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Background: Research in aging, impairment, and Alzheimer’s disease (AD) often 
requires powerful computational models for discriminating between clinical 
cohorts and identifying early biomarkers and key risk or protective factors. 
Machine Learning (ML) approaches represent a diverse set of data-driven tools 
for performing such tasks in big or complex datasets. We present systematic 
demonstration analyses to compare seven frequently used ML classifier 
models and two eXplainable Artificial Intelligence (XAI) techniques on multiple 
performance metrics for a common neurodegenerative disease dataset. The 
aim is to identify and characterize the best performing ML and XAI algorithms 
for the present data.

Method: We accessed a Canadian Consortium on Neurodegeneration in Aging 
dataset featuring four well-characterized cohorts: Cognitively Unimpaired (CU), 
Subjective Cognitive Impairment (SCI), Mild Cognitive Impairment (MCI), and 
AD (N = 255). All participants contributed 102 multi-modal biomarkers and risk 
factors. Seven ML algorithms were compared along six performance metrics in 
discriminating between cohorts. Two XAI algorithms were compared using five 
performance and five similarity metrics.

Results: Although all ML models performed relatively well in the extreme-
cohort comparison (CU/AD), the Super Learner (SL), Random Forest (RF) and 
Gradient-Boosted trees (GB) algorithms excelled in the challenging near-cohort 
comparisons (CU/SCI). For the XAI interpretation comparison, SHapley Additive 
exPlanations (SHAP) generally outperformed Local Interpretable Model agnostic 
Explanation (LIME) in key performance properties.

Conclusion: The ML results indicate that two tree-based methods (RF and 
GB) are reliable and effective as initial models for classification tasks involving 
discrete clinical aging and neurodegeneration data. In the XAI phase, SHAP 
performed better than LIME due to lower computational time (when applied to 
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RF and GB) and incorporation of feature interactions, leading to more reliable 
results.
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1 Introduction

Alzheimer’s Disease (AD), the most common cause of dementia, 
is a complex neurodegenerative disease associated with progressive 
accumulation of characteristic neuropathology (neurofibrillary 
tangles and amyloid plaques), atrophy of cortex (including 
hippocampus), and reduced memory and cognitive performance, 
which in turn degrades the ability to perform daily tasks and activities 
(Alzheimer’s Association, 2023). Reviews and meta-analyses of 
observational studies have shown that pathways toward AD are 
associated with biomarkers and risk factors representing multiple 
domains of aging systems (Anstey et al., 2019; Dixon and Lachman, 
2019; Livingston et al., 2020). A diagnosis of AD is frequently preceded 
by classifiable conditions such as Mild Cognitive Impairment (MCI), 
which is signaled by objective cognitive impairment without dementia 
(Petersen, 2004), and Subjective Cognitive Impairment (SCI), which 
is indicated by self-reports of subjective cognitive complaints and 
concerns in the absence of objective signs of cognitive impairment 
(Jessen et  al., 2020). Compared to those that are Cognitively 
Unimpaired (CU), persons classified as having SCI or MCI are at an 
elevated risk of exacerbated cognitive decline and conversion to AD 
(Koppara et al., 2015; Slot et al., 2018). The typical long, complex, and 
multi-faceted pre-diagnosis onset period associated with AD and 
Related Disorders (ADRD) presents unique challenges for research 
aimed at detecting leading characteristics of early dementia risk. 
However, the recent concomitant emergence of large-scale databases 
and development of advanced data analytic techniques have 
demonstrated considerable promise for addressing these challenges 
(Badhwar et al., 2020; Hampel et al., 2019; Iturria-Medina et al., 2016). 
Furthermore, recent reviews have expressed the importance of 
assembling multi-dimensional databases for investigating which 
features (or combinations thereof) can be used to (1) detect early and 
intensifying AD risk, (2) discriminate among AD and related 
neurodegenerative disorders, and (3) identify crucial stratification 
factors (e.g., sex, genetic risk) (Quiñones et al., 2020; Yarnall et al., 
2017). Accordingly, Artificial Intelligence (AI) has provided a 
framework for developing, testing, and deploying data-driven analytic 
techniques that systematically search and detect patterns and useful 
associations within such large, high-dimensional, and even dynamic 
(longitudinal) datasets (Zhou et  al., 2017). In the present article, 

we  provide a focused review of general Machine Learning (ML) 
algorithms and specific ML models of relevance to the field. Using a 
high-dimensional aging and AD-related dataset, we  (1) assemble 
seven prominent supervised ML classifier approaches, (2) identify key 
metrics for evaluating basic model prediction performance, (3) select 
two prominent follow-up AI-based explanation protocols, and (4) 
compute independent results, evaluate relative performance, and 
determine the leading predictors.

ML, a subfield of AI, has been increasingly used in studies 
detecting early AD risk factors and patterns, characterizing 
heterogeneous preclinical trajectories, discriminating among AD and 
related neurodegenerative conditions, precision diagnosis of AD and 
neurodegenerative subtypes, and even identifying personalized 
therapeutic options (Fathi et al., 2022; Pellegrini et al., 2018). ML 
methods include both unsupervised and supervised learning. The 
latter is the most common method of ML used in neurodegeneration 
research (Myszczynska et al., 2020). It involves a computational model 
learning the relationship between a set of features (e.g., age, sex, 
education, genetics) and a label (e.g., MCI). The model learns by 
studying a set of examples in its training dataset and can then be used 
to predict the labels (e.g., latent classes, subgroups) of unseen samples. 
ML offers advantages over traditional statistical analysis methods due 
to its ability to process multiple variables of various types (e.g., 
imaging, cognition, clinical) and formats (e.g., discrete, continuous, 
categorical), as well as produce effective models using both small and 
large datasets. Notably, given the multifactorial and progressive nature 
of neurodegenerative diseases, ML applications have proven capable 
of dealing with multiple modalities of information such as 
neuroimaging, biological markers, genomic, demographic, metabolic, 
omics-related, morbidities, lifestyle, cognition, and a variety of risk-
related exposures (Tanveer et al., 2020).

However, the rapid emergence and growing availability of a 
variety of powerful ML techniques have created both opportunities 
and challenges for researchers in the field. Active questions include for 
a given clinical aging and neurodegeneration dataset (1) whether one 
or a combination of ML techniques is preferred, (2) how to evaluate 
and compare the relative performance of leading ML techniques, and 
(3) how to incorporate and compare eXplainable Artificial Intelligence 
(XAI) techniques for follow-up interpretation. These questions are of 
immediate relevance, as it is becoming increasingly common for 
researchers to include more than one ML technique in their analyses 
(e.g., Badhwar et al., 2020; Bloch and Friedrich, 2021; Bohn et al., 
2023; Drouin et al., 2022; McFall et al., 2023). At present, the criteria 
for selecting which model to employ and how to determine relative 
performance differences among the models are unclear.

A common goal of ML applications in neurodegeneration is to 
determine feature importance, which refers to the degree to which a 
feature influences a model’s prediction. However, some ML methods 
are referred to as “black-box” approaches, in that they identify 
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important features but do not provide deeper interpretative guidelines. 
Following identification of important features, a deeper analysis can 
be applied to any ML predictive model to reveal key clinically and 
theoretically important aspects of the results. These XAI methods can 
be integrated with a supervised ML model in a two-step process. First, 
a model is trained on a dataset of well-characterized and labeled 
individuals with a large set of features possibly related to the condition 
being predicted. Second, a post-hoc XAI algorithm is applied to the 
model to calculate feature importance values that can be used to rank 
features by their influence either on local (i.e., individual) or global 
(e.g., clinical subgroup) predictions. Recent studies have used different 
combinations of supervised ML and XAI algorithms, typically 
evaluating results with the help of domain experts and finding 
correspondences within existing neurodegenerative disease literature 
(Bellantuono et al., 2022; Bohn et al., 2023; El-Sappagh et al., 2021; 
McFall et  al., 2023; Sudar et  al., 2022). However, an important 
challenge facing researchers interested in applying these data-driven 
ML approaches to neurodegeneration databases is the formidable 
range of both supervised ML algorithms and XAI techniques, each of 
which has unique characteristics that may perform differentially 
across combinations of predictors, conditions, diseases, and datasets 
(Ellis et  al., 2022). The overall aim of the present study is to 
systematically evaluate and compare the performance (e.g., accuracy, 
precision) of seven prominent supervised ML classification algorithms 
and relevant properties (e.g., runtime, distributions of importance 
values) of two complementary XAI interpretation techniques as 
applied to a common dataset with cohorts representing formally 
classified phases along the AD spectrum. We  compare the 
performance of these supervised ML models using six commonly used 
ML metrics. We compare the XAI algorithms using five independently 
derived metrics describing performance and five metrics describing 
similarity between results.

For the demonstration analyses, we use the cohort database from 
the Canadian Consortium on Neurodegeneration in Aging (CCNA) 
study, which is referred to as the Comprehensive Assessment of 
Neurodegeneration and Dementia (COMPASS-ND) (Chertkow et al., 
2019). The COMPASS-ND database includes a wide range of 
AD-related risk features potentially relevant to the current aim. At 
present, the dataset is “cross-sectional,” including only one occasion 
of measurement for all participants. We adapted the feature protocol 
of a previous study (Bohn et  al., 2023) and selected a set of 102 
indicators of multiple morbidities and deficits (Kernick et al., 2017) 
from 17 domains (e.g., biomarkers, quality of life, diseases, physical 
activity, sleep, frailty). Morbidities increase in number and severity 
with aging and are linked with adverse outcomes such as accelerated 
cognitive decline, impairment, dementia, institutionalization, and 
death (Bohn et al., 2023; Grande et al., 2019; Kernick et al., 2017; 
Kojima et al., 2016; Koyanagi et al., 2018; Thibeau et al., 2019; Ward 
et al., 2021; Wei et al., 2020). The associated risks of neurodegeneration 
from multiple morbidities indicates a promising approach for 
identifying key morbidities that (1) discriminate CU older adults from 
those with SCI, MCI, or AD, and (2) point to potential early indicators 
of elevated AD risk.

