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Introduction: Frontotemporal dementia (FTD) is a neurodegenerative disorder

characterized by progressive degeneration of the frontal and temporal lobes,

leading to significant changes in personality, behavior, and language abilities.

Early and accurate di�erential diagnosis between FTD, its subtypes, and other

dementias, such as Alzheimer’s disease (AD), is crucial for appropriate treatment

planning and patient care. Machine learning (ML) techniques have shown

promise in enhancing diagnostic accuracy by identifying complex patterns

in clinical and neuroimaging data that are not easily discernible through

conventional analysis.

Methods: This systematic review, following PRISMA guidelines and registered in

PROSPERO, aimed to assess the strengths and limitations of current ML models

used in di�erentiating FTD from other neurological disorders. A comprehensive

literature search from 2013 to 2024 identified 25 eligible studies involving 6,544

patients with dementia, including 2,984 with FTD, 3,437 with AD, 103 mild

cognitive impairment (MCI) and 20 Parkinson’s disease dementia or probable

dementia with Lewy bodies (PDD/DLBPD).

Results: The review found that Support Vector Machines (SVMs) were the

most frequently used ML technique, often applied to neuroimaging and

electrophysiological data. Deep learning methods, particularly convolutional

neural networks (CNNs), have also been increasingly adopted, demonstrating

high accuracy in distinguishing FTD from other dementias. The integration of

multimodal data, including neuroimaging, EEG signals, and neuropsychological

assessments, has been suggested to enhance diagnostic accuracy.

Discussion: ML techniques showed strong potential for improving FTD

diagnosis, but challenges like small sample sizes, class imbalance, and lack

of standardization limit generalizability. Future research should prioritize the

development of standardized protocols, larger datasets, and explainable AI

techniques to facilitate the integration of ML-based tools into real-world clinical

practice.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42024520902.
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1 Introduction

Neurodegenerative dementias are an increasingly common
cause of mortality and disability worldwide, especially among the
elderly. Alzheimer’s disease (AD) is the most common cause of
dementia (Feigin et al., 2019). However, recent epidemiological
studies and the refinement of clinical criteria have revealed
that frontotemporal dementia (FTD) is also a widespread form
(Nuytemans et al., 2024).

While the exact etiopathogenesis of this complex and
multifaceted disorder is unknown, FTD has been linked to various
genetic mutations. Nearly 40% of all FTD cases are familial,
meaning they occur in families with a history of the disorder
(Seelaar et al., 2010). Several genes have been implicated in FTD,
including MAPT, GRN, and C9orf72. Mutations in these genes
can lead to the abnormal accumulation of tau or TDP-43 proteins
in neurons, which is thought to contribute to the disease process
(Giunta et al., 2021; Kertesz and Munoz, 2004).

FTD differs from other types of dementia, such as vascular
dementia and Lewy body dementia (DLB), in its clinical
presentation and underlying pathology. FTD is characterized by the
progressive degeneration of the frontal and temporal lobes, leading
to profound changes in personality, behavior, language abilities,
along with occasional physical symptoms, including tremor,
rigidity, akinesia, etc. (Neary et al., 1998). In contrast, Vascular
dementia arises from cerebrovascular damage, progressing stepwise
with abrupt onset after strokes (Gorelick et al., 2016), while
DLB features visual hallucinations, Parkinsonism (e.g., tremors,
rigidity), and fluctuating cognition (Walker et al., 2015).

FTD also differs from AD, which is commonly mistaken for
it. While AD is typically associated with prominent memory loss,
FTD primarily manifests through significant changes in social and
personal behavior, neglect of personal care, impaired judgment,
and aphasia (Ratnavalli et al., 2002). In addition to these distinct
symptom profiles, FTD and AD present different patterns of brain
atrophy. AD is primarily characterized by medial temporal lobe
atrophy, particularly affecting the hippocampus and entorhinal
cortex, regions critical for memory processing (Gold et al., 2012).
Conversely, FTD predominantly involves the frontal and anterior
temporal lobes, with a more pronounced atrophy pattern in the
orbitofrontal cortex, anterior cingulate, and insula, depending on
the specific clinical variant (Rohrer, 2012; Yu et al., 2021). These
distinct symptom profiles are crucial for accurate diagnosis and
subject specific management of each dementia type.

Furthermore, FTD is frequently underdiagnosed due to clinical
overlap with various psychiatric disorders. The early symptoms
of FTD, such as personality changes, impulsivity, and apathy,
often mimic conditions like bipolar disorder, schizophrenia, or
major depressive disorder, leading to misdiagnosis and delays in
appropriate treatment (Antonioni et al., 2023; Chaudhary and
Duggal, 2014).

FTD encompasses several subtypes, each affecting different
aspects of behavior or language abilities. These include behavioral
variant FTD (bvFTD), semantic variant primary progressive
aphasia (svPPA), and nonfluent/agrammatic variant PPA (nfvPPA)
(Gorno-Tempini et al., 2011). The updated clinical diagnostic
criteria for the bvFTD by Rascovsky and colleagues (Rascovsky

et al., 2011) highlight behavioral and cognitive symptoms
to better distinguish bvFTD from AD and other dementias.
bvFTD is characterized by prominent changes in behavior,
personality, and social conduct. Individuals with bvFTD may
exhibit disinhibition, impulsivity, apathy, and loss of empathy
(Williams et al., 2005). These changes can have a profound impact
on personal and social relationships, often leading to challenges
in maintaining employment and engaging in daily activities.
Behavioral disturbances can be distressing for both the affected
individuals and their caregivers, necessitating a multidisciplinary
approach to care. svPPA, on the other hand, primarily affects
language skills. Individuals with svPPA experience difficulties in
understanding and using words, as well as a decline in semantic
memory, which is the ability to recognize and understand the
meaning of words and objects. This subtype often leads to profound
communication challenges, affecting not only verbal expression
but also written language and comprehension (Josephy-Hernandez
et al., 2023). As a result, individuals with svPPA may struggle
to convey their thoughts and feelings, impacting their ability
to maintain social connections and participate in activities that
require effective communication (Hodges and Patterson, 2007).
In nfvPPA, patients have difficulty producing speech but can still
understand language. NfvPPA can lead to frustration and social
withdrawal as communication becomes increasingly challenging.
The impact of nfvPPA extends beyond verbal communication,
affecting daily activities that require coordination and motor skills
(Gorno-Tempini et al., 2004).

