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Objective: Subsyndromal symptomatic depression (SSD) is associated with an 
increased risk of cognitive impairment in non-demented older adults. However, 
the mechanism underlying this relationship remains unclear. This study aimed 
to investigate whether plasma neurofilament light chain (NfL) mediates the 
relationship between SSD and cognitive decline.

Materials and methods: Data of 707 non-demented older adults from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort were analyzed. 
Geriatric Depression Scale (GDS) scores were collected at baseline, while 
plasma NfL levels and cognitive assessments were obtained at baseline, 1-year, 
and 2-year follow-up visits. SSD was defined as a GDS score of 1–5. Mediation 
analyses were performed to examine whether the rate of change in plasma NfL 
levels mediated the relationship between SSD and cognitive decline.

Results: Participants with SSD exhibited a greater increase in plasma NfL 
levels and more pronounced declines in global cognition, memory, executive 
function, language, and processing speed over 2 years compared to non-SSD 
participants. The rate of change in plasma NfL levels significantly mediated the 
relationship between SSD and accelerated cognitive decline, particularly in 
global cognition, memory, language, and processing speed.

Conclusion: Plasma NfL, which is related to neuroaxonal damage, may partially 
mediate the association between SSD and accelerated cognitive decline in non-
demented older adults. These findings suggest that dynamic changes in plasma 
NfL levels may reflect early neurobiological alterations associated with SSD and 
could help identify individuals at increased risk of cognitive deterioration over a 
2-year period.
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1 Introduction

Depression is a common psychiatric disorder that affects millions 
of individuals worldwide (COVID-19 Mental Disorders Collaborators, 
2021). In older adults, depression is associated with numerous adverse 
outcomes, including reduced quality of life, physical comorbidities, 
premature mortality, and cognitive impairment (Zis et  al., 2017; 
Avasthi and Grover, 2018). Evidence from a large population-based 
cohort study, which included both Caucasian and non-Caucasian 
participants, shows that late-life onset of depressive symptoms is 
associated with a 70% higher risk of dementia and a two-fold increase 
risk of Alzheimer’s disease (AD) (Barnes et al., 2012).

Depressive symptoms can manifest in a spectrum of clinical 
syndromes, ranging from subsyndromal symptomatic depression 
(SSD) to major depressive disorder (MDD). SSD represents 
individuals who experience depressive symptoms but do not fully 
meet the diagnostic criteria for either major or minor depression 
outlined in the Diagnostic and Statistical Manual of Mental Disorders 
(Lyness et al., 2009). On the other hand, MDD is characterized by 
persistent low mood, diminished interest in activities, and significant 
impairment in social and occupational functioning (Uher et al., 2014). 
SSD is clinically important, as it is prevalent among older adults 
(Horwath et al., 1992; Cuijpers and Smit, 2004), significantly increases 
the risk of progression to MDD (Cuijpers et al., 2004) and impairs the 
quality of life of older adults (Rapaport and Judd, 1998; da Silva Lima 
and de Almeida Fleck, 2007). Furthermore, studies have shown that 
SSD is a major contributor to cognitive decline among older adults 
(Jing et al., 2024). Early identification and intervention for SSD may 
prevent progression to MDD (Judd et  al., 1998) and mitigate 
associated cognitive decline (Zhang et al., 2020). Longitudinal studies 
further reveal that baseline SSD is associated with accelerated 
cognitive decline across multiple domains, including global cognition, 
language, executive function, and processing speed, over a 2-year 
period (Lee et  al., 2012). Notably, individuals with persistent 
depressive symptoms demonstrated a higher propensity to convert to 
AD and exhibited significant cognitive deterioration, highlighting SSD 
as a potential marker for AD progression (Lee et al., 2012). Therefore, 
SSD represents an important window for early diagnosis and timely 
intervention to prevent cognitive decline before MDD sets in.