We examine three specific goals. For Research Goal (RG) 1, 
we  calculated and compared the performance qualities of seven 
common and promising ML algorithms used in neurodegeneration 
and related research for discriminating between cohorts over four 
classification tasks (three binary and one simultaneous multi-class). 

We  examined the ML algorithms by considering six model 
performance indicators separated into two clusters as described above 
(primary and secondary). The metrics are further described below.

For RG 2, we examined the relative performance and similarity of 
two XAI model interpretation algorithms by comparing them 
according to five independently derived performance metrics 
(separated into primary and secondary clusters as described above) 
and five directly comparative similarity metrics. The performance and 
similarity metrics are further described below.

For RG 3, we informally compared the ML-XAI models in terms 
of the similarity of identified sets of leading morbidity-related features 
within the pairwise cohort comparisons.

We expect these comprehensive comparative analyses to provide 
methodological and practical insights into which ML and XAI 
algorithms and indicators perform best and can be recommended for 
brain aging and dementia datasets with variables and objectives 
similar to those in this study. We also expect this study to supplement 
ongoing research on multi-modal biomarkers or morbidities that are 
potentially significant in the prediction of disorders related to and 
including AD (Bohn et al., 2023; McFall et al., 2023; Sapkota and 
Dixon, 2018).

2 Methods

2.1 Database and participants

The CCNA-based COMPASS-ND study participants were 
recruited in 31 data collection sites across Canada with coordinated 
ethics approval from the Research Ethics Board of each participating 
site and written informed consent from all participants. A detailed 
methodological summary of the study has been published in 
Chertkow et al. (2019). Exclusionary criteria in the COMPASS-ND 
study protocol were: (1) presence of significant known chronic brain 
disease, multiple sclerosis, a serious developmental handicap, 
malignant tumors, Huntington’s disease, and other rarer brain 
illnesses; (2) ongoing drug or alcohol abuse; (3) total score < 13 on the 
Montreal Cognitive Assessment (Nasreddine et  al., 2005); (4) 
symptomatic stroke within the previous year; or (5) unwilling or 
unable to undergo magnetic resonance imaging scans. Eligible 
participants were (1) sufficiently proficient in English or French and 
(2) had a study partner that they interacted with weekly. Participants 
were formally classified or diagnosed, depending on the condition, by 
consensus among expert clinician researchers involved in the CCNA 
(Chertkow et al., 2019). Therefore, the classification of participants in 
the SCI and MCI categories and the diagnosis of participants with AD 
were conducted independently and prior to the present study. 
Accordingly, no classifications or diagnoses were produced in the 
present study or performed with the assistance of ML techniques. For 
the present study, we examine the cross-sectional dataset and excluded 
individuals outside the AD spectrum, specifically those with a 
diagnosis of subcortical ischemic vascular MCI, dementia of mixed 
etiology, frontotemporal dementia, Parkinson’s disease, and Lewy 
body dementia. The final study sample (N = 255; M age = 71.18; 58% 
female; 92% non-Hispanic White) was comprised of four cohorts who 
varied in clinical severity along an AD spectrum: CU (n = 60), SCI 
(n = 36), MCI (n = 116), AD (n = 43) (Bohn et al., 2023). As a result 
of (1) the differential availability of participants from each cohort in 
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COMPASS-ND and (2) our decision to retain as many participants as 
possible, there is an imbalance in the number of individuals across 
cohorts. Characteristics of the participants are summarized in Table 1.

2.1.1 Pool of predictive features: morbidity and 
deficit indicators

We used 102 indicators of morbidity and other aging deficits that 
were assembled and evaluated in a previous COMPASS-ND study 
(Bohn et  al., 2023), all of which have been linked with adverse 
outcomes such as frailty, functional deficits, accelerated cognitive 
decline or impairment, neurodegenerative disease, and 
institutionalization (Ward et al., 2021). These indicators were selected 
according to expert recommendations and determined to represent 
the following 17 morbidity domains: instrumental activities of daily 
living (ADL), basic ADL, physical activity, mobility, quality of life 
(QoL), anthropometric measures, sensory function, sleep, functional 
performance, exhaustion, self-reported health, cardiorespiratory 
health, clinical symptoms or diseases, emotional well-being, oral 
health and nutritional factors, fluid biomarkers, and sex. These 
indicators were collected through self-report, physical examination, 
and formal tests with standardized scales. Indicators had values that 
ranged between 0 (no deficit recorded) and 1 (deficit is maximally 
expressed) (Searle et al., 2008). Consistent with previous research 
(Bohn et al., 2023), we removed indicators (1) where less than 10% of 
participants in each cohort were recorded as having the deficit and (2) 
with a rate of missingness >50% (Hassler et al., 2019; Madley-Dowd 
et al., 2019).

The four cross-sectional data subsets and final number of available 
features were as follows: SCI vs. CU (64), MCI vs. CU (65), AD vs. CU 
(75) and all four cohorts (56). The analyses included three binary 
discrimination tasks and one simultaneous four-way discrimination 
task. There were 83 unique features across all datasets. These features 
(disaggregated by domain) and their corresponding response scales 
are presented in Supplementary Table  1. Across the entire study 
sample, the rate of missingness for the final set of morbidity features 
ranged between 0 and 3%, with the average rate across predictors 
at 0.7%.

2.1.2 Handling missing data
As noted above, missing values were rare across persons and 

features (M = 0.7%) in the COMPASS-ND dataset. ML base learner 
models use an imputer to fit on the training dataset and estimate 
missing values. We  use the scitkit-learn IterativeImputer with a 
BayesianRidge estimator (Pedregosa et al., 2011). The Bayesian ridge 

regression model is used to estimate the missing feature as a function 
of the other features. This approach uses all the data points to estimate 
the missing value.

2.2 Seven machine learning algorithms

AI-informed, data-driven procedures such as supervised ML are 
preferred applications for problems such as predicting cognitive 
impairment as they learn correlations among multiple features and 
corresponding labels simultaneously. We selected seven supervised 
ML algorithms of notable relevance to aging and neurodegeneration 
and implemented them independently and comparatively in this 
study. We distinguished between two subclasses of algorithms, base 
and ensemble. These subclasses share the overall goal of building a 
classifier model—an algorithm that predicts the class of an input 
instance (expressed as a feature vector)—but differ according to 
algorithm implementation (i.e., steps by which the classifier is 
trained or generates a prediction). Base learner methods either 
implement a single algorithm or multiple homogenous algorithms 
(i.e., using multiple decision trees) in producing a classifier. The ML 
base learner subclass includes the following techniques: Logistic 
Regression (LR), Support Vector Machines (SVM), Random Forest 
(RF), Gradient-Boosted trees (GB), and Artificial Neural Networks 
(ANN) (Belić et al., 2019; Chang et al., 2021; Myszczynska et al., 
2020; Tăuţan et al., 2021). Ensemble methods, on the other hand, 
integrate multiple base learners in a unified approach either by 
comparing their internal results and selecting the best model to use 
or by aggregating the predictions of multiple models to make a final 
prediction. The ensemble subclass includes Voting Ensembles (VE) 
(Dietterich, 2000) and Super Learners (SE) (van der Laan et  al., 
2007). We highlight the advantages and disadvantages of each ML 
algorithm in Table 2.

2.2.1 Logistic regression
LR is one of the most popular ML algorithms for classification 

across many fields due to its simplicity and interpretability (Boateng and 
Abaye, 2019; Dreiseitl and Ohno-Machado, 2002). LR is a linear 
classifier method as it generates the predicted probability of a class by 
applying either a sigmoid or softmax function to the weighed sum of the 
features in the input vector. These weights are learned during training 
by minimizing a loss function (e.g., log loss) over the training data via 
an optimization algorithm (e.g., gradient descent). We use scikit-learn’s 
LogisticRegression class for the LR model (Pedregosa et al., 2011).

TABLE 1 Demographic and clinical characteristics for each cohort.

Characteristic CU (n = 60) SCI (n = 36) MCI (n = 116) AD (n = 43) Significance

n (%) female 49 (82%)a 30 (83%)a 57 (49%)b 13 (30%)c ***

Age in years 69.23 (5.52)a 69.62 (6.81)a 71.16 (6.48)a 75.26 (7.70)b ***

Education in years 15.84 (3.15) 17.49 (3.11) 15.75 (3.89) 15.34 (4.37) ns

n (%) married 37 (62%)a 17 (47%)a 75 (65%)a 35 (81%)b *

n (%) Non-Hispanic White 58 (97%)a 34 (94%)a,b 100 (86%)b 42 (98%)a *

MoCA 27.90 (1.50)a 27.81 (1.33)a 24.28 (3.08)b 18.63 (3.56)c ***

Results are presented as mean (standard deviation) unless noted as otherwise. p- values are based on one-way analysis of variance or chi-square tests, as appropriate. We adjusted for multiple 
comparisons using post-hoc Tukey tests. CU, cognitively unimpaired; SCI, subjective cognitive impairment; MCI, mild cognitive impairment; AD, Alzheimer’s disease; sig, significance; ns, not 
significant; MoCA, Montreal Cognitive Assessment. a–cDenotes values that differ significantly. *p- value < 0.05; ** p- value < 0.01; ***p- value < 0.001.
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2.2.2 Support vector machine
Due to its simplicity, fast computation times, and good 

generalization performance, SVM is a widely used ML algorithm for 
classification and regression problems. It is also one of the most 
common approaches applied to aging and AD databases (Arya et al., 
2023; Tanveer et al., 2020). SVMs are trained to find a function or 
decision boundary that separates points of two classes in a way that 
maximizes the width of the gap between them. To classify non-linear 
data, a kernel function can be used to transform the inputs to higher 
dimensions. In the multi-class scenario, a one-vs-one approach is 
used for training the model in which distinct classifiers are trained 
for each pair of classes and used together for the prediction. We used 
scikit-learn’s SVC class to implement the SVM (Pedregosa 
et al., 2011).