Currently, there is no cure for FTD. In terms of treatment,
pharmacological interventions for FTD remain limited, with
symptomatic management focusing on the alleviation of
behavioral and cognitive symptoms. For example, selective
serotonin reuptake inhibitors (SSRIs) can help manage behavioral
symptoms, while speech and language therapy can support those
with language difficulties (Gorno-Tempini et al., 2011). Non-
pharmacological approaches, including behavioral interventions,
cognitive rehabilitation, and caregiver support, play a crucial
role in enhancing quality of life for patients with FTD and their
families. Advances in diagnostic criteria, genetic discoveries, and
neuroimaging modalities have enhanced our understanding of
FTD heterogeneity and facilitated early diagnosis and disease
monitoring. Despite therapeutic challenges, ongoing research
efforts hold promise for the development of targeted treatments
to mitigate the impact of FTD on affected individuals and their
families, and, ultimately, a cure for this disease.

Machine learning, a subset of Artificial Intelligence (AI),
has made notable progress in recent years, enhancing clinical
applications in the diagnosis, prognosis, and treatment of
neurodegenerative disorders, including AD and behavioral variant
such as bvFTD. Through the application of advanced mathematical
models, ML enables algorithms to learn from training data
and identify patterns in new datasets. In the investigation of
AD and bvFTD, ML has been used extensively to extract
relevant information from complex neuroimaging data, resulting in
accurate and reliable diagnostic models. This progress has led to the
development of robust diagnostic tools for these conditions (Habes
et al., 2020). As a consequence, ML has gained significant attention
in the medical field as a tool for improving diagnostic accuracy,
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personalizing treatment plans, and optimizing patient outcomes.
Moreover, ML’s ability to iteratively refine its performance and
uncover hidden patterns within data highlights its potential to
transform healthcare and advance precision medicine (Rajkomar
et al., 2019).

Various neuroimaging techniques, when combined with
ML approaches, have proven effective in the diagnosis of
neurodegenerative diseases. Structural magnetic resonance
imaging (MRI), which is able to capture morphometric brain
features, combined with traditional ML algorithms such as
logistic regression classifier, has demonstrated high accuracy
in distinguishing bvFTD and AD, from healthy controls (HCs)
(Bachli et al., 2020). In addition to MRI, electroencephalography
(EEG) has shown promise as a complementary tool for differential
diagnosis, particularly in revealing unique patterns of neural
activity (Miltiadous et al., 2021). Researchers are also leveraging
ML methods for pattern analysis to enhance the classification and
diagnosis of FTD from multimodal data and feature extraction
techniques (Ducharme, 2023). Although ML-based approaches
using MRI have achieved high accuracy in distinguishing dementia
patients from controls, a key limitation is the generalizability
of these models across diverse populations and clinical settings
(Rathore et al., 2017). Moreover, the complexity of image-derived
features often impedes the seamless translation of these findings
into routine clinical practice, highlighting the need for streamlined,
interpretable solutions that bridge research advancements with
real-world diagnostic workflows.

In particular, deep learning (DL), a subset of ML, offers
solutions to some of the limitations associated with preprocessing
raw data, allowing for the exploration of sample complexity to
a greater extent. Recent research indicates that deep network
architectures, comparable to traditional ML models, can effectively
address the differential diagnosis of neurodegenerative diseases
(Spasov et al., 2019; Basaia et al., 2019; Hu et al., 2021). DL
models have shown good performance at mining MRI features by
utilizing the extensive depth, width, and inter-layer connections of
neural networks. This capability allows them to extract hierarchical
features that represent different levels of abstraction in a data-
driven manner. As a result, these models significantly improve
the accuracy and robustness of diagnostic applications. However,
one of the major concerns with AI tools used to assist clinicians
in diagnosis, evaluation, and treatment planning is the lack of
interpretability of current models. DL neural networks are often
perceived as opaque, with their intricate data processing making
it nearly impossible to figure out how they arrive at predictions,
such as class probabilities. In response, the field of explainable
AI (XAI) (Gunning et al., 2019; Guidotti et al., 2018) has
introduced pioneering methods like Local Interpretable Model-
agnostic Explanations (LIME) (Ribeiro et al., 2016) and SHapley
Additive exPlanations (SHAP) (Lundberg and Lee, 2017), which
offer clear, localized insights into the decision-making process of
black-box models by attributing specific contributions of features
to individual predictions, thereby enhancing transparency and
enabling a deeper understanding of AI behavior.

The objective of this study is to systematically assess the
strengths and limitations of current AI models used in the
differential diagnosis of FTD. Notably, while AD has been

extensively studied in the context of ML applications (Kishore and
Goel, 2024; Shukla et al., 2023; Moorthy et al., 2023), FTD remains
underexplored. Specifically, FTD presents unique diagnostic
challenges due to its overlap with other neurological disorders
and its variable clinical manifestations across subtypes. Through
a comprehensive analysis, we sought to assess their performance
relative to existing literature and identify opportunities for further
refinement. By providing an overview of the current state of AI
applications in this field, this work seeks to inform both the clinical
and research communities, while highlighting research gaps and
potential directions for future advancements.

2 Materials and methods

The literature search followed the Preferred Reporting Items for
Systematic Reviews andMeta-Analyses (PRISMA) guidelines (Page
et al., 2021). The systematic review is registered in the PROSPERO
database with the identifier CRD42024520902.

2.1 Eligibility criteria

To ensure the selection of relevant and high-quality studies
for this systematic review, both inclusion and exclusion criteria
were established. Studies were eligible for inclusion if they
met the following criteria: (1) studies applying ML techniques
specifically for the differential diagnosis between FTD and other
neurological disorders, without predefining which disorders were
considered; (2) studies employing supervised, unsupervised, or
semi-supervised learning methods; (3) studies using clinical data
(e.g., neuroimaging, neuropsychological, or biomarker data) for
differential diagnosis; (4) studies involving human participants; (5)
original research articles published in peer-reviewed journals; (6)
papers written in English; (7) studies published from 2013 to 2024.
Review articles, meta-analyses, systematic reviews, conference
abstracts, editorials, and case reports were excluded.

2.2 Sources of information and search
methodology

The literature search was conducted across the PubMed, Web
of Science, and Embase databases, covering studies from 2013
to 2024. The selected range was chosen to capture the most
recent advancements in the field while ensuring the inclusion
of studies that reflect contemporary methodologies, technologies,
and evolving theoretical frameworks. Studies published prior
to 2013 may not fully represent the current state of research
or the significant developments in the area under review. By
focusing on the past decade, we aim to incorporate the latest
findings that are most relevant to current practices and emerging
trends. Given the highly specialized nature of the topic and the
inclusion of databases that do not use MeSH indexing, MeSH
terms were not utilized. Instead, a keyword-based search approach
was adopted, targeting the title, abstract, and, where available,
keyword fields. The search terms used were: (“frontotemporal
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FIGURE 1

PRISMA flow diagram.

dementia” OR “frontotemporal degeneration” OR “frontotemporal
neurodegeneration” in Title) AND (“machine learning” OR
“deep learning” OR “neural networks” OR “classifier” in Title,
Abstract, Keywords) OR (“differential diagnosis” in Title) AND
(“frontotemporal dementia” OR “frontotemporal degeneration”
OR “frontotemporal neurodegeneration” in Title) AND (“machine
learning” OR “deep learning” OR “neural networks” OR “classifier”
in Title, Abstract, Keywords).

