finally, further 
research should utilize additional neuroimaging measures with 
increased specificity for alterations in microstructural white matter 
characteristics (e.g., axonal density) to enhance precision of WMI 
measurement and to further clarify specific mechanisms in the 
associations between CRF and WMI in aging (de Santis 
et al., 2014b).

5 Conclusion

The present study used a multivariate covariance approach to 
identify regional network patterns of tract-specific WMI for brain 
diffusion measures of AD, RD, MD, and FA related to CRF in cognitively 
unimpaired older adults. The resulting patterns were characterized by 
enhanced WMI in relation to greater CRF across all four diffusion 
metrics, involving white matter bundles mainly connecting anterior 
brain regions as well as wider association tracts. Greater expression of 
these patterns was also strongly and consistently associated with younger 
age and less macrostructural white matter lesion load; and higher 
expression of several network patterns (i.e., RD, MD, and FA) were 
related to lower levels of vascular risk, suggesting differential associations 
of WMI diffusion metrics with cardiovascular health. Together, these 
results highlight unique contributions from the presence of multiple 
vascular risk factors and age on brain WMI in healthy older adults. 
Finally, our analyses support the use of multivariate network analyses, 
like SSM, with MRI diffusion metrics of localized white matter tracts as 
potential neuroimaging markers of lifestyle influences on brain aging 
that can help to assess relationships between CRF, WMI, age, and 
cardiovascular health in the context of healthy aging.
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