Emerging evidence suggests that depressive symptoms, including 
SSD, are linked to cytoarchitectural changes and neuronal injury, which 
may play a role in cognitive impairment (Csabai et al., 2018; Holmes 
et al., 2019; Williams et al., 2019; Banasr et al., 2021). However, the role 
of neuronal injury in the relationship between SSD and cognitive 
impairment in older adults remains poorly understood. Neurofilament 
light chain (NfL), a neuron-specific component of the axonal 
cytoskeleton, has been validated as a peripheral biomarker for 
neuroaxonal damage (Disanto et al., 2017). Elevated blood NfL levels 
have been reported in neurological conditions such as traumatic brain 
injury and AD (Disanto et al., 2017; Gaetani et al., 2019). Experimental 
animal models have also demonstrated associations between depression 
and altered neurofilament levels (Reinés et al., 2004; Cereseto et al., 
2006). Hence, plasma NfL is increasingly utilized in human studies 
exploring depressive symptoms and neuroaxonal damage. Case–control 
studies show that patients with major depression exhibit significantly 
higher NfL levels (Bavato et al., 2021). NfL levels are highly sensitive 
indicators of subclinical neurodegeneration, with elevations often 
detectable years before the onset of clinical symptoms in both early- and 

late-onset AD (Preische et al., 2019; de Wolf et al., 2020). Studies in 
cognitively healthy older adults have found that increased NfL levels are 
associated with cognitive impairment (Chatterjee et al., 2018). Given 
the established role of NfL as a marker of neurodegeneration, 
investigating its role in SSD-related cognitive decline is crucial.

Previous studies have demonstrated associations between SSD 
and structural brain changes observed on magnetic resonance 
imaging, particularly in regions vulnerable to neurodegeneration, as 
well as cognitive decline (Jing et al., 2024). However, these findings are 
largely based on cross-sectional analyses, which limit causal 
interpretations (Jing et al., 2024). Moreover, although NfL levels have 
been linked to cognitive impairment in MDD (Chen et al., 2022), the 
mediating role of NfL in the longitudinal relationship between SSD 
and cognitive decline in older adults has not yet been investigated.

To address this gap, this longitudinal study of non-demented older 
adults, stratified into SSD and non-SSD groups, aims to investigate the 
relationships between depressive symptoms, plasma NfL levels, and 
cognitive decline over a 2-year period. We hypothesize that plasma 
NfL levels will mediate the association between SSD and cognitive 
decline among non-demented older adults.

2 Materials and methods

2.1 Alzheimer’s Disease Neuroimaging 
Initiative

The data used in this study were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.
usc.edu) in January 2024. ADNI is a longitudinal, multicenter study 
designed to characterize clinical, genetic, imaging, and biochemical 
biomarkers for early detection and tracking of AD progression (Weiner 
et al., 2015). Additional information about ADNI is available at http://
www.adni-info.org. The study was conducted with institutional review 
board approval at each participating site. Written informed consent 
was obtained from all participants or their authorized representatives.

2.2 Participants

Non-demented participants for this study were recruited from 
ADNI-1, ADNI-2, and ADNI-GO who were classified as cognitively 
normal (CN) and mild cognitive impairment (MCI). We selected 
participants who had available baseline Geriatric Depression Scale 
(GDS) scores, longitudinal plasma NfL levels, and neuropsychological 
assessments conducted over a 2-year period. Exclusion criteria 
included: (1) missing sociodemographic data (age, gender, years of 
education, APOE ε4 status); (2) a diagnosis of psychiatric or 
neurological conditions other than AD; and (3) the presence of major 
depression or significant depressive symptoms (GDS score > 5). 
Diagnostic criteria for CN and MCI in the ADNI cohort have been 
previously described (Petersen et al., 2010).

2.3 Depression scale measurement

The 15-item GDS was used to assess depressive symptoms in the 
ADNI study. The total GDS scores range from 0 to 15, with higher 
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scores indicating more severe depressive symptoms. A score of 6 or 
higher on the GDS is considered clinically significant for depression 
(Yesavage et al., 1982; Marc et al., 2008). In line with prior studies, 
participants with SSD were classified as having a baseline GDS score 
between 1 and 5, while non-SSD participants were defined as having 
a score of 0 (Bertens et al., 2017).