2.3 Process of selection and data
collection

The study selection process was carried out in two phases.
First, two independent reviewers screened the titles and abstracts
of the records obtained from the search, applying the predefined
inclusion and exclusion criteria, as reported in the previous section.
In the second phase, the full texts of potentially eligible studies
were independently reviewed by the same two reviewers for

final inclusion. Figure 1 provides a PRISMA flow diagram that
outlines the entire study selection process, including the number
of studies screened, assessed for eligibility, and included, as well
as reasons for exclusions at each stage. Data extraction from the
included studies was performed using a customized spreadsheet
that captured various study characteristics. Additionally, the
two reviewers independently extracted information relevant to
assessing the risk of bias in each study. Any differences that
arose during the screening phase and data extraction between the
two reviewers were resolved through discussion until a consensus
was reached.

2.4 Data items

The following data were extracted from each study: 1) study
details, including the first author and year of publication; 2)
population characteristics, such as sample size, sub-groups, and
age; 3) machine learning methods used; 4) key results and findings
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relevant to the review’s focus; and 5) the outcomes of the risk of
bias assessment.

2.5 Risk of bias assessment

The risk of bias for each study included in this systematic
review was assessed using the National Institutes of Health
(NIH) quality assessment tool for observational cohort and cross-
sectional studies. Studies were rated as “Good,” “Fair,” or “Poor”
based on their compliance with various criteria, such as study
selection, comparability, exposure, and outcomes. These criteria
included the clarity of the research question, the definition of
the study population, the selection and measurement of exposure
and outcomes, the consideration of potential confounders, the
statistical analysis methods, and the reporting of participant
recruitment and retention rates. Any differences in scoring between
the reviewers were resolved through discussion until agreement
was reached.

2.6 Outcome measures and data synthesis
approaches

In this review, the performance of ML models for the
differential diagnosis of FTD is mainly assessed using accuracy,
which was the common evaluation measure among all the
included studies. Additionally, the area under the receiver
operating characteristic curve (AUC-ROC) is employed as a general
measure of a model’s ability to discriminate between FTD and
non-FTD cases.

3 Results

The implemented search strategy identified 68 articles
excluding duplicates, non-articles and non-English records. After
reviewing the titles and abstracts, 25 studies met the eligibility
criteria and were selected for full-text screening (Figure 1). All 25
studies were subsequently included in the review. Table 1 provides
detailed information on the articles, including demographic data
of participants, the aim of the study, information on the MLmodel,
and findings.

3.1 Risk of bias assessment

The included studies were evaluated using the 14-item NIH
quality assessment tool for observational cohort and cross-
sectional studies. The evaluation revealed a strong methodological
framework, with all studies clearly articulating their objectives.
Each study effectively assessed varying levels of exposure in
relation to the outcomes and consistently applied well-defined,
validated, and reliable exposure and outcome measures across
participants. The overall quality of the studies was predominantly
rated as “Good,” indicating that almost all demonstrated good
methodological quality (Table 2). Only one study received a “Fair”

rating due to the lack of demographic data of the participants
involved, which impacts the study’s transparency and limits
its generalizability.

3.2 Samples, demographics and severity
assessment

The review includes a total of 6,544 patients with dementia
(mean age: 67.94 ± 5.24 years), involving 2,984 FTD (mean age:
66.18 ± 4.17 years), 3,437 AD (mean age: 69.5 ± 5.81 years), 103
mild cognitive impairment (MCI; mean age: 71.2 ± 7.4 years),
20 Parkinson’s disease dementia or probable dementia with Lewy
bodies (PDD/DLBPD; mean age: 74.8 ± 8.5 years). Mean age was
calculated from the included studies reporting this information
(24 out of 25). Most of the papers that met our inclusion criteria
primarily focused on bvFTD, likely due to its higher prevalence in
both clinical practice and research. To assess the severity status of
participants with dementia across the reviewed articles, the most
commonly used scales were the Mini-Mental State Examination
(MMSE) and the Clinical Dementia Rating (CDR). These scales
were mainly employed to evaluate the cognitive impairment in
FTD, bvFTD, and AD. In four studies, other scales like theMontreal
Cognitive Assessment (MoCA) and the Addenbrooke’s Cognitive
Examination (ACE) were also used.

3.3 Data types analyzed

To assess the patterns associated with FTD, AD, and other
dementias, various neuroimaging, electrophysiological, cognitive,
and behavioral data were analyzed across the included studies.

3.4 Machine learning techniques and
models performance evaluation

SVMs, a widely used set of supervised ML algorithms, have
emerged as the most frequently employed ML techniques in the
reviewed studies (Miltiadous et al., 2021; Garcia-Gutierrez et al.,
2022; García-Gutierrez et al., 2022; Pérez-Millan et al., 2023, 2024;
Garn et al., 2017; Wang et al., 2024; Birba et al., 2022; Maito et al.,
2023; Möller et al., 2016; Lage et al., 2021; Raamana et al., 2014;
Rostamikia et al., 2024; Ajra et al., 2023; Ma et al., 2020). SVMs
are favored for their robustness in handling high-dimensional data
and their effectiveness in both binary and multi-class classification
tasks. They have been applied to a diverse array of data types,
including neuroimaging data such as structural MRI features
(Pérez-Millan et al., 2023, 2024; Möller et al., 2016) and FDG-PET
imaging (García-Gutierrez et al., 2022). Additionally, SVMs have
been applied to EEG data (Garn et al., 2017; Wang et al., 2024;
Rostamikia et al., 2024) and to cognitive and behavioral assessments
(Garcia-Gutierrez et al., 2022; Maito et al., 2023).

In two studies, SVMs were combined with feature selection
or dimensionality reduction techniques to enhance performance.
Particularly, Principal Component Analysis (PCA) was employed
to reduce feature dimensionality before classification (Pérez-Millan
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TABLE 1 Summary table of the included studies.

Study Population (n) Age (mean ± std) Study aim ML technique Features Findings

Garcia-Gutierrez
et al. (2022)

AD: n = 170;
bvFTD: n = 72; HCs: n
= 87

AD: 73.39± 8.13;
bvFTD: 71.33± 7.75;
HCs: 70.69± 8.59

To develop machine learning
models for the diagnosis of AD and
bvFTD using cognitive tests, and to
differentiate between AD and
bvFTD.