2.2.3 Random forest
The RF algorithm derives its name from its use of many decision 

trees trained independently via random feature and sample selection 
(Gray et al., 2013). Decision trees work by generating predictions 
through a hierarchical rule-based approach. RF combines these many 
trees by averaging their predictions to improve overall accuracy and 
reduce overfitting. It has shown impressive results in predicting AD 
when trained on various datasets including neuroimaging and multi-
modal data (Dimitriadis et al., 2018; Gray et al., 2013). RF also extends 
naturally to multi-class problems. While RF is an ensemble method, 
we  refer to it as a base learner due to its use in the VE and SL 
algorithms. We used scikit-learn’s RandomForestClassifier class for the 
implementation of RF (Pedregosa et al., 2011).

2.2.4 Gradient-boosted trees
Gradient boosting refers to an algorithm that utilizes weak base 

learners through boosting (i.e., iteratively improving the learners and 
adding them to the final classifier). In the case of GB, decision trees 
are used as the weak learner. Due to its iterative process, GB is 
vulnerable to overfitting if the hyperparameters are not properly set 

(Bentéjac et al., 2020). Like RF, we refer to GB as a base learner instead 
of an ensemble method for reasons noted above. We used scikit-learn’s 
GradientBoostingClassifier for the implementation of GB (Pedregosa 
et al., 2011).

2.2.5 Artificial neural network
ANNs are designed similarly to biological neural networks and have 

recently seen substantial success in many different fields and applications 
(Abiodun et al., 2018). Their ability to learn non-linear associations makes 
them an attractive fit for complex data for which labels are likely 
determined by interactions of features. ANNs have been used with a wide 
range of modalities for predicting the presence of AD (Tanveer et al., 
2020). ANNs are trained through the process of backpropagation where 
the loss from a prediction is sent back through the network to update the 
neurons. We implemented the ANN as a Multilayer Perceptron (MLP) 
using scikit-learn’s MLPClassifier class (Pedregosa et al., 2011).

2.2.6 Voting ensemble
VE is a combination of multiple ML models in which the final 

prediction is determined by using the predictions from each of the 
models. The base learners can either be different models or the same 
model with different hyperparameters. There are typically two main 
types of voting: (1) soft, for which the probabilities from each model 
are added up and the class with the largest sum is selected; or (2) hard, 
for which each model casts a vote toward a class and the one with the 
most votes is selected. We used the scikit-learn VotingClassifier class, 
which is composed of LR, SVM, RF, GB, and ANN with soft voting for 
the VE (Pedregosa et al., 2011). As mentioned earlier, VE uses the 
hyperparameters selected for each model when computing the SHAP 
values on the entire dataset and thus the performance values may 
be inflated.

2.2.7 Super learner
SL is similar to VE in that it combines multiple different ML 

models internally (van der Laan et al., 2007). However, SL combines 

TABLE 2 Key consensus characteristics of the seven supervised ML algorithms.

ML algorithm Advantages Disadvantages

Logistic Regression (LR)  • Simple

 • Fast training

 • Typically has few hyperparameters

 • Restricted to linear functions

Support Vector Machines (SVM)  • Good generalization

 • Can solve nonlinear problems using kernel functions

 • Performs poorly on noisy data (e.g., considerable 

overlap between classes)

Random Forest (RF)  • Learns a nonlinear function

 • Performs well on categorical data

 • Less prone to overfitting

 • Less useful for linear problems

 • Numerous hyperparameters

Gradient-Boosted trees (GB)  • Learns a nonlinear function

 • Performs well on categorical data

 • Less useful for linear problems

 • Numerous hyperparameters

 • Can suffer from overfitting

Artificial Neural Network (ANN)  • Can learn both linear and nonlinear functions

 • Robust to noisy data

 • Requires a lot of hyperparameter tuning

 • Difficult to understand why a prediction was made

Voting Ensemble (VE)  • Can include a variety of ML algorithms (e.g., LR, SVM, GB, ANN)

 • Generalizes well

 • Slow training

Super Learner (SL)  • Can compare a variety of ML algorithms such as the ones above

 • Can select model and hyperparameters without human oversight

 • Slow training

 • Only as good as the best performing base learner

Information adapted from Bentéjac et al. (2020), Chang et al. (2021).
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them in the training process and only a single model is selected for use 
in making predictions after training. In our case, the model selected 
is the one with the highest internal cross-validation Area Under 
receiver-operating characteristic Curve (AUC). We used the five base 
learners: LR, SVM, RF, GB, and ANN. Each model was implemented 
using the scikit-learn class and the list of possible hyperparameters 
mentioned in the associated section above (Pedregosa et al., 2011).

2.3 Hypertuning and hyperparameters

The choice of hyperparameters from each of the base learners can 
be  found in Supplementary Table  2 and the top performing 
hyperparameters for each task are presented in 
Supplementary Tables 3–6. To select the optimal hyperparameters for 
our model, we used nested cross-validation, also known as double cross-
validation (Stone, 1974). The hypertuning process for a single learner is 
depicted in Figure 1. Each of the five base learners were hypertuned for 
calculating and comparing the performance metrics of the different 
models. As can be seen in the Figure, the workflow is as follows: (1) the 
data are separated into five stratified folds to maintain class balance 
across folds; (2) one fold is set aside for external evaluation; (3) the four 
training folds are collectively separated into five stratified folds and used 
for internally cross-validating each combination of hyperparameter 
values; (4) the hyperparameters associated with the highest average 
AUC are then used to fit a model on the four training folds which is then 
externally evaluated on the fifth fold; and (5) steps 2–4 are repeated with 
each initial fold being used for testing and the average of each 
performance metric is taken. Our decision to use AUC for ranking 
hyperparameters is consistent with previous research (Obuchowski and 
Bullen, 2018). The hypertuning process is repeated 10 times and the 
averaged results are reported. The SL works by integrating all five base 
learners in the training process. It internally evaluates each of the five 
base learners (steps 1–3 of the hypertuning process) and selects the 
single best model for external evaluation and further predictions. The 

VE requires a large number of computations for tuning and each 
additional base learner increases the computation time exponentially if 
tuning hyperparameters. Therefore, the VE is not tuned and instead 
uses the hyperparameters selected for each model when generating the 
SHAP values (discussed below). It should be  noted that this likely 
artificially inflates the VE performance due to the SHAP 
hyperparameters being tuned to the entire dataset.

In generating the XAI (LIME and SHAP) values for each learner 
and task, the hyperparameter combinations are 5-fold cross-validated 
on the entire dataset and a model is fitted on all the data using the 
hyperparameters with the highest average AUC.

2.4 ML performance metrics

There are multiple performance metrics for evaluating ML classifier 
performance. These are often used and reported in different 
combinations and accompanied with varying interpretations. 
We  examined the performance of each classifier using six metrics 
commonly reported in ML applications. We provisionally separate them 
for comparison purposes into two clusters: primary and secondary. The 
first primary metric is AUC, which measures the sensitivity (true 
positive rate) and specificity (true negative rate) of a model at various 
decision thresholds. The second primary metric is accuracy, which 
measures the percentage of all participants being correctly classified. 
Each of the primary metrics are interpreted with values of 0.5 
representing chance, 0.5–0.69 representing poor discrimination, 
0.7–0.79 representing acceptable discrimination, 0.8–0.89 representing 
excellent discrimination, and 0.9–1.0 representing outstanding 
discrimination (Mandrekar, 2010). The first secondary metric is 
precision, the percentage of participants correctly identified as the target 

cohort. Precision is calculated as:  
  

true positives
true positives false positives+

. The 

second secondary metric is recall (or sensitivity), the percentage of 

FIGURE 1

For each task, the hypertuning process for a base learner involves splitting the dataset into five folds. Four folds are used for training, where nested 
five-fold validation identifies the best hyperparameters. These hyperparameters are then applied to train a model on all training folds, and the model’s 
performance is evaluated on the test fold using six performance metrics. This process is repeated so that each fold is used as the test fold once, and 
the performance metrics are averaged across all five train/test fold combinations. For XAI interpretation, all folds are used to identify the best 
hyperparameters. A final model is then trained on all folds with these hyperparameters, and SHAP/LIME is applied for interpretability.
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participants from the target cohort that were correctly identified. Recall 

is calculated as:  
  

true positives
true positives false negatives+

. The third secondary 

metric is F1 score, a measure of both precision and recall. It is calculated 

as: 2 precision recall
precision recall
∗ ∗

+
. The fourth secondary metric is Matthew’s 

Correlation Coefficient (MCC), a single-value summarization of the 
confusion matrix (a table of: true positives, true negatives, false positives, 
false negatives) that ranges from −1 (perfect misclassification) to +1 
(perfect classification) (Chicco and Jurman, 2020). While MCC is 
similar to the F1 score, it has the advantage of accounting for dataset 
imbalances and producing a high score only when the model performs 
well on the majority of both positive and negative samples. This metric 
is of particular relevance in the MCI vs. CU task as the MCI cohort has 
almost double the number of individuals as CU. MCC can be calculated 

as: 
( ) ( ) ( ) ( )

TP TN FP FN
TP FP TP FN TN FP TN FN

∗ − ∗

+ ∗ + ∗ + ∗ +
. In the multi-

class dataset (AD vs. MCI vs. SCI vs. CU), precision, recall, F1, and AUC 
are each calculated by averaging the four one-vs-rest values for each 
metric. This approach uses the unweighted mean and ignores 
class imbalance.