2.4 Apolipoprotein E genotyping

Apolipoprotein E (APOE) genotyping was performed on DNA 
extracted from 3 mL of blood treated with ethylenediaminetetraacetic 
acid in accordance with protocols provided by Cogenics (https://
adni.loni.usc.edu/data-samples/adni-data/genetics-related-omics/). 
Participants carrying one or more copies of the ε4 allele (ε4/ε4, ε4/
ε3, or ε4/ε2) were classified as APOE ε4 carriers, while those with 
no ε4 alleles were classified as APOE ε4 non-carriers.

2.5 Plasma NfL data

Plasma NfL levels were measured using the Single Molecule Array 
technique, which employs monoclonal antibodies and purified bovine 
NfL as a calibrator. All samples were analyzed in duplicate, with an 
analytical sensitivity of <1.0 pg./mL. Plasma NfL data from baseline, 
1-year follow-up, and 2-year follow-up were included in this study. 
Further methodological details are available at http://adni.loni.
usc.edu.

2.6 Cognitive assessments

ADNI participants undergo a wide spectrum of clinical and 
cognitive assessments (Aisen et  al., 2010). In this study, global 
cognition was evaluated using the Alzheimer’s Disease Assessment 
Scale–Cognitive Subscale, which includes both the 11-item (ADAS-
Cog 11) and 13-item versions (ADAS-Cog 13) (Mohs et al., 1997). 
Memory function was assessed using the ADNI Memory Composite 
(ADNI-MEM) (Crane et al., 2012). Executive function was measured 
using the ADNI Executive Function Composite (ADNI-EF) (Gibbons 
et  al., 2012). Psychomotor processing speed and attention was 
evaluated with the Trail Making Test Part A (TMT-A) and Trail 
Making Test Part B (TMT-B). Language ability was assessed using the 
ADNI Language Composite (ADNI-LAN) (Choi et  al., 2020). 
Cognitive data from baseline, 1-year follow-up, and 2-year follow-up 
were included in this study. Further detailed information is available 
at https://adni.loni.usc.edu/methods/.

2.7 Statistical analysis

All statistical analyses were conducted using R software (version 
4.3.1, The R Foundation for Statistical Computing). Statistical 
significance was set at a two-tailed p-value of < 0.05.

Continuous variables were presented as means with standard 
deviations, and categorical variables were presented as frequencies and 
percentages. Independent t-tests were used to compare continuous 
variables, and chi-square (χ2) tests were used for categorical variables. 

When assumptions of normality or homogeneity of variance were not 
met, the Wilcoxon rank-sum test was used. Analysis of covariance was 
performed to evaluate baseline cognitive outcomes, adjusting for 
potential confounders including age, gender, years of education, 
diagnostic status (CN vs. MCI), and APOE ε4 status.

The rate of change in cognitive measures and plasma NfL levels 
was calculated using linear mixed-effects models, as previously 
established (Preische et al., 2019; Rubinski et al., 2024). This model 
estimated longitudinal changes by including time from baseline as the 
independent variable, with random slopes and intercepts to account 
for individual variability.

Before conducting the analysis, outliers in Δ plasma NfL levels 
were identified using the inter-quartile range (IQR) method. Data 
points below Q1–1.5 × IQR or above Q3 + 1.5 × IQR were classified 
as outliers and excluded from further analysis. Outliers were excluded 
to minimize the influence of extreme values and enhance the statistical 
robustness of the analysis.

Multiple linear regression models were used to examine the 
relationship between SSD, longitudinal plasma NfL levels, and 
longitudinal cognitive measures. All models were adjusted for age, 
gender, years of education, diagnostic status (CN vs. MCI), and APOE 
ε4 status. Baseline MMSE scores were included as a covariate in the 
longitudinal cognitive measures analyses to control for differences in 
baseline cognitive status between the CN and MCI groups. Region-
wise multiple comparisons were corrected using the Benjamini-
Hochberg false discovery rate (FDR) method (FDR-corrected p < 0.05 
for 7 cognitive measures).