Evolutionary algorithms for
feature selection and
optimization; Classical
machine learning algorithms
(Naive Bayes, SVM, Decision
Trees, RF, AdaBoost, and
Gradient Boosting);
Meta-model strategy for
enhancing diagnosis accuracy.

Features were derived from cognitive
scores adjusted by demographic factors.
Evolutionary algorithms were applied to
select significant features, reducing
dimensionality while preserving
diagnostic accuracy.

The study achieved high diagnostic
accuracy levels (>84%) for AD, bvFTD,
and differentiating between them.

Pérez-Millan et al.
(2023)

AD: n = 153; FTD: n =
87; HCs: n = 99; 2-year
follow-up data from
114 participants

Age at first MRI:
AD: 64.3± 9.7;
FTD: 63.6± 8.3;
HCs: 60.2± 10.5;
Age at second MRI:
AD: 62.1± 4.5;
FTD: 63.8± 5.9;
HCs: 65.0± 7.2

To discriminate between AD and
FTD using machine learning
techniques applied to MRI data,
both cross-sectionally and
longitudinally.

PCA for feature reduction
followed by SVM for
classification.

Subcortical volumes and cortical
thickness measures, transformed to
z-scores after MRI processing.

SVM classifiers were applied to both
cross-sectional and longitudinal MRI
data, obtaining improved classification
accuracy for FTD vs. HC in longitudinal
analyses (87.8%), whereas distinguishing
between AD and FTD in both analyses
reached accuracies around 60%.

Garn et al. (2017) Probable AD: n = 20;
PDD or probable
DLBPD: n = 20;
bvFTD: n = 21

AD: 76.9± 6.7;
PDD/DLBPD: 74.8±
8.5; bvFTD: 75.8± 5.7

To develop and evaluate a classifier
for differentiating probable AD
from PDD or DLB and from
bvFTD based on QEEG.

SVM classifier, using feature
reduction by Mann-Whitney
U test and PCA.

25 QEEG features including relative
band powers, spectral ratios, center
frequency, auto-mutual information,
cross-mutual information, coherences,
phase coherences, partial coherences,
Granger causality (GC), and conditional
GC.

SVM classifiers achieved 100% accuracy
in pairwise comparisons among AD,
PDD or DLB, and FTD.

Wang et al. (2024) AD: n = 36; FTD: n =
23; HCs: n = 29

AD: 66.4± 7.9;
FTD: 63.7± 8.2;
HCs: 67.9± 5.4

To investigate the potential of
aperiodic components of EEG
activity in distinguishing between
AD and FTD.

SVM classifier, with
oversampling using the
SMOTE algorithm for sample
imbalance and
hyperparameters optimized
with inner fivefold
cross-validation.

Aperiodic parameters (offsets and
exponents) and band-limited power of
raw spectra (theta, alpha, and beta
bands).

The combination of offsets, exponents,
and the theta periodic power as features
resulted in the best classification
performance, with mean AUC = 0.73±
0.12.

García-Gutierrez
et al. (2022)

AD: n = 171;
bvFTD: n = 72; HCs: n
= 87

NA Development of a Python-based
computational framework for early
and automated diagnosis of AD
and FTD using neuroimages and
neurocognitive assessments.

Genetic Algorithms,
specifically Mono-objective
and Multi-objective Genetic
Algorithms (NSGAII) for
feature engineering, and a
range of machine learning
algorithms for predictive
modeling (Bernoulli naive
Bayes, SVM, KNN, Decision
Trees, RF, AdaBoost, Gradient
Boosting).

Features related to cognitive functions
(memory, visuospatial, executive,
attention, and language abilities) and
brain metabolism data from FDG-PET
analysis.

SVM binary classifiers obtained an
accuracy of 92.6% in distinguishing
between FTD, AD, and HC, combining
PET imaging and cognitive data.

Nguyen et al. (2023) Dataset ADNI2:
AD: n = 149; HCs: n =
180; Dataset NIFD:
FTD: n = 150; HCs: n =
136

ADNI2:
AD: 74.7± 8.1;
HCs: 73.4± 6.3;
NIFD:
FTD: 63.9± 7.1;
HCs: 63.5± 7.4

To develop a deep learning-based
framework for the differential
diagnosis of AD and FTD using
structural MRI data.

Deep Grading method
incorporating U-Nets and an
MLP.

Structure grading features and structure
volume features.

The framework achieved an overall
accuracy of 86.0% (87.9% on an external
dataset) when distinguishing FTD, AD,
and HCs. The accuracy for binary
classification between FTD and AD was
94.6% (86.1% for the external dataset).

(Continued)
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TABLE 1 (Continued)

Study Population (n) Age (mean ± std) Study aim ML technique Features Findings

Birba et al. (2022) AD: n = 33; bvFTD: n
= 19; HCs: n = 42

AD: 74.65± 1.55;
bvFTD: 68.57± 1.92;
HCs: 69.87± 1.50

To assess whether bvFTD is
characterized by an
allostatic-interoceptive overload,
evidenced by changes in rsHEP
modulations, and its association
with cognitive deficits and
neuroimaging correlates.

Multimodal machine learning
approach based on an
XGBoost for classification.

rsHEP sources, functional connectivity
features, and volumetric data fromMRI.

Machine learning confirmed AIN
specificity in predicting bvFTD. The
classifier achieved an accuracy of 82%
and an AUC of 0.81 in distinguishing
bvFTD from AD.

Maito et al. (2023) AD: n = 904; FTD: n =
282; HCs: n = 606

AD: 81.58 (9.95%);
FTD: 72.33 (9.14%);
HCs: 73.65 (10.9%)

Development of a novel framework
for classification of AD, FTD, and
HCs in multicentric heterogeneous
samples from Latin American
countries using unharmonized
clinical, demographic, and
cognitive assessments.

RF algorithm without
bagging, non-linear SVM.

Measurements from cognitive
screening, social cognition,
neuropsychiatric symptoms,
demographic variables.

The best model for discriminating
between AD and FTD patients was the
RF model (accuracy = 93.2%, AUC =
0.965).

Kim et al. (2019) AD: n = 48; bvFTD: n
= 48; svPPA: n = 50;
nfvPPA: n = 39;
HCs: n = 146

AD: 65.7± 7.6;
FTD: 65.5± 11.8;
HCs: 65.5± 15.0

To discriminate AD from FTD,
and further, to determine the
specific clinical syndrome within
FTD, using MRI data.

Hierarchical classifier, single
multi-label classifier.