2.5 Two explainable artificial intelligence 
algorithms

XAI algorithms complement supervised ML models by providing 
deeper explanations for why a specific prediction was made and how 
each feature contributed to the prediction. Notably, although the 
results of the seven ML algorithms may identify and rank-order the 
leading predictive features, they typically do not provide 
comprehensive information regarding interpretation of the observed 
effects. These XAI algorithms are often model-agnostic, meaning they 
can be applied to various supervised ML models and the unbiased 
results can be  easily compared with commonly available metrics. 
We compared two XAI algorithms (i.e., LIME and SHAP) which have 
considerable promise for neurodegenerative research based on their 
ability to explain the ML model results. First, we calculated the LIME 
and SHAP importance values for each feature. This permitted us to 
determine the features that (1) have the most impact overall in 
generating predictions for each supervised ML model and (2) are most 
indicative of a given participant having a specific label. Second, 
we calculated the composition ratios by dividing the absolute LIME 
or SHAP value of a single feature by the sum of all absolute feature 
values and multiplying by 100. These values sum to 100 and give us 
the percentage that each feature contributes to a prediction as averaged 
across all samples in a cohort comparison for a single supervised ML 
model. We  applied these XAI algorithms to each supervised ML 
model except for SL because SL ultimately selects a single base learner 
from the original five. As a result, computing importance values for 
SL would be redundant. Also, we do not use the XAI algorithms on 
the multi-class comparison dataset because the importance values for 
each feature are binary with respect to each class (positive/negative) 
and thus we  already observe similar values in each of the three 
pairwise comparison tasks (AD vs. CU, MCI vs. CU, SCI vs. CU). The 

two XAI algorithms used in this study are described below, followed 
by a description of the performance and similarity metrics.

2.5.1 Local interpretable model agnostic 
explanation

LIME is an XAI algorithm that works by sampling around an 
individual feature vector and fitting a linear function to the predictions 
that the model generates for the evaluated samples (Ribeiro et al., 
2016b). The linear function is used to calculate the magnitude and 
direction of influence of each input feature independently of the 
others. LIME has several favorable properties such as being model 
agnostic (i.e., it can be applied similarly to each of our models) and 
locally faithful (i.e., closely approximates a model around a single 
sample). We used the LimeTabularExplainer class with 5,000 samples 
from the Python library ‘lime’ to generate LIME importance values 
(Ribeiro, 2016a). To assess an entire model, we  averaged the 
importance values calculated by LIME for each feature over all 
predictions on the dataset.

2.5.2 SHapley additive exPlanations
SHAP is an XAI algorithm that gives each feature a value 

indicating its influence on a single prediction by calculating the 
expected change in the prediction when the feature is introduced 
(Lundberg and Lee, 2017a). This algorithm is useful for analyzing 
multiple supervised ML models as it is model-agnostic. In addition, it 
is an additive feature attribution method like LIME (meaning the 
explanation model is a linear function), however it does not assume 
feature independence and uses all combinations of input features in 
generating the importance values. Calculating SHAP values using this 
formula requires training a model for each combination of input 
features and therefore the computation time grows exponentially with 
the number of features. To address this challenge, we used two types 
of approximations depending on the ML algorithm. For RF and GB, 
we  used TreeSHAP (Lundberg and Lee, 2017b) which efficiently 
approximates SHAP values for decision tree methods. For the other 
algorithms, we used the model agnostic KernelSHAP (Lundberg and 
Lee, 2017a), which approximates SHAP values using LIME with 
specific parameters that maintain the properties of SHAP. Both 
approaches are able to closely approximate SHAP values when features 
are independent. However, within both approaches the errors increase 
similarly with feature correlation even though TreeSHAP incorporates 
dependence between features in its approach and KernelSHAP does 
not (Aas et al., 2021). The Python library ‘shap’ was used to implement 
TreeSHAP using the TreeExplainer class and KernelSHAP using the 
KernelExplainer class (Lundberg, 2018). We  evaluated the entire 
model by averaging SHAP values over all predictions (as was done 
with LIME).

2.6 Comparison metrics for the XAI 
algorithms

2.6.1 Performance metrics
The XAI performance metrics are calculated for each explanation 

method independently of the other and are used to directly compare the 
performance of the two methods. We used five metrics as introduced 
by Doumard et al. (2023). We identify them as two primary metrics and 
three secondary metrics for use in comparison. The first primary metric 
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is the mean computation time per instance, which refers to the time it 
takes to generate the importance values for each sample. Computation 
time is a relevant metric because if two XAI approaches have similar 
outputs (which we compare below), the faster of the two is preferred. 
The second primary metric is robustness, which measures how much 
the importance value changes for an instance if it is perturbed by a small 

amount. It is often calculated using 
( ) ( ) 2|| ||
|| ||j

i j
x

i j

f x f x
max

x x
−

−  where 

f(xj) refers to the importance value of xj, one of 10 samples from the 

normal distribution around xi: Ɲ (μ = xi, σ = 1e-3). The lower the value, 
the less the feature importance changes between samples very close to 
one another and thus the model is more robust. The first secondary 
metric is the Area Under the cumulative Feature Importance Curve 
(AUFIC), which measures whether an explainer gives importance to 

few features or many. It is calculated as 
1

1

0

1
2

d
i i

i

C C
d

−
+

=

+∑  where d refers 

to the total number of features and Ci refers to the cumulative 

importance of the ith feature in descending order of importance value. 
This metric is bounded between 0.5 and 1, with 0.5 meaning equal 
importance is given to all features and 1 meaning all importance is given 
to a single feature. The second secondary metric is readability, which 
measures the correlation between the value of a feature and its influence. 

It is calculated as ( )( )
1

1  | , |
d

i i
i

r x f x
d =
∑

 
where r is the Spearman 

correlation coefficient. A high readability score means the link between 

a feature and its explanations are more visually obvious in a dependence 
plot. The third secondary metric is clusterability, which measures the 
joint contribution of pairs of features. It is calculated as 

( ) [ ]
( ) ( )( )

, 1, ,

2 ( ,
1 i j

i j d i j
S K f x f x

d d ∈ … ≠∗ − ∑ where K is K-Means with 

8 clusters (the default number of clusters in scikit-learn’s 
implementation) and S is the silhouette score. Higher clusterability 
indicates that the model captures more interactions between features 
and is thus preferred for a non-linear ML model.

2.6.2 Similarity metrics
The XAI similarity metrics are calculated by directly comparing the 

importance values and composition ratios generated by LIME and 
SHAP for each model and dataset and quantify the similarity between 
the results of both algorithms. We  use five metrics to describe the 
similarity between the two XAI algorithms. The first metric is matching 
directions—the number of features that share the same direction of 
influence (i.e., both LIME and SHAP importance values are either 
positive or negative). The second metric is the top 10 composition 
overlap—the number of features found in the top 10 features ordered 
by composition ratio for both algorithms. The third metric is the mean 
absolute composition difference—the mean of the absolute difference 
between composition ratios from LIME and SHAP for all features. The 
smaller this value is, the more similar the composition ratios generated 
by both algorithms are for each of the features. The fourth metric is the 
concordance index, a measure of similarity between the lists of features 

ordered by composition ratios from both LIME and SHAP (calculated 

as #  
#  #  

concordant pairs
concordant pairs discordant pairs+

). A concordance index of 

1 means that both lists are ordered exactly the same whereas 0 means 
that the lists are ordered reverse to one other. The fifth metric is the 
number of leading predictors in both algorithms. We refer to predictors 
with a composition ratio greater than 2% as leading predictors. 
We decided upon this value through initial inspection of SHAP waterfall 
plots as it appeared to be a natural separating point between a smaller 
“leading” group of predictors and a larger “following” group.

2.7 Leading predictors across XAI-ML 
combinations

The third RG involves identifying leading predictors and determining 
their consistency among the 12 combinations of the six ML (excluding SL, 
as explained in Methods Section 2.5) and two XAI algorithms for each of 
the AD-related cohorts. We compute both the mean composition ratio 
across all approaches as well as highlighting features that contributed 
more than 2% on average to predictions for each combination (i.e., 
features that have a composition ratio greater than 2.0). We can then 
calculate the fraction of leading features that the different approaches had 
in common, as well as focusing on the shared features between the best-
performing models for each cohort comparison.

3 Results

3.1 Supervised ML performance

We report the primary and secondary performance metrics for 
the seven supervised ML algorithms in each of the four cohort 
comparison tasks. The metric values are reported in numerical order 
and comparative interpretations are presented with caution.

3.1.1 Discriminating the AD and CU cohorts
We compared the relative performance of the seven ML models 

in discriminating the most clinically extreme cohorts (AD and 
CU). The results of all six metrics can be viewed in Figure 2 with 
details in Supplementary Table  7. We  first considered the two 
primary metrics (AUC, accuracy). Overall, we observed that all 
models displayed outstanding and consistent AUC performance 
(AUC range: 0.93–0.97) with only minor model differences being 
observed. A numerically ordered cluster of uniformly high AUC 
performances included SL (0.97), GB (0.96), VE (0.96), RF (0.96), 
LR (0.95), SVM (0.94), and ANN (0.93). Accuracy performance 
varied somewhat more substantially (accuracy range: 0.78–0.89). 
A numerically ordered cluster of high accuracy performance 
included SL (0.89), GB (0.88), VE (0.88), LR (0.87), RF (0.86), 
ANN (0.85), followed by SVM (0.78). As can be  seen in 
Supplementary Table 7, the better performing models (according 
to the primary metrics) also performed well in the secondary 
metrics. Specifically, SL achieved the highest precision (0.98; range 
across all algorithms: 0.78–0.98) and MCC (0.79; range across all 
algorithms: 0.54–0.79). SL also tied with GB for highest F1 (0.84; 
range across all algorithms: 0.60–0.84), whereas ANN achieved the 
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highest recall (0.81; range across all algorithms: 0.54–0.81). 
Collectively, these results indicate that most models performed 
well in the task of discriminating between two most clinically 
extreme cohorts. In this context, SL consistently performed notably 
well in the task of discriminating between AD and CU, achieving 
the highest AUC, accuracy, precision, and MCC. GB and ANN also 
performed consistently well in secondary metrics. The success of 
SL on this dataset highlights the importance of tuning a model 
whereas the success of GB and ANN suggests that nonlinear 
methods are well-suited for this dataset.