Mediation analyses were conducted to examine the relationships 
among SSD, the rate of change in plasma NfL levels, and cognitive 
decline, using the “BruceR” package (R version 4.3.1, https://
psychbruce.github.io/bruceR/). In this model, SSD was specified as the 
independent variable (X), the rate of change in cognitive function as 
the dependent variable (Y), and the rate of change in plasma NfL levels 
as the mediator (M). The mediation effect was considered present if the 
following conditions were met: (1) SSD was significantly associated 
with the rate of change in plasma NfL levels; (2) SSD was significantly 
associated with the rate of change in cognitive function; and (3) the rate 
of change in plasma NfL levels was significantly associated with the rate 
of change in cognitive function. The indirect (mediated) effect was 
estimated using 1,000 bootstrapped iterations, with all paths adjusted 
for the aforementioned covariates. The proportion of the mediation 
effect was calculated by dividing the indirect effect by the total effect.

3 Results

3.1 Participant characteristics

Among 707 non-demented older adults, 467 participants were 
classified as SSD (mean age: 71.17 years, SD: 6.98), while 240 were 
classified as non-SSD (mean age: 72.98 years, SD: 6.48). The 
distribution of CN and MCI participants (p  < 0.001) and age 
(p < 0.001) were significantly different between the SSD and non-SSD 
groups, with a higher proportion of MCI participants and younger age 
in the SSD group compared to the non-SSD group. However, there 
were no statistically significant differences in the gender distribution, 
years of education, APOE ε4 carrier status, and baseline plasma NfL 
levels between the SSD and non-SSD groups (p > 0.05; Table 1).
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3.2 SSD and plasma NfL

Linear regression model was applied to examine the associations 
between SSD and rate of change in plasma NfL levels, adjusting for 
age, gender, years of education, diagnostic status, and APOE ε4 status. 
We found that SSD participants experienced a more rapid increase in 
plasma NfL levels compared to non-SSD participants (see Figure 1).

3.3 SSD and cognitive performance

Baseline cognitive performance and the rate of change in cognitive 
function (Δ cognition) for SSD and non-SSD participants are 
summarized in Table 2.

At baseline, participants in the SSD group exhibited significantly 
higher ADAS-Cog 13 scores (FDR-corrected p  = 0.05), lower 
ADNI-EF (FDR-corrected p  = 0.01) and lower ADNI-LAN 
(FDR-corrected p = 0.04) scores compared to non-SSD participants. 
These findings suggest that individuals with SSD had greater 
impairments in global cognition, executive function, and language 
abilities at baseline. A trend toward lower memory performance 
(measured by ADNI-MEM, FDR-corrected p  = 0.06) was also 
observed in the SSD group. No significant between-group differences 
were observed for ADAS-Cog 11, TMT-A, or TMT-B (FDR-corrected 
p > 0.05).

During the 2-year follow-up, the SSD group exhibited significantly 
greater declines in global cognition (assessed by ADAS-Cog 11 and 
ADAS-Cog 13), memory (ADNI-MEM), processing speed (TMT-A), 
and language function (ADNI-LAN), compared to the non-SSD 
group (all FDR-corrected p < 0.05). Although the SSD group showed 
a trend toward greater decline in executive function (ADNI-EF), the 
association was not statistically significant after FDR correction 
(FDR-corrected p = 0.08). No significant differences were observed in 
the change rate of TMT-B (FDR-corrected p > 0.05).

All analyses were adjusted for age, gender, years of education, 
diagnostic status (CN vs. MCI), and APOE ε4 status. Baseline MMSE 
scores were included as a covariate in the longitudinal cognitive 
measures analyses.