Cortical thickness data. The hierarchical classification
framework achieved an accuracy of
90.8% in distinguishing FTD from AD,
86.9% between bvFTD and PPA, and
92.1% for nfvPPA vs svPPA.

Möller et al. (2016) AD: n = 84; bvFTD: n
= 51; HCs: n = 94

AD: 64.9± 7.1;
bvFTD: 62.1± 7.8;
HCs: 61± 7.3

To distinguish between AD and
bvFTD in individual patients using
MRI.

SVM. Gray matter density maps. SVM achieved accuracy of 82% for AD
vs. bvFTD.

Bouts et al. (2018) AD: n = 30; bvFTD: n
= 23; HCs: n = 35

AD: 66.9± 7.8;
bvFTD: 63.5± 7.6;
HCs: 60.8± 6.1

To differentiate between AD and
bvFTD on an individual basis using
MRI, DTI, and rs-fMRI data.

Elastic net regression
classifier.

Structural, DTI, and functional
connectivity measures.

An accuracy of 77.7% (AUC = 0.81) for
FTD vs. AD differentiation was achieved
when combining mean diffusivity, full
correlations between rs-fMRI-derived
independent components, and
fractional anisotropy.

Wang et al. (2016) AD: n = 54; bvFTD: n
= 55; HCs: n = 57

AD: 63.7± 8.1;
bvFTD: 61.2± 9.4;
HCs: 67.3± 6.8

To differentiate AD and bvFTD
using MRI and neuropsychological
data.

Naive Bayes. MRI volumes, neuropsychological and
neuropsychiatric measures.

Classification accuracies were 51.38%
(MRI volumes), 62.39%
(neuropsychological), and 61.47%
(combined features) for distinguishing
AD from bvFTD.

Lage et al. (2021) AD: n = 18; bvFTD: n
= 18; svPPA: n = 7;
HCs: n = 29

AD: 68.17± 6.96;
bvFTD: 68.83± 8.71;
svPPA: 70.86± 8.11;
HCs: 66.21± 5.51

To differentiate AD, bvFTD, and
svPPA using oculomotor
parameters.

SVM, KNN. Eye movement parameters from various
oculomotor tests.

KNN achieved an accuracy of 92.46%
bvFTD vs. AD, outperforming SVM.

Díaz-Álvarez et al.
(2022)

AD: n = 88; bvFTD: n
= 81; PPA: n = 68;
HCs: n = 39

AD: 73.90± 9.51;
bvFTD: 70.68± 8.36;
PPA: 72.62± 8.00;
HCs: 68.06± 5.67

To diagnose AD and FTD using
FDG-PET imaging combined with
genetic algorithms for feature
selection.

BayesNet Naive, KNN. FDG-PET imaging data. BayesNet Naive classifier achieved a
high accuracy of 98.8% for FTD vs. AD,
outperforming KNN.

Raamana et al.
(2014)

Probable AD: n = 34;
bvFTD: n = 30; HCs: n
= 14

AD: 55.45± 3.06;
bvFTD: 57.81± 3.36;
HCs: 55.40± 4.72

To distinguish among AD, FTD,
and HCs using MRI-based
biomarkers.

Linear SVM, Non-linear SVM
with Gaussian kernel,
BayesNet classifier.

Volumes, Laplacian invariants, and
surface displacements.

Using ventricular displacement features,
the non-linear SVMmodel achieved a
weighted AUC of 0.653 for AD vs.
bvFTD.

(Continued)
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Study Population (n) Age (mean ± std) Study aim ML technique Features Findings

Ajra et al. (2023) AD: n = 36; FTD: n =
23; HCs: n = 29

AD: 66.4± 7.9;
FTD: 63.6± 8.2;
HCs: 67.9± 5.4

To improve diagnostic accuracy for
dementia by classifying AD, FTD,
and HCs groups using EEG signals.

Shallow CNNs, SVM, KNN,
LDA.

Spectral-temporal features and
functional connectivity measures.

Shallow CNN-based model achieved the
highest accuracy (94.54%) with the AEC
method in non-thresholded
connectivity matrices.

Ma et al. (2020) AD: n = 459; FTD: n =
434; HCs: n = 1063

AD: 75.91± 7.54;
FTD: 64.69± 8.51;
HCs: 72.19± 8.28

Differential diagnosis among AD,
FTD, and HCs using multi-scale,
multi-type MRI-based features
with ensemble classifier and GAN
strategy.

Multi-Scale Multi-Type
Feature Deep Neural
Network.

Volume size and cortical thickness. MMDNN augmented with GANs
achieved an accuracy of 88.28% in
classifying FTD, AD, and HCs.

Hu et al. (2021) Dataset ADNI:
AD: n = 422; HCs: n =
469;
Dataset NIFD:
FTD: n = 552; HCs: n =
354

ADNI:
AD: 75.5± 7.79;
HCs: 75.3± 6.19;
NIFD:
FTD: 65.1± 7.48;
HCs: 64.9± 7.85

To classify FTD, AD, and HCs
using MRI data.

DL-based network. Raw 3DMRI data. The model achieved classification
accuracies of 93.05% for distinguishing
FTD from HCs, and 93.05% for
differentiating FTD from AD.

Miltiadous et al.
(2021)

AD: n = 10; FTD: n =
10; HCs: n = 8

AD: 70.5± 7.1;
FTD: 67.5± 4.5;
HCs: 68.5± 7.2

To compare six supervised
machine learning techniques for
classifying EEG signals of AD and
FTD patients.

Decision Trees, RF, ANN,
SVM, Naive Bayes, KNN.

Statistical and spectral features extracted
from EEG signals.

Random Forests and Decision Trees
showed the best performance for
classifying FTD from AD (accuracy of
97.7% and 93.8%, respectively). SVM
and KNNmodels also showed high
performances (accuracies > 90%).

Rogeau et al. (2024) AD: n = 199; FTD: n =
192; HCs: n = 200

AD: 68.4± 10.4;
FTD: 68.4± 8.5;
HCs: 71.6± 7.8

To introduce a 3D convolutional
neural network for classifying
participants as AD, FTD, or CN
based on brain glucose metabolism
using [18F]-FDG-PET scans.

3D CNN with VGG16-like
architecture.

Brain FDG-PET volumes. The model achieved an overall accuracy
of 89.8% in distinguishing between FTD,
AD, and HCs. In a complementary
analysis with FTD and AD data only,
model accuracy was 87.2%.

Lal et al. (2024) AD: n = 36; FTD: n =
23; HCs: n = 29

AD: 66.4± 7.9;
FTD: 63.7± 8.2;
HCs: 67.9± 5.4

To evaluate and compare multiple
feature extraction techniques and
machine learning methods for
discriminating between FTD, AD,
and HCs using EEG data.