3.1.2 Discriminating the MCI and CU cohorts
We compared the relative performance of the seven ML models in 

discriminating between the MCI and CU cohort. The results of all six 
metrics can be seen in Figure 3 and Supplementary Table 8. We first 
considered the primary metrics (AUC, accuracy). Overall, the models 
displayed varying AUC scores of either excellent or acceptable 
performance (AUC range: 0.70–0.88). Regarding accuracy, the models 
displayed either acceptable or poor discrimination performance 
(accuracy range: 0.67–0.80). For AUC, GB (0.88), SL (0.87) and RF 
(0.87) achieved the highest values, followed numerically by VE (0.82), 
LR (0.81), SVM (0.75), and ANN (0.70). For accuracy, GB (0.80), RF 
(0.79), and SL (0.79) were characterized by the best performances, 
followed numerically by VE (0.74), LR (0.73), SVM (0.69), and ANN 
(0.67). Regarding the secondary metrics: RF had the highest precision 
(0.86; range across all algorithms: 0.71–0.86) and MCC (0.56; range 
across all algorithms: 0.20–0.56); SVM and VE had the highest recall 
(0.88; range across all algorithms: 0.84–0.88); GB and SL had the highest 
F1 score (0.85; range across all algorithms: 0.77–0.85). In sum, our 
comparison indicates that GB was consistently high performing in the 
task of discriminating between MCI and CU in both primary metrics 

as well as one of the secondary metrics (F1 score). RF was notably the 
highest in two of the secondary metrics (precision, MCC). Other 
models (VE, SVM, and SL) scored the highest in one of the secondary 
metrics. The success of GB further emphasizes the benefit of using 
decision-tree-based methods on categorical data.

3.1.3 Discriminating the SCI and CU cohorts
We compared the relative performance of the seven ML models 

in discriminating between the SCI and CU cohort. The results of all 
six metrics can be  seen in Figure  4 and Supplementary Table  9. 
Performance of the models in the primary metrics (AUC, accuracy) 
varied notably, but consistently. The observed AUC and accuracy 
values ranged from poor to excellent (AUC range: 0.57–0.89; accuracy 
range: 0.61–0.81). For AUC, RF (0.89), GB (0.89) and SL (0.88) 
achieved the highest scores, followed numerically by VE (0.82), LR 
(0.67), SVM (0.66), and ANN (0.57). For accuracy, GB (0.81), SL 
(0.81), and RF (0.80) achieved the highest accuracy scores, followed 
numerically by VE (0.75), SVM (0.66), LR (0.64), and ANN (0.61). As 
can be  seen in the Figure, the models that achieved the highest 
primary metrics also achieved the highest secondary metrics. 
Regarding the secondary metrics, RF had the highest precision (0.84; 
range across all algorithms: 0.33–0.84) whereas GB had the highest 
recall (0.67; range across all algorithms: 0.23–0.67), F1 score (0.72; 
range across all algorithms: 0.25–0.72), and tied with SL for the 
highest MCC (0.60; range across all algorithms: 0.08–0.60). In sum, 
our comparison indicates that SL performed consistently well, 
however, RF and GB best discriminated between SCI and 
CU. Specifically, RF achieved the highest AUC and precision and GB 
achieved the highest accuracy, recall, and F1 score. As noted in the 
previous two comparison tasks, the decision-tree-based methods 
performed well on the categorical data.

FIGURE 2

Comparison of mean results of all metrics across ML approaches on the AD vs. CU dataset over 10 trials of 5-fold cross-validation. Error bars represent 
the standard deviation. Cohort and model acronyms identified in the text.
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3.1.4 Simultaneous discrimination of AD, MCI, 
SCI, and CU cohorts

Discrimination tasks involving multiple cohorts is a clinically relevant 
but computationally challenging task for ML models. Specifically, the 

models must learn substantially more parameters due to the increase in 
the number of possible classifications for a given instance, of which only 
one is correct. In this complex discrimination task, a model choosing 
classes at random would have an average accuracy of 0.25 compared to 

FIGURE 4

Comparison of mean results of all metrics across ML approaches on the SCI vs. CU dataset over 10 trials of 5-fold cross-validation. Error bars represent 
the standard deviation. Cohort and model acronyms identified in the text.

FIGURE 3

Comparison of mean results of all metrics across ML approaches on the MCI vs. CU dataset over 10 trials of 5-fold cross-validation. Error bars 
represent the standard deviation. Cohort and model acronyms identified in the text.
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the corresponding average accuracy of 0.5 that would constitute random 
classification in a binary task. We compared the relative performance of 
the seven ML models in simultaneously discriminating between all four 
cohorts (AD, MCI, SCI, and CU). The results of all six metrics can be seen 
in Figure 5 and Supplementary Table 10. Considering the primary metrics 
(AUC, accuracy), the models displayed similar results, achieving either 
poor or acceptable AUC performance (AUC range: 0.64–0.76) and below-
poor or poor accuracy performance (accuracy range: 0.41–0.55). For 
AUC, RF and SL both had the highest AUC (0.76) followed closely 
numerically by GB (0.75) and VE (0.74), and then SVM (0.70), LR (0.67), 
and ANN (0.64). For accuracy, GB was characterized by the relatively best 
performance (0.55) followed closely numerically by SL (0.52) and RF 
(0.52), with SVM (0.48), VE (0.45), LR (0.43), and ANN (0.41) performing 
at a poorer level. Considering the secondary metrics, GB achieved the 
highest precision (0.49; range across all algorithms: 0.25–0.49), recall 
(0.45; range across all algorithms: 0.31–0.45), MCC (0.31; range across all 
algorithms: 0.16–0.31), and F1 (0.45; range across all algorithms: 0.26–
0.45). In sum, our comparison indicates that GB outperformed the other 
models in the task of simultaneously discriminating between the four 
cohorts in achieving the highest scores in accuracy and all secondary 
metrics while RF and SL scored the highest AUC.

Across all tasks we observed that RF, GB, and SL were consistently 
ranked high, with GB ranking with the highest performance on the 
largest number of metrics.

3.2 XAI performance comparisons

Following the performance results for all seven ML models, as 
computed for each of the four discrimination tasks, we computed 
follow-up LIME and SHAP values for six of the models (excluding SL, 

as explained in Methods Section 2.5) within each of the three pairwise 
cohort discrimination tasks. For SHAP, we used the decision-tree-
specific version TreeSHAP for RF and GB, and the more general 
KernelSHAP for LR, SVM, ANN, and VE. The hyperparameters used 
in these tasks are reported in Supplementary Tables 3–6.

3.2.1 Discriminating the AD and CU cohorts
The XAI performance results for the AD vs. CU discrimination 

task are reported in Table 3. We first considered the primary metrics 
(mean computation time, robustness). Computation time refers to the 
time it takes to compute the importance values for a single instance. 
Results indicated that LIME performed faster than KernelSHAP and 
slower than TreeSHAP. LIME had an average mean computation time 
of 0.09 s across non-decision-tree models, whereas KernelSHAP had 
an average of 19.94 s. When applied to RF and GB, LIME had an 
average time of 0.07 s and TreeSHAP had an average time less than 
0.01 s. Robustness refers to how much the importance values change 
when the input features are perturbed by a small amount, with a lower 
value meaning the XAI algorithm is more robust. For this metric, 
SHAP had a lower value than LIME with every model. We  then 
considered the secondary metrics (AUFIC, readability, clusterability). 
We observed that the AUFIC values (which reflect how the weight is 
distributed across features with 0.5 meaning all features are equally 
important and 1 meaning only a single feature is important) were 
similar between LIME and SHAP for each model. Across all models, 
LIME had an average AUFIC of 0.77 whereas SHAP had an average of 
0.75, indicating that both approaches distribute importance values 
over many features rather than highlighting a single feature. SHAP 
achieved a higher readability value than LIME for every model 
indicating that the links between feature values and their importance 
values are visually clearer in SHAP dependence plots. LIME and 

FIGURE 5

Comparison of mean results of all metrics across ML approaches on the AD vs. MCI vs. SCI vs. CU dataset over 10 trials of 5-fold cross-validation. Error 
bars represent the standard deviation. Cohort and model acronyms identified in the text.
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SHAP had similar clusterability scores (which refer to the degree that 
an approach captures interactions between features, with lower values 
meaning fewer interactions are represented) with averages of 0.44 and 
0.43, respectively.

3.2.2 Discriminating the MCI and CU cohorts
The XAI performance results for the MCI vs. CU discrimination 

task are reported in Table 4. We first considered the primary metrics 
(mean computation time, robustness). For mean computation time, 
LIME had faster times in all models except RF and GB. LIME had 
an average mean computation of 0.16 s across non-decision-tree 
models whereas KernelSHAP had an average of 32.07 s. For RF and 
GB, LIME had an average mean computation time of 0.20 s and 
TreeSHAP had an average of less than 0.01 s. For robustness, SHAP 
had a lower score than LIME in all models indicating that it is more 
robust. Considering secondary metrics (AUFIC, readability, 
clusterability), both LIME and SHAP had average AUFIC scores of 
0.79 across all models. SHAP had much higher readability and scores 

than LIME for all ML models. Although SHAP also achieved higher 
clusterability scores than LIME across all ML models, the differences 
were small (Mean = 0.06).

3.2.3 Discriminating the SCI and CU cohorts
The XAI performance results for the SCI vs. CU discrimination 

task are reported in Table 5. Considering the primary metrics (mean 
computation time, robustness), LIME had faster mean computation 
times for all models except RF and GB. The average mean computation 
time across the KernelSHAP approaches was 0.08 s for LIME and 
6.78 s for KernelSHAP. Across the TreeSHAP approaches, the average 
time was 0.07 s for LIME and less than 0.01 s for TreeSHAP. SHAP had 
lower robustness scores than LIME across all models indicating it is 
more robust. Considering the secondary metrics (AUFIC, readability, 
clusterability), LIME and SHAP both had similar AUFIC scores 
(Mean = 0.77 and 0.73, respectively) and clusterability scores 
(Mean = 0.43 and 0.47, respectively). For the readability metric, SHAP 
had higher scores than LIME for all models.

TABLE 3 Intra-explainer comparison of LIME and SHAP for each algorithm on the AD vs CU dataset.