3.4 Associations between plasma NfL and 
cognitive performance

Over the 2-year follow-up, greater increases in plasma NfL levels 
were significantly associated with steeper declines across multiple 

cognitive domains (Figure 2). Specifically, higher NfL changes were 
related to worsening global cognition (Figure  2A: ADAS-Cog 11: 
β = 0.15, p < 0.001; Figure 2B: ADAS-Cog 13: β = 0.16, p < 0.001), 
memory (Figure 2C: ADNI-MEM: β = −0.16, p < 0.001), executive 
function (Figure  2D: ADNI-EF: β = −0.19, p  < 0.001), language 
abilities (Figure 2G: ADNI-LAN: β = −0.18, p < 0.001), as well as 
processing speed and attention (Figure  2E: TMT-A: β = 0.11, 
p = 0.003; Figure 2F: TMT-B: β = 0.14, p < 0.001). All models were 
adjusted for age, gender, education, diagnostic status, baseline MMSE, 
and APOE ε4 status.

3.5 Mediation effect of the rate of change 
in plasma NfL levels in the association 
between SSD and cognitive decline

As shown in Figure 3, mediation analyses revealed that the 2-year 
rate of change in plasma NfL significantly mediated the association 
between SSD and cognitive decline across several cognitive domains. 
Specifically, plasma NfL partially mediated the relationship between 
SSD and global cognition, as assessed by ADAS-Cog 11 (Figure 3A: 
ab = 0.042, p  = 0.010; mediation proportion = 23.08%) and 
ADAS-Cog 13 (Figure 3B: ab = 0.053, p = 0.010; 20.46%). Similar 
effects were observed for memory (Figure  3C: ADNI-MEM: 
ab = −0.006, p = 0.011; 17.65%), language (Figure 3G: ADNI-LAN: 
ab = −0.006, p = 0.013; 22.22%), and processing speed (Figure 3E: 
TMT-A: ab = 0.060, p = 0.039; 16.13%). In contrast, no mediation 
effect was found for executive function (Figure 3D: ADNI-EF), as 
neither the total nor direct effects reached statistical significance. All 
models were adjusted for age, sex, years of education, diagnostic status 
(CN vs. MCI), APOE ε4 status, and baseline MMSE score.

4 Discussion

Our study demonstrates that SSD in non-demented older adults 
is significantly associated with a greater increase in plasma NfL levels 
and more pronounced declines in both global and domain-specific 
cognitive performance over the 2-year follow-up period. Furthermore, 
the relationship between SSD and cognitive decline was partially 
mediated by the change rate in plasma NfL, with significant mediation 
effects observed in global cognition, memory, language, and 
processing speed. These findings offer important insights into 
mechanisms linking SSD, neuroaxonal damage, and cognitive 
deterioration. Our results suggest that SSD may accelerate neuroaxonal 

TABLE 1  The demographic characteristics of participants.

Non-SSD (N = 240) SSD (N = 467) P

CN/MCI 143/97 (60%/40%) 134/333 (29%/71%) <0.001

Age, years 72.98 (6.48) 71.17 (6.98) <0.001

Female, n (%) 114 (48%) 229 (49%) 0.76

Year of education 16.41 (2.64) 16.36 (2.60) 0.9

APOE ε4 carrier, n (%) 96 (40%) 197 (42%) 0.63

Plasma NfL, pg./mL 34.52 (14.43) 34.45 (14.85) 0.87

Data are presented as mean (SD). SSD, subsyndromal symptomatic depression; CN, cognitively normal; MCI, mild cognitive impairment; APOE, apolipoprotein E; NfL, neurofilament light. 
Statistical significance was defined as P < 0.05.
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damage, as reflected by elevated plasma NfL levels, contributing to 
faster cognitive deterioration.

The elevated NfL levels observed in the SSD group align with 
previous neuroimaging studies that have shown reduced gray matter 
volume in the hippocampus and decreased white matter integrity in 
the fornix, posterior cingulum, and corpus callosum (Zhang et al., 
2020; Touron et al., 2022). These neuroanatomical changes may help 
explain the association between SSD and cognitive function. However, 
the mediating role of NfL in this association remains underexplored, 
with only one cross-sectional study having examined the mediation 
of the association between depressive symptoms and cognitive 
function by NfL levels (Xu et al., 2024). Our study addresses this gap 
by demonstrating that plasma NfL levels mediate the relationship 
between SSD and cognitive decline over time, with significant effects 
observed across multiple cognitive domains, including global 
cognition, memory, language and processing speed.