KNN, RF, XGBoost, and Extra
Trees (ET).

Various feature extraction techniques
from EEG signals, including SVD
Entropy, HFD, ZCR, DFA, Hjorth
Parameters.

The KNN classifier achieved an
accuracy of 91% for FTD vs. AD using
SVD entropy for EEG feature extraction
and 90% overlap for sliding windowing.

Pérez-Millan et al.
(2024)

AD: n = 215; FTD: n =
103; HCs: n = 173

AD: 65.0± 9.9;
FTD: 63.7± 8.3;
HCs: 59.4± 15.0

To develop a probabilistic
computer-aided classification
method for FTD and AD using
MRI and CSF data, and to evaluate
the improvement in diagnosis
confidence by combining these
modalities.

SVM classifier. Cortical thickness (CTh) and gray
matter volumes of different brain
regions, CSF biomarkers.

Combining MRI-derived structural data
with CSF biomarkers and age, SVM
provided a classification accuracy
between AD and FTD of 88.5%.

Sadeghi et al. (2024) AD: n = 32; MCI: n =
103; FTD: n = 151;
HCs: n = 147

AD: 73.4± 7.1;
MCI: 71.2± 7.4;
FTD: 64.5± 2.5;
HCs: 67.6± 8.9

To develop a multimodal machine
learning model that classifies AD,
MCI, FTD, and HCs using features
extracted from rs-fMRI and clinical
data.

XGBoost. Features extracted included temporal
and spatial features from fMRI signals,
such as absolute sum of changes,
approximate entropy, Lempel-Ziv
complexity, and Fourier coefficients.

The model using combined fMRI and
clinical data achieved a balanced
accuracy of 91.1% and a macro-averaged
AUC of 0.99, significantly improving the
classification of AD, FTD, mild MCI,
and HCs compared to imaging data
alone.
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et al., 2023; Garn et al., 2017). These combinations aimed to
improve the classifier’s efficiency and accuracy by focusing on the
most informative features.

Other ML algorithms were used across the reviewed literature.
k-Nearest Neighbors (KNN), a straightforward non-parametricML
technique, was employed in seven studies (Miltiadous et al., 2021;
García-Gutierrez et al., 2022; Lage et al., 2021; Rostamikia et al.,
2024; Ajra et al., 2023; Lal et al., 2024; Díaz-Álvarez et al., 2022),
often applied to cognitive, behavioral, and EEG data, sometimes
in combination with feature selection methods. Several studies
(Miltiadous et al., 2021; Garcia-Gutierrez et al., 2022; García-
Gutierrez et al., 2022; Maito et al., 2023; Rostamikia et al., 2024; Lal
et al., 2024) utilized Random Forests, employing ensemble learning
to improve classification performance and robustness to overfitting.
Other ensemble methods were used across studies: XGBoost (Birba
et al., 2022; Lal et al., 2024; Sadeghi et al., 2024), AdaBoost (Garcia-
Gutierrez et al., 2022; García-Gutierrez et al., 2022), Gradient
Boosting (Garcia-Gutierrez et al., 2022; García-Gutierrez et al.,
2022) and Extra Trees (Lal et al., 2024). Naive Bayes classifiers, a
family of probabilistic algorithms, were applied in various studies
(Miltiadous et al., 2021; Garcia-Gutierrez et al., 2022; García-
Gutierrez et al., 2022; Rostamikia et al., 2024; Díaz-Álvarez et al.,
2022; Wang et al., 2016). They proved effective in modeling
of feature distributions, particularly with neuropsychological and
imaging data. Elastic net regression was employed in one study
(Bouts et al., 2018), offering a balance between feature selection
andmodel complexity control. Linear discriminant analysis (LDA),
a classification technique that maximizes class separability, was
used in Kim et al. (2019) after applying a Laplace Beltrami
operator and PCA, for noise removal and feature dimension
reduction, respectively.

Deep learning models, including Convolutional Neural
Networks (CNNs), were employed in six studies Hu et al.
(2021); Ajra et al. (2023); Ma et al. (2020, 2024); Nguyen et al.
(2023); Rogeau et al. (2024). These approaches use deep neural
architectures to automatically identify patterns in raw data without
requiring manual feature selection. For example, DL-based
methods were applied to volumetric data derived from structural
MRI (Hu et al., 2021; Ma et al., 2020, 2024; Nguyen et al., 2023).
In Ma et al. (2020), the authors implemented a framework
using Generative Adversarial Networks (GANs), a DL model
designed to generate new data from an existing dataset, for data
augmentation, combined with deep neural networks (DNNs)
for classification. A 3D CNN was applied to FDG-PET scans
(Rogeau et al., 2024) and shallow CNNs classified EEG-based
spectral-temporal features and functional connectivity patterns,
demonstrating versatility across data modalities (Ajra et al.,
2023).

The performance of the ML models was primarily evaluated
using metrics such as accuracy, sensitivity, specificity, and AUC-
ROC. Accuracy measures the overall correctness of the model’s
predictions by calculating the proportion of correctly classified
cases out of the total cases, and was reported in most studies.
Sensitivity and specificity assess the model’s ability to correctly
identify true positives and true negatives, respectively. The AUC
is a widely used metric for evaluating the discriminative ability of
classifiers, with values closer to one indicating better performance.
Some studies (Garcia-Gutierrez et al., 2022; García-Gutierrez et al.,
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TABLE 2 Risk of bias assessment.

Study Item number Quality rating

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Garcia-Gutierrez et al. (2022) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Pérez-Millan et al. (2023) Yes Yes NA Yes No NA NA NA Yes Yes Yes NR No Yes Good

Garn et al. (2017) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Wang et al. (2024) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

García-Gutierrez et al. (2022) Yes No NA Yes No NA NA NA Yes NA Yes NR NA Yes Fair

Nguyen et al. (2023) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Birba et al. (2022) Yes Yes NR Yes Yes NA NA NA Yes NA Yes NR NA Yes Good

Maito et al. (2023) Yes Yes NR Yes No NA NA NA Yes NA Yes NR NA Yes Good

Kim et al. (2019) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Möller et al. (2016) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Bouts et al. (2018) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Wang et al. (2016) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Lage et al. (2021) Yes Yes NA Yes No NA NA Yes Yes NA Yes NR NA Yes Good

Díaz-Álvarez et al. (2022) Yes Yes NR Yes Yes NA NA NA Yes NA Yes NR NA Yes Good

Raamana et al. (2014) Yes Yes NR Yes No NA NA NA Yes NA Yes NR NA Yes Good

Ajra et al. (2023) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Ma et al. (2020) Yes Yes NA Yes Yes NA NA NA Yes NA Yes NR NA Yes Good