Model Mean Computation 
Time (seconds)

[0, ∞] ꜜ

Robustness
[0, ∞] ꜜ

AUFIC
[0.5,1]

Readability
[0,1] ꜜ

Clusterability
[−1,1] ꜜ

LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP

LR 0.04 15.14 79.49 65.88 0.75 0.75 0.08 0.57 0.40 0.41

SVM 0.11 17.58 271.24 92.26 0.75 0.70 0.09 0.49 0.44 0.37

RF 0.08 <0.01 96.46 2.53 0.83 0.82 0.07 0.55 0.45 0.48

GB 0.06 <0.01 221.33 75.82 0.83 0.80 0.08 0.51 0.47 0.48

ANN 0.04 20.80 468.08 63.00 0.71 0.73 0.07 0.63 0.43 0.42

VE 0.18 26.24 213.02 76.29 0.74 0.72 0.08 0.56 0.43 0.39

Avg. 0.09 13.29 224.94 63.24 0.77 0.75 0.08 0.55 0.44 0.43

The ranges of the metrics are displayed beneath the metric name for each column. ꜛ indicates that higher values on the corresponding metric denote better performance. ꜜ indicates that lower 
values on the corresponding metric denote better performance. Values in bold print identify the best performance by a model for each metric. AD, Alzheimer’s Disease; CU, Cognitively 
Unimpaired; AUFIC, Area Under the cumulative Feature Importance Curve; LIME, Local Interpretable Model agnostic Explanation; SHAP, SHapley Additive exPlanations; LR, Logistic 
Regression; SVM, Support Vector Machine; RF, Random Forest; GB, Gradient-Boosted trees; ANN, Artificial Neural Network; VE, Voting Ensemble. Mean computation time and robustness 
are considered primary metrics, the rest are considered secondary.

TABLE 4 Intra-explainer comparison of LIME and SHAP for each algorithm on the MCI vs CU dataset.

Model Mean Computation 
Time (seconds)

[0, ∞] ꜜ

Robustness
[0, ∞] ꜜ

AUFIC
[0.5, 1]

Readability
[0, 1] ꜜ

Clusterability
[−1, 1] ꜜ

LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP

LR 0.08 24.55 178.81 47.87 0.90 0.87 0.07 0.33 0.47 0.56

SVM 0.14 26.39 151.62 57.11 0.74 0.74 0.09 0.66 0.40 0.47

RF 0.29 <0.01 63.70 2.57 0.81 0.79 0.05 0.51 0.44 0.46

GB 0.10 <0.01 96.84 2.76 0.84 0.85 0.05 0.55 0.46 0.50

ANN 0.08 33.21 255.27 71.02 0.67 0.69 0.07 0.71 0.41 0.48

VE 0.36 44.13 149.21 51.93 0.78 0.77 0.07 0.61 0.42 0.47

Avg. 0.18 21.38 149.24 38.88 0.79 0.79 0.07 0.56 0.43 0.49

The ranges of the metrics are displayed beneath the metric name for each column. ꜛ indicates that higher values on the corresponding metric denote better performance. ꜜ indicates that lower 
values on the corresponding metric denote better performance. Values in bold print identify the best performance by a model for each metric. MCI, Mild Cognitive Impairment; CU, 
Cognitively Unimpaired; AUFIC, Area Under the cumulative Feature Importance Curve; LIME, Local Interpretable Model agnostic Explanation; SHAP, SHapley Additive exPlanations; LR, 
Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; GB, Gradient-Boosted trees; ANN, Artificial Neural Network; VE, Voting Ensemble. Mean computation time and 
robustness are considered primary metrics, the rest are considered secondary.
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3.2.4 Summary
Across all three tasks, LIME had consistently faster mean 

computation times than SHAP on models when it was using 
KernelSHAP (LR, SVM, ANN, VE) and slower times than SHAP on 
models when it was using TreeSHAP (RF and GB). SHAP achieved 
higher robustness and readability scores than LIME across all ML 
models. Both XAI techniques displayed similar AUFIC and clusterability 
values to one another across each task and ML model. These results 
favor SHAP over LIME, particularly when applying TreeSHAP to the 
decision-tree methods RF and GB, which performed consistently well 
in the discrimination tasks. SHAP’s faster computation time with 
TreeSHAP, coupled with its higher robustness and readability, means 
that results are more consistent and interpretable compared to LIME.

3.3 XAI similarity of results comparisons

After comparing the performance of both LIME and SHAP 
individually, we compare metrics that quantify the similarity in the 
results between both XAI techniques across the ML models. These 
include the five previously described metrics to estimate similarity: (1) 
the number of features with matching directions of influence (ranging 
from 0 to the number of features in the dataset), (2) number of 
overlapping features between the top 10 features by composition for 
each XAI approach (ranging from 0 to 10), (3) the mean absolute 
composition difference between features (ranging from 0 to 100), (4) 
the concordance index between the lists of features ranked by 
composition ratio for each approach (ranging from 0 to 1), and (5) the 
number of leading predictors in each approach [ranging from 0 to 50 
(since each leading feature must have more than 2% 
composition ratio)].

3.3.1 Discriminating the AD and CU cohorts
The XAI similarity results for the AD vs. CU discrimination task 

are found in Supplementary Table 11. LIME and SHAP displayed high 
overlap between the top 10 features ranked by composition ratios 
(range: 8–9) and high agreement between all features ranked by 
composition ratio, as displayed by the high concordance indexes 

(range: 0.77–0.91). Furthermore, for all model comparisons, the two 
XAI algorithms had little mean differences between the absolute 
composition values across features (range 0.27–0.55), on average 
differing by less than 1%. The number of leading predictors identified 
was also similar for both LIME and SHAP across all ML models except 
for SVM, where the number of leading predictors for LIME was 
double that of SHAP (10 vs. 5). Where the two approaches differ 
however, is the direction of influence (i.e., whether the feature 
contributes to a positive or negative classification). Regarding the 
number of features with matching directions of influence, LIME and 
SHAP differed in their predictions with an average across all ML 
models of 36/74 (49%) and the highest number of matching feature 
directions being 44/74 (59%) as seen in the ANN comparison. Overall, 
LR displayed the most similarity between LIME and SHAP according 
to difference in mean absolute composition ratios and concordance 
index. This result is unsurprising since LR is a linear approach and 
thus there are no feature interactions that SHAP can take advantage 
of and outperform LIME.

3.3.2 Discriminating the MCI and CU cohorts
The XAI similarity results for the MCI vs. CU discrimination task 

are reported in Supplementary Table 12. The XAI algorithms both 
agreed in terms of composition ratios with high overlap both in the 
top 10 features (range: 7–9), concordance indexes (range: 0.76–0.92), 
and low mean composition differences (range: 0.24–0.58). As for the 
number of leading predictors, LIME and SHAP both had similar 
results with the largest difference being observed in the case of ANN 
with LIME having 18 leading predictors and SHAP having 12. 
Considering the number of features with matching directions of 
influence between approaches, LIME and SHAP only agree on half the 
features with an average number of matching directions of 31.83 
(49%) and the highest being 35 (54%) from VE. In this task, the ML 
model with the most similar results between LIME and SHAP was 
SVM, which is also a linear approach and thus it makes sense that 
both XAI techniques would give similar outputs.

3.3.3 Discriminating the SCI and CU cohorts
The XAI similarity results for the SCI vs. CU discrimination task 

are reported in Supplementary Table 13. In this task, LIME and SHAP 

TABLE 5 Intra-explainer comparison of LIME and SHAP for each algorithm on the SCI vs CU dataset.

Model Mean Computation 
Time (seconds)

[0, ∞] ꜜ

Robustness
[0, ∞] ꜜ

AUFIC
[0.5,1]

Readability
[0,1] ꜜ

Clusterability
[−1,1] ꜜ

LIME SHAP LIME SHAP LIME SHAP LIME SHAP LIME SHAP

LR 0.04 4.54 66.73 42.30 0.72 0.73 0.11 0.65 0.39 0.52

SVM 0.05 5.66 209.45 66.91 0.74 0.71 0.09 0.58 0.40 0.47

RF 0.08 <0.01 68.14 3.65 0.83 0.75 0.07 0.49 0.45 0.43

GB 0.09 <0.01 187.35 96.14 0.85 0.79 0.07 0.51 0.47 0.49

ANN 0.05 5.67 85.57 55.08 0.74 0.70 0.09 0.65 0.41 0.51

VE 0.18 11.23 126.55 91.34 0.76 0.72 0.08 0.45 0.44 0.38

Avg. 0.08 4.52 123.97 59.40 0.77 0.73 0.09 0.55 0.43 0.47

The ranges of the metrics are displayed beneath the metric name for each column. ꜛ indicates that higher values on the corresponding metric denote better performance. ꜜ indicates that lower 
values on the corresponding metric denote better performance. Values in bold print identify the best performance by a model for each metric. SCI, Subjective Cognitive Impairment; CU, 
Cognitively Unimpaired; AUFIC, Area Under the cumulative Feature Importance Curve; LIME, Local Interpretable Model agnostic Explanation; SHAP, SHapley Additive exPlanations; LR, 
Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; GB, Gradient-Boosted trees; ANN, Artificial Neural Network; VE, Voting Ensemble. Mean computation time and 
robustness are considered primary metrics, the rest are considered secondary.
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show less similarity in composition ratios than in the other 
comparison tasks. The top 10 composition overlap has a much larger 
range of 1–9 with ANN only sharing a single feature across both XAI 
feature rankings. The mean absolute composition difference and 
concordance indexes also have larger ranges of 0.31–1.43 and 0.48–
0.92, respectively. The number of leading predictors between LIME 
and SHAP differed by at least two across ML models with a maximum 
difference of seven observed in the case of GB (5 vs. 12). Much like the 
previous two tasks, LIME and SHAP only agree on the direction of 
influence of around half the features with an average number of 
matching directions of 30.50 (48%) and the highest being 34 (53%) 
from SVM. As observed in the previous tasks, LR and SVM generally 
had the highest similarities between XAI approaches indicating that 
LIME and SHAP perform similarly on linear approaches.