The precise biological mechanisms linking SSD to cognitive 
decline through NfL remain not fully understood, though several 
plausible pathways have been suggested. Depression is known to 
induce neurobiological changes, such as neuroinflammation, oxidative 
stress, and dysregulation of the hypothalamic–pituitary–adrenal axis, 
all of which have been associated with neuroaxonal damage (Kita 
et  al., 2000; Maes et  al., 2009; Kaster et  al., 2012; Howes and 

McCutcheon, 2017; Rodrigues-Amorim et  al., 2020). These 
pathological processes may accelerate cognitive decline by impairing 
key brain regions involved in memory, executive function, and other 
cognitive functions. While most prior research has primarily focused 
on these mechanisms in MDD, our study expands this understanding 
by demonstrating that elevated plasma NfL levels, which have been 
linked to cognitive decline in neurodegenerative and psychiatric 
populations (Bavato et al., 2024), are also observed in individuals with 
SSD. We propose that neuroaxonal injury, as indicated by increased 
plasma NfL levels, begins early in SSD and contributes to cognitive 
decline. This perspective expands the current understanding, which 
has focused largely on MDD, and highlights neuroaxonal damage as 
a potential early biomarker for cognitive impairment in SSD.

Our findings suggest that elevated plasma NfL levels in individuals 
with SSD may reflect underlying neuroaxonal injury that contributes 
to cognitive decline. Given the established association between NfL 
and neuroaxonal damage, this pattern may represent one possible 
biological pathway linking subthreshold depressive symptoms and 
early neurodegenerative processes. Our findings highlight the 
relevance of plasma NfL dynamics in characterizing early 
neurobiological alterations in non-demented older adults with SSD.

To our knowledge, this is the first study to demonstrate that 
plasma NfL levels mediate the association between SSD and cognitive 

FIGURE 1

Associations between SSD and plasma NfL. p-values were adjusted for age, gender, years of education, diagnostic status (CN vs. MCI), and APOE ε4 
status. Δ represents the rate of change in measurements. Statistical significance was set at p < 0.05. CN, cognitively normal; MCI, mild cognitive 
impairment; SSD, subsyndromal symptomatic depression; APOE, apolipoprotein E; NfL, neurofilament light.
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FIGURE 2

Associations between plasma NfL levels and cognitive performance. Scatterplots show the linear regression line (solid black) and 95% confidence 
interval (shaded area) depicting the associations between the 2-year rate of change in plasma NfL levels (Δ Plasma NfL) and the corresponding rate of 
change in cognitive performance, including: (A) ADAS-Cog 11, (B) ADAS-Cog 13, (C) ADNI-MEM, (D) ADNI-EF, (E) TMT-A, (F) TMT-B, and (G) ADNI-LAN. 
Standardized β-values and p-values are shown in each panel. All models were adjusted for age, gender, years of education, diagnostic status (CN vs. 
MCI), APOE ε4 status, and baseline MMSE scores. Δ represents the rate of change in measurements. Statistical significance was defined as p < 0.05. CN, 
cognitively normal; MCI, mild cognitive impairment; APOE, apolipoprotein E; NfL, neurofilament light; ADAS-Cog 11/13, Alzheimer’s Disease 
Assessment Scale 11−/13-item version; ADNI-MEM, ADNI memory composite; ADNI-EF, ADNI executive function composite; ADNI-LAN, ADNI 
language composite; TMT-A/B, Trail Making Test Part A/B.

decline, building on prior research that has predominantly focused on 
MDD (Chen et al., 2022). Unlike previous studies, which typically 
relied on a single cognitive measure (Chen et al., 2022), our research 
provides a comprehensive evaluation across multiple cognitive 
domains, including attention, processing speed, memory, language, 
and executive function. Moreover, by focusing on participants with 
minimal to mild depressive symptoms, which are common in older 
adults, this study offers valuable insights into the impact of these 
symptoms on cognitive decline, a critical area for early intervention.