Hu et al. (2021) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Miltiadous et al. (2021) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Rogeau et al. (2024) Yes Yes NA Yes No NA NA NA Yes NA Yes NR NA Yes Good

Lal et al. (2024) Yes Yes NA Yes No NA NA NA Yes No Yes NR NA Yes Good

Pérez-Millan et al. (2024) Yes Yes NR Yes No Yes Yes Yes Yes No Yes NR NA Yes Good

Sadeghi et al. (2024) Yes Yes NA Yes No NA NA NA Yes Yes Yes NR NA Yes Good

Ma et al. (2024) Yes Yes NA Yes No Yes NA NA Yes No Yes NR NA Yes Good

Rostamikia et al. (2024) Yes Yes NA Yes No NA NA NA Yes No Yes NR NA Yes Good

NR, Not Reported; NA, Not Applicable. Items: 1 = Was the research question or objective in this paper clearly stated? 2 = Was the study population clearly specified and defined? 3 = Was the

participation rate of eligible persons at least 50%? 4 = Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and

exclusion criteria for being in the study prespecified and applied uniformly to all participants? 5 = Was a sample size justification, power description, or variance and effect estimates provided?

6 = For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? 7 = Was the timeframe sufficient so that one could reasonably expect

to see an association between exposure and outcome if it existed? 8 = For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the

outcome (e.g., categories of exposure, or exposure measured as continuous variable)? 9 = Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented

consistently across all study participants? 10 = Was the exposure(s) assessed more than once over time? 11 = Were the outcome measures (dependent variables) clearly defined, valid, reliable,

and implemented consistently across all study participants? 12 = Were the outcome assessors blinded to the exposure status of participants? 13 = Was loss to follow-up after baseline 20% or

less? 14 = Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?

2022; Maito et al., 2023; Díaz-Álvarez et al., 2022; Ajra et al., 2023;
Lal et al., 2024; Pérez-Millan et al., 2024; Sadeghi et al., 2024)
also employed metrics like F1-score, which balances sensitivity
and precision by computing the harmonic mean of the two. The
F1-score is especially valuable in datasets with class imbalance,
ensuring that both false positives and false negatives are taken into
account when evaluating model performance. K-fold, leave-one-
out and nested cross-validation techniques were commonly used
to assess model robustness and generalizability. These methods
helped prevent overfitting and provided a more reliable estimate
of model performance.

Table 3, Figure 2 show the frequency of theML approaches used
across the included studies.

3.5 Models performances and findings

Many reviewed papers employed multiple ML methods
simultaneously within their analyses, allowing for direct
comparisons. In this section, we summarized the best-performing
ML models for each included study, highlighting the most
effective techniques contributing to improved diagnostic accuracy.
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TABLE 3 Frequency of ML approaches used across the included studies.

Machine learning
approach

Frequency Studies

Support Vector Machines
(SVM)

15 (Miltiadous et al., 2021;
Garcia-Gutierrez et al., 2022;
García-Gutierrez et al., 2022;
Pérez-Millan et al., 2023,
2024; Garn et al., 2017; Wang
et al., 2024; Birba et al., 2022;
Maito et al., 2023; Möller
et al., 2016; Lage et al., 2021;
Raamana et al., 2014;
Rostamikia et al., 2024; Ajra
et al., 2023; Ma et al., 2020)

k-Nearest Neighbors
(KNN)

7 (Miltiadous et al., 2021;
García-Gutierrez et al., 2022;
Lage et al., 2021; Rostamikia
et al., 2024; Ajra et al., 2023;
Lal et al., 2024; Díaz-Álvarez
et al., 2022)

Naive Bayes 6 (Miltiadous et al., 2021;
Garcia-Gutierrez et al., 2022;
García-Gutierrez et al., 2022;
Rostamikia et al., 2024;
Díaz-Álvarez et al., 2022;
Wang et al., 2016)

Random Forests 6 (Miltiadous et al., 2021;
Garcia-Gutierrez et al., 2022;
García-Gutierrez et al., 2022;
Maito et al., 2023; Rostamikia
et al., 2024; Lal et al., 2024)

Deep neural networks
(DNNs)

4 (Hu et al., 2021; Ma et al.,
2020, 2024; Nguyen et al.,
2023)

Decision Trees 3 (Miltiadous et al., 2021;
Garcia-Gutierrez et al., 2022;
García-Gutierrez et al., 2022)

XGBoost 3 (Birba et al., 2022; Lal et al.,
2024; Sadeghi et al., 2024)

Convolutional neural
networks (CNNs)

2 (Ajra et al., 2023; Rogeau
et al., 2024)

AdaBoost 2 (Garcia-Gutierrez et al., 2022;
García-Gutierrez et al., 2022)

Gradient Boosting 2 (Garcia-Gutierrez et al., 2022;
García-Gutierrez et al., 2022)

Linear discriminant
analysis (LDA)

2 (Ajra et al., 2023; Kim et al.,
2019)

Bayesian Networks 2 (Garcia-Gutierrez et al., 2022;
Raamana et al., 2014)

Artificial Neural
Networks (ANN)

1 (Miltiadous et al., 2021)

Elastic net regression 1 (Bouts et al., 2018)

Extra Trees (ET) 1 (Lal et al., 2024)

The reviewed studies are grouped into sections based on the
best-performing ML method employed.

3.5.1 SVM
SVM classifiers have been extensively employed to enhance

the differential diagnosis between FTD, AD, and HC. Overall,

the accuracies reported for SVM-based methods ranged from
approximately 60%–100%, with most studies achieving accuracies
between 82% and 94.5%. This variation reflects differences in
sample sizes, data modalities, and feature selection techniques,
while demonstrating the strong performance of SVM classifiers
in the differential diagnosis of neurodegenerative diseases. The
included studies are organized into subsections, according to the
type of data used for ML.

3.5.1.1 Neuroimaging data

Structural MRI data analyzed using SVMs in Möller et al.
(2016) resulted in accuracies of 85% for FTD vs. HC, and
82% for FTD vs. AD, demonstrating high predictive power
across independent datasets. In Raamana et al. (2014), non-linear
SVMs with Gaussian kernel were employed for direct three-way
classification among AD, bvFTD, and normal controls. Using
ventricular displacement features, the model achieved a weighted
AUC of 0.765, with pairwise AUCs of 0.938 for bvFTD vs. HC, and
0.653 for bvFTD vs. AD, underscoring the diagnostic potential of
ventricular morphology while also highlighting its limitations in
distinguishing between dementia subtypes. In Pérez-Millan et al.
(2023) the authors applied SVM classifiers to both cross-sectional
and longitudinal MRI data, obtaining improved classification
accuracy for FTD vs. HC in longitudinal analyses (87.8%), although
distinguishing between AD and FTD remained challenging in both
analyses with accuracies around 60%.