3.3.4 Summary
Across all three tasks, we observed that LIME and SHAP had 

similar composition ratios as displayed by the generally high top 10 
composition overlap and concordance indexes and low mean absolute 
composition difference scores. However, the XAI techniques both 
differed substantially in terms of the directions of influence across 
features, with agreement occurring for about half of the feature 
directions. This means that although LIME and SHAP agree on how 
important each feature is, they sometimes disagree on how that feature 
impacts predictions. The results between the two XAI algorithms were 
similar in both the AD vs. CU and MCI vs. CU tasks, but similarity 
dropped off in the SCI vs. CU, likely due to the ML model performance 
drop off observed earlier. We  also noticed that the most similar 
outputs between LIME and SHAP were typically observed when 
applied to LR and SVM. This can likely be explained by LR and SVM 
being linear ML algorithms, meaning that SHAP cannot utilize any 
feature interactions to provide more informed importance values.

3.4 Leading predictors across ML-XAI 
combinations

We compared the leading predictors (i.e., predictors with >2% 
composition ratio) across pairs of supervised ML models and XAI 
algorithms for each cohort comparison task. Specifically, we report 
and compare the leading features as determined by each of LIME and 
SHAP for the top performing models (according to the primary 
metrics) in each dataset.

3.4.1 Discriminating the AD and CU cohorts
The total list of features (N = 75) and leading predictors for the 

AD vs. CU task can be found in Supplementary Table 14. Across all 
combinations of the six ML and two XAI approaches we observed six 
leading predictors that appeared in at least 10 of the 12 ML-XAI 
combinations. These predictors and their mean composition ratios 
were olfaction (9.77), sex (8.64), memory QOL (8.20), handling 
money (3.81), grip strength (2.98), and timed walk (2.98). We observed 
that 27 (36%) of the total predictors were identified as a leading 
predictor by at least one ML-XAI combination. The two best 
performing base ML models, RF and GB, shared 11 out of the 15 
leading predictors identified by either approach when using LIME (14 
identified in total by RF, 12 by GB), and 13/15 when using SHAP (14 
identified by RF, 14 by GB).

3.4.2 Discriminating the MCI and CU cohorts
The total list of features (N = 65) and leading predictors for the 

MCI vs. CU task can be found in Supplementary Table 15. The leading 
predictors observed in at least 10 of the 12 combinations were memory 
QOL (14.20), sex (9.20), grip strength (5.48), pulse pressure (4.56), 
and self-rated health (3.03). We observed that 30 (46%) of the total 
predictors were identified as a leading predictor by at least one pair of 
ML and XAI approaches. RF and GB shared 8/14 leading predictors 
when using LIME (13 identified in total by RF, 9 by GB), and 7/14 
when using SHAP (9 identified by RF, 12 by GB).

3.4.3 Discriminating the SCI and CU cohorts
The total list of features (N = 64) and leading predictors for the 

SCI vs. CU task can be found in Supplementary Table 16. Although 
no leading predictors were observed across all 12 ML-XAI 
combinations, memory QOL (9.77) and lymphocytes number (8.13) 
were the leading predictors in 11/12 and 10/12 of the combinations. 
We observed that 45 of the total predictors were identified as a leading 
predictor by at least one combination. RF and GB, the best two 
performing models, shared 5/11 leading features when using LIME 
(11 identified in total by RF, 5 by GB) and 6/15 leading features when 
using SHAP (9 identified by RF, 12 by GB).

3.4.4 Summary
Overall, we observed considerable consistency in the identification 

of leading predictors across the ML-XAI combinations. We identified 
several unanimous leading predictors in the AD vs. CU and MCI vs. 
CU tasks and several with high overlap in the SCI vs. CU task. We also 
observed that as the clinical gap between cohorts widened, the 
disagreement between models increased meaning the total number of 
unique leading predictors across approaches also increased. The 
results of our experiments reiterate the goal of these XAI algorithms: 
to estimate how a ML model uses features to make predictions. 
Therefore, the importance values are affected not only by the type of 
ML algorithm applied to the dataset, but also by the corresponding 
performance metrics. Consequently, the results of XAI algorithms are 
more reliable when the models perform better, particularly when they 
achieve higher accuracy. This explains the higher variance in leading 
predictors we observed within the clinically similar cohort comparison 
task of SCI vs. CU. Additionally, depending on the dataset, there may 
be different combinations of features that lead to the same prediction. 
Although the results of the XAI algorithms may not necessarily point 
to a direct causal link between the leading predictive feature and 
clinical cohort classifications, they are useful for choosing features in 
the context of building ML predictors or designing neurodegenerative 
datasets and studies.

4 Discussion

As an AI-derived data-driven analytic technique, ML has been 
increasingly used in aging and neurodegenerative disease research. 
Such research has addressed not only the (1) differential diagnosis of 
neurodegenerative diseases, but also (2) identification of leading 
disease biomarkers, risk and protective factors that discriminate 
among early clinical conditions, (3) detection and characterization of 
risk-related and etiological subgroups, and (4) ascertainment of 
potential modifiable targets for precision intervention protocols 
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(Drouin et al., 2022; Iturria-Medina et al., 2016; McFall et al., 2023). 
The dramatic growth of ML technology has produced important 
advances in applications, including the variety and capacity of 
supervised learning and XAI algorithms available to researchers. The 
present study focused purely on the use of ML and XAI in 
neurodegenerative research rather than in a clinical setting and 
developed a comprehensive set of criteria for evaluating ML and XAI 
performance in a typical multi-cohort study of aging and 
neurodegeneration. Accordingly, we addressed several crucial issues 
facing researchers as they select and deploy an ML research procedure. 
The challenges for researchers include: (1) which algorithms to 
choose, (2) whether to use one or a combination of algorithms, (3) 
how to evaluate and compare a candidate set of algorithms, and (4) 
how to incorporate and compare XAI algorithms for 
post-hoc interpretation.

Our objective was to systematically compare prominent 
supervised ML and XAI algorithms in specific metrics of 
performance with discrete multi-feature datasets across formally 
classified cohorts within the AD spectrum. Our specific goals were 
to (1) examine computational performance across seven common 
and promising supervised ML algorithms for neurodegeneration 
research, (2) investigate the relative performance and similarity 
between two commonly used post-hoc XAI algorithms (SHAP, 
LIME), and (3) informally compare the similarity between leading 
predictors determined by the XAI algorithms when applied to the 
ML models used in each of the pairwise comparison tasks. Our 
results provide useful guidelines for the expanding number of 
researchers applying AI-derived ML technologies to a variety of 
aging neuroscience datasets.

For the first goal, we compared the performances of the seven 
supervised ML algorithms (LR, SVM, RF, GB, ANN, VE, SL) 
according to two primary (AUC, accuracy) and four secondary 
(precision, recall, MCC, F1) metrics on three binary and one multi-
class discrimination tasks involving AD-related cohorts (AD, MCI, 
SCI, CU). Although other studies have assessed various ML algorithms 
for classification tasks using aging and neurodegeneration datasets, 
our study provides uniquely comprehensive information. 
We systematically compared (1) all selected algorithms using the same 
multi-feature dataset (Fathi et al., 2022; Pellegrini et al., 2018), (2) a 
substantial number of ML and XAI algorithms (James et al., 2021; Zhu 
et  al., 2020), (3) a wide selection of differentiated important ML 
performance metrics (Joshi et al., 2010), and (4) pairwise classification 
performance among the well-characterized AD-related cohorts. A key 
finding was that, across algorithms, model performance decreased as 
the positive clinical class extended further away from benchmark CU 
cohort (i.e., AD performance > MCI performance > SCI performance) 
and dropped off significantly in the multi-class classification task. This 
pattern suggests that ML algorithms are more effective at 
distinguishing between cohorts with significant differences, rather 
than those that are quite similar. Moreover, when analyzing the results 
across the three binary tasks, we observed that the overall performance 
of certain ML models declined more significantly than others, 
illustrating that the differences become more pronounced as the tasks 
increase in difficulty. Specifically, we observed that two base models 
(RF, GB) and one ensemble model (SL) performed consistently well 
across all tasks, most notably outperforming the other base models in 
the demanding comparison of clinically neighboring cohorts (SCI vs. 
CU). This suggests that nonlinear models, particularly decision-tree, 

are best-suited for the task of discriminating between clinical 
neurodegeneration cohorts using discrete multi-feature data.