Several limitations of this study should be acknowledged. First, the 
data were retrospectively obtained from the ADNI cohort, which may 
have introduced selection bias. The ADNI sample primarily consisted 
of non-Hispanic White participants with relatively high levels of 
education and socioeconomic status. Second, the study focused on 
baseline depressive symptoms and their association with cognitive 
decline over a 2-year period, without accounting for potential 
fluctuations in depressive symptom severity during follow-up. 
Participants whose depressive symptoms may have changed throughout 
the study period were not excluded, as the primary objective was to 
examine the influence of baseline symptoms on cognitive outcomes 
and the mediating role of plasma NfL. Third, critical factors such as 
cardiovascular risk, renal function, and physical activity, which are 
known to influence NfL levels, were not systematically assessed in our 
sample (Barro et al., 2020). Fourth, the inclusion of both CN and MCI 
participants may have introduced residual heterogeneity. To account 
for group differences and baseline cognitive function, diagnostic status 
(CN vs. MCI) and baseline MMSE were included as covariates in all 
statistical models. Moreover, unmeasured AD-related pathologies, such 
as amyloid-β or phosphorylated tau burden, may have influenced 
cognitive trajectories and biomarker dynamics, particularly in the MCI 

TABLE 2  Cognitive function test results at baseline and after follow-up.

Outcome Non-SSD 
(N = 240)

SSD 
(N = 467)

P FDR-
corrected P

Baseline cognitive measures

ADAS-Cog 11 6.90 (3.65) 8.16 (4.32) 0.06 0.08

ADAS-Cog 13 10.92 (5.87) 13.08 (6.65) 0.02 0.05

ADNI-MEM 0.92 (0.83) 0.65 (0.82) 0.03 0.06

ADNI-EF 0.77 (0.91) 0.53 (0.82) 0.00 0.01

TMT-A 35.38 (14.30) 36.83 (14.73) 0.32 0.32

TMT-B 90.50 (51.70) 98.66 (53.10) 0.13 0.15

ADNI-LAN 0.76 (0.77) 0.54 (0.75) 0.01 0.04

Change rate of cognitive measures

Δ ADAS-Cog 11 0.02 (0.92) 0.42 (1.18) 0.02 0.03

Δ ADAS-Cog 13 0.00 (1.16) 0.53 (1.48) 0.01 0.02

Δ ADNI-MEM 0.02 (0.14) −0.03 (0.16) 0.00 0.02

Δ ADNI-EF −0.01 (0.12) −0.03 (0.13) 0.07 0.08

Δ TMT-A 0.35 (1.82) 0.83 (2.43) 0.03 0.05

Δ TMT-B 3.04 (7.04) 4.09 (8.01) 0.49 0.49

Δ ADNI-LAN −0.01 (0.13) −0.05 (0.15) 0.02 0.03

Data are presented as mean (SD). P-values were calculated adjusting for age, gender, years of 
education, diagnostic status (CN vs. MCI), and APOE ε4 status. Baseline MMSE scores were 
included as a covariate in the longitudinal cognitive measures analyses. Region-wise multiple 
comparisons were corrected using the Benjamini-Hochberg false discovery rate (FDR) 
method (FDR-corrected P < 0.05 for 7 cognitive measures). Δ represents the rate of change 
in measurements. SSD, Subsyndromal Symptomatic Depression; ADAS-Cog11/13, 
Alzheimer’s Disease Assessment Scale-11/13 item subscale; ADNI-MEM, ADNI Memory 
Composite; ADNI-EF, ADNI Executive Function Composite; ADNI-LAN, ADNI Language 
Composite; TMT-A/B, Trail Making Test Part A/B.
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subgroup. Future studies incorporating AD biomarkers and more 
diagnostically balanced samples are needed to clarify diagnosis-specific 
associations and underlying pathophysiological mechanisms.

Our findings indicate that the change in plasma NfL may partially 
mediate the relationship between SSD and accelerated decline in 
global cognition, memory, language, and processing speed. These 
results suggest that plasma NfL dynamics may serve as an informative 
biological indicator for identifying non-demented older adults with 
SSD who are at increased risk of cognitive decline over a 2-year period.
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