The potential of EEG features combined with SVMs was
demonstrated in Garn et al. (2017), where classifiers achieved
100% accuracy in pairwise comparisons among groups of 20 AD,
20 PDD or dementia with Lewy bodies (DLB), and 21 FTD.
The study underscores the efficacy of non-invasive EEG markers,
although the authors highlighted the need for further studies
using larger numbers of patients. In Wang et al. (2024), the
integration of aperiodic EEG components of power spectral density
with SVM classification significantly enhanced the differentiation
between FTD and AD. The authors separated the raw power into
periodic and aperiodic components, with the periodic components
represented by periodic power and the aperiodic components
represented by offsets and exponents. The study showed that using
the combination of aperiodic parameters and the theta periodic
power as features resulted in the best classification performance
(mean AUC = 0.73± 0.12). In Rostamikia et al. (2024), the authors
used SVM classifiers on EEG features, obtaining 93.5% accuracy
for diagnosing dementia (FTD and AD vs. HC) and 87.8% for
differentiating FTD from AD, underscoring the versatility of SVMs
across different data types.

3.5.1.2 Multimodal data

In Garcia-Gutierrez et al. (2022), SVM models utilizing
neuropsychological assessments, adjusted by demographic factors,
as features, achieved accuracies of 91.6% for FTD from HC, and
84.5% for differentiating AD from FTD. Furthermore, in García-
Gutierrez et al. (2022), the authors showed that combining PET
imaging and cognitive data using a multimodal ML approach
including SVM binary classifiers, obtained an accuracy of 92.6%
in distinguishing between FTD, AD and HC. Additionally,
in Pérez-Millan et al. (2024), the integration of MRI-derived
structural data, cerebrospinal fluid biomarkers, and age into SVM
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classifiers improved the classification accuracy between AD and
FTD to 88.5%, providing a probabilistic assessment of diagnostic
confidence. The accuracy of classification between FTD and HCs
was 86.5%.

3.5.2 DL methods
Deep learning methods, particularly CNNs, have also been

effective in this domain. In Nguyen et al. (2023), a Deep Grading
method incorporating U-Nets and a multi-layer perceptron (MLP)
achieved an overall accuracy of 86.0% (87.9% on an external
dataset) when distinguishing FTD, AD, and HC using MRI-based
structural data. The accuracy for binary classification between FTD
and AD was 94.6% (86.1% for the external validation dataset).
Ajra et al. (2023) utilized a shallow CNN with four estimation
methods of EEG-derived functional connectivity, achieving an
accuracy of 94.54% in distinguishing from FTD, AD and HC
when using the Amplitude Envelope Correlation (AEC) without
any thresholding method. Similarly, in Ma et al. (2020), the
authors developed a multi-scale, multi-type deep neural network
(MMDNN) augmented with GANs, which achieved an accuracy
of 88.28% in classifying FTD, AD, and HCs based on structural
MRI features.

Hu et al. (2021) demonstrated the efficacy of deep learning
applied to raw MRI data without any preprocessing or manual
intervention by medical experts, achieving classification accuracies
of 93.45% for distinguishing FTD from HCs, and 93.05% for
differentiating FTD from AD. These findings underscore the
potential of CNNs to autonomously capture intricate patterns
within imaging data, highlighting their capability to obviate the
need for extensive preprocessing and manual feature extraction in
neuroimaging analyses. In Rogeau et al. (2024), a 3D CNN model
using FDG-PET scans outperformed clinicians’ interpretation in
distinguishing between FTD, AD, and HCs, achieving an overall
accuracy of 89.8%. In a complementary analysis with FTD and
AD data only, model accuracy was 87.2%. Ma et al. (2024)
introduced an explainable DNN that classified FTD subtypes with
an overall balanced accuracy of 83.6%, providing insights into the
structural markers specific to each subtype. To enhance model
transparency and interpretability, they utilized an XAI technique
called “Integrated Gradient”, which provides importance scores to
each MRI input feature, highlighting their individual contributions
to the model’s predictions.

These DL studies reported accuracies ranging from 86.0%
to 94.6%, indicating the potential of neural networks in
employing complex neuroimaging and electrophysiological data
for accurate diagnosis.

3.5.3 Ensemble methods
Random Forests algorithms also demonstrated strong

performance. In Maito et al. (2023), a Random Forests
model achieved an accuracy of 93.2% and an AUC of 0.965
in differentiating FTD from AD using routine clinical and
cognitive assessments in Latin American populations. Miltiadous
et al. (2021) reported that Random Forests reached an accuracy of
97.7% for FTD vs. AD classification based on EEG features using a
10-fold cross-validation method.

Gradient boosting methods, such as XGBoost used in Sadeghi
et al. (2024), combined fMRI time-course data with clinical and
demographic variables (except for age) to achieve a balanced
accuracy of 91.1%, significantly improving the classification of AD,
FTD, mild cognitive impairment (MCI), and HCs compared to
imaging data alone. A classifier based on an XGBoost was also used
by Birba et al., who built a classifier algorithm using interoceptive
EEG features, structuralMRImeasures, and functional connectivity
markers to distinguish bvFTD from AD. The classifier achieved an
accuracy of 82% and anAUC of 0.81, demonstrating the potential of
integrating electrophysiological and neuroimaging biomarkers for
reliable diagnosis Birba et al. (2022).

3.5.4 Other ML methods
Naive Bayes classifiers were notably effective in certain studies.

In Wang et al. (2016), the authors found that neuropsychological
features analyzed with a Naive Bayes classifier achieved an accuracy
of 62.39% in distinguishing AD from FTD, outperforming MRI-
based measures (accuracy = 51.38). Díaz-Álvarez et al. (2022) used
a BayesNet Naive classifier combined with genetic algorithm-based
feature selection, achieving a high accuracy of 98.8% for FTD vs.
AD using FDG-PET imaging.

KNN algorithm showed high efficacy in Lal et al. (2024), where
it achieved an accuracy of 91% for FTD vs. AD, indicating its
potential for EEG-based diagnostics. These results were achieved
using SVD entropy for EEG features extraction, an XAI feature
importance array, and 90% overlap for sliding windowing, In Lage
et al. (2021), KNN was used on eye-tracking data achieving an
accuracy of 92.46% for bvFTD vs. AD, outperforming SVM. KNN
was also evaluated in Díaz-Álvarez et al. (2022), although it was
outperformed by the BayesNet