When comparing model performance across the three binary 
discrimination tasks, we observed both consistent and unique trends 
within each comparison. In the AD vs. CU task, a discrimination of 
the two cohorts most clinically and pathologically different, 
we observed two notable results. First, all models achieved similarly 
outstanding AUC performance; however, SVM achieved a slightly 
lower accuracy than the other models which were clustered together. 
This result is interesting because LR and SVM are both linear methods 
but only SVM underperformed compared to the other models. 
We also observed that SL achieved the highest scores in three of the 
four secondary metrics (precision, MCC, and F1 score). Notably, SL 
is an ensemble algorithm that internally validates base learners and 
uses the best performing one for final predictions. Since all models 
achieved similar scores across the various metrics, it is unclear which 
base model is most likely to be selected by SL. In the MCI vs. CU task, 
we  observed two results different from the preceding task. First, 
we observed that, in terms of the primary metrics, RF, GB, and SL 
performed similarly well (although lower than that of the AD vs. CU 
task) and exceeded the other models. Second, we  observed more 
variation in the secondary metrics. Specifically, we found that: (1) RF 
was characterized by the highest precision and MCC; (2) SVM and VE 
were characterized by the highest recall; and (3) GB and SL were 
characterized by the highest F1 score. In the SCI vs. CU task, a 
discrimination of two clinically neighboring and similar cohorts, 
we  observed similar trends of the primary metrics as seen in the 
previous task but different secondary metric results. We  again 
observed RF, GB, and SL performed similarly to one another and 
outperformed the other models. This trend indicates that SL is likely 
using RF and GB to make predictions in these more difficult tasks. 
We  also observed these three models outperforming the others 
according to the secondary metrics with RF achieving the highest 
precision whereas GB achieved the highest recall, F1 score, and MCC 
(tying with SL). In the four-way classification task, we observed a 
significant drop-off in performance across all metrics which is to 
be expected since the total number of classes is double that of the 
binary tasks. Similar to the previous two tasks, RF, GB, and SL 
achieved the highest primary metrics scores but were more closely 
followed by the other models. We also observed that GB achieved the 
highest scores in all four secondary metrics. The consistently high 
performance of RF and GB as well as the poor performance of ANN 
(the only other non-linear base model) indicate that decision-tree-
based methods perform well on discrete data for classification tasks, 
which is in line with other studies (Climent et al., 2018; Gray et al., 
2013; Moore et al., 2019; Vyas et al., 2022). The detectable performance 
difference between RF/GB and ANN is likely due to ANNs requiring 
many samples to generalize well and perform optimally, especially 
when hypertuning (Ying, 2019); we acknowledge that the present 
dataset contains a relatively small number of samples. In sum, the 
results suggest that RF and GB are best suited for datasets with 
common discrete neurodegeneration variables (e.g., age, sex, Mini-
Mental State Examination (MMSE), Apolipoprotein E (APOE) gene) 
(Bennett et  al., 2018; Chertkow et  al., 2019; Morris et  al., 2006; 
Petersen et  al., 2010a). Therefore, we  suggest using either of the 
decision-tree approaches RF or GB. For likely improved performance, 
it is recommended to incorporate both algorithms into the ensemble 
method SL alongside other promising algorithms.
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Subsequently, we applied two common post-hoc XAI algorithms 
(LIME and SHAP) to the ML models and compared their relative 
performance and similarity. While studies have been conducted to 
compare the performances of LIME and SHAP (Amparore et al., 2021; 
Doumard et al., 2023; ElShawi et al., 2020), few have assessed the 
similarities between the importance values generated by each 
algorithm. Our work assesses both performance and similarities of the 
two approaches using the same dataset. We first compared the two 
algorithms according to independent performance metrics. These 
metrics were derived from a study by Doumard et al. (2023) in which 
they compared LIME and SHAP across 304 OpenML datasets. 
Consistent with their results, we observed that LIME had faster mean 
computation times than KernelSHAP (LR, SVM, ANN, and VE) but 
was slightly slower than TreeSHAP (RF, GB). A second important 
result that was similar to that of Doumard et al. (2023). Specifically, 
SHAP was consistently more robust than LIME; this indicates that 
SHAP is less variable with respect to small changes in the input 
features. SHAP also had higher readability scores and generally higher 
clusterability scores than LIME, indicating that SHAP has visually 
clearer dependence plots and incorporates interactions between 
features better than LIME. Our results differed from those in the 
previous study in that they found that LIME generally had the lowest 
AUFIC, whereas we observed that LIME had higher average AUFIC 
values indicating that it assigns higher values to fewer features. While 
our findings generally align with those of Doumard et al., our study 
highlights the advantages of using SHAP over LIME, specifically 
within the context of a clinical neurodegenerative dataset, rather than 
across a diverse array of data sources. Furthermore, as detailed below, 
we evaluate the similarities between the two XAI algorithms, and 
when combined with these results, this assessment provides further 
guidance for which approach to choose for similar aging and 
neurodegeneration studies.

Next, we compared the two XAI algorithms in terms of their 
similarity. We observed that LIME and SHAP ranked features similarly 
in terms of composition ratio and identified similar numbers of 
leading predictors. However, between the two approaches typically 
only around half of the features had matching directions of influence. 
This means that while the algorithms agree on which features are 
influential, they sometimes disagree on how the feature impacts the 
prediction. We also noticed that the two XAI algorithms produced 
similar results most often between LR and SVM. This can be explained 
by both being linear approaches and thus there is little difference in 
using an algorithm that can utilize feature interactions such as SHAP 
over a linear approach like LIME. Considering both the performance 
and similarity results of the two XAI algorithms, we recommend using 
SHAP as it outperforms LIME across multiple metrics while 
identifying similar features as important, although with differing 
directions of influence. It should also be  noted that while 
we  systematically compared two frequently used XAI algorithms 
(LIME and SHAP) in this literature, other algorithms such as rule-
based or example-based approaches (Van der Waa et al., 2021) may 
be able to provide additional insights.

Finally, we  compared the leading predictors across pairs of 
supervised ML models and XAI algorithms for each cohort comparison 
task. In the AD vs. CU task, we observed that olfaction, sex, memory 
QOL, handling money, grip strength, and timed walk were leading 
predictors in at least 10 out of 12 pairs of ML and follow-up XAI 
approaches. These factors have been previously identified as 

symptomatically associated with AD and AD risk (Buchman et al., 
2007; Jahn, 2013; Martin et al., 2008; Pike, 2016; Ries et al., 2009; Zou 
et al., 2016). In the MCI vs. CU task, we observed that memory QOL, 
sex, grip strength, pulse pressure, and self-rated health were the 
consistent leading predictors in at least 10 ML-XAI pairs. Previous 
studies have found associations between each of these factors and 
cognitive decline and impairment (Cui et al., 2021; Fritz et al., 2017; 
Meyer et  al., 2017; Petersen et  al., 2010b; Waldstein et  al., 2007). 
We highlight sex, as it has been identified as a crucial factor in AD risk 
and diagnosis (Subramaniapillai et al., 2021; Tierney et al., 2017). In the 
present case, however, the identification of sex as a leading predictor in 
both the AD vs. CU and MCI vs. CU tasks may be  related to an 
imbalance in the distribution of sex within and across the present 
cohorts [AD (30% female), MCI (49% female), SCI (83% female), and 
CU (82% female)]. In the SCI vs. CU task, we observed memory QOL 
and lymphocytes number as leading predictors in at least 10 of the 
ML-XAI combinations. Some prior work has also observed associations 
between these factors and SCI (Hill et al., 2017; Kalelioglu et al., 2017).

Although we  noted several limitations of this research in the 
preceding section, we identify four additional limitations attributable 
to the specific dataset we used. We evaluated and compared different 
ML algorithms using a dataset with a wide range of 102 features 
spanning 17 morbidity domains. First, these features were indeed 
derived from multiple modalities (a strength) but their large number 
and alignment with morbidity and deficit domains restricted our 
ability to combine or compare across datasets. We were thus focused 
on a comprehensive approach to a single dataset. Second, the current 
dataset included multiple cohorts in the AD spectrum (a strength), 
but the sample sizes within these cohorts were different and relatively 
small. Third, as noted above the sex distribution within cohorts was 
unbalanced, but we  did find useful results. Fourth, although 
we  thoroughly compared the ML algorithms using this dataset, 
we were unable to fully capture sample diversity, potentially limiting 
the generalizability of our results.

5 Conclusion

The present study evaluated three RGs using a discrete clinical 
neurodegeneration dataset: (1) compare the performance of seven 
common and promising ML algorithms in discriminating between 
four clinical cohorts which represent progression along an the AD 
spectrum (CU, SCI, MCI, AD); (2) assess the relative performance and 
similarity between two commonly used XAI model interpretation 
techniques; and (3) informally evaluate the leading predictors from 
each combination of ML and XAI approach and discuss the predictors 
that are most commonly identified as having a notable influence on 
model predictions.

In comparing ML models, we observed that the decision-tree-
based methods, RF and GB, outperformed the other models in all 
discrimination tasks except in the AD vs. CU setting where SL 
performed the best in all metrics except recall. Notably, SL is an 
ensemble method, and it is likely that either RF or GB were used in 
the final SL model. ML performance was best in the AD vs. CU task 
and degraded when the compared cohorts were closer to each other 
along the AD spectrum. The worst overall performance was seen in 
the multi-class setting, which is expected since the number of classes 
is double that of the binary tasks.
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From our systematic comparative analyses, we observed RF, GB, and 
SL consistently outperforming other commonly used ML approaches 
within neurodegeneration research and therefore we recommend these 
models for use with the COMPASS-ND dataset or similar clinical 
neurodegenerative datasets. However, it should be noted that the extent 
to which these results may generalize to other types of data (e.g., 
neuroimaging) or other clinical datasets is unknown. The present results 
do, however, suggest that RF or GB work well as an initial model for 
discrete clinical neurodegenerative research, with GB slightly 
outperforming RF and may be a better choice if a researcher is limited 
to a single model with similar data. Further work is required to support 
these algorithms in other contexts such as different datasets, cohort 
comparisons, or regression tasks. The present approach can be adapted 
to multiple variations of these dimensions.

In the subsequent comparison of XAI algorithms, we observed 
that TreeSHAP, a model-specific version of SHAP that works with RF 
and GB, outperformed LIME according to almost all metrics. In 
assessing the similarity between the algorithms, we observed that both 
LIME and SHAP typically agreed on which features have high 
influence on predictions but differed in the direction of influence. 
We also noted that LIME and SHAP performed most similarly when 
applied to linear approaches (LR and SVM). From our observations, 
we recommend combining TreeSHAP with RF or GB to highlight 
useful and potentially clinically relevant features. We also recommend 
viewing the results of XAI algorithms with a critical eye and caution 
against using them as definitive evidence for causal relationships.

Comparing the leading predictors across combinations of ML and 
XAI approaches, we observed that sex and grip strength were identified 
by all combinations in both the AD vs. CU and MCI vs. CU tasks. 
Olfaction and memory QOL were also identified in the AD vs. CU task, 
and pulse pressure was identified in the MCI vs. CU task. Memory QOL 
and lymphocytes number were shared across most combinations within 
the SCI vs. CU task. The variance in leading predictors observed across 
various combinations of ML models and XAI algorithms calls attention 
to the risk of presuming a strong correlation between identified features 
and a cohort. These results emphasize that XAI algorithms offer one 
among several possible explanations, highlighting the need for critical 
consideration before making further conclusions.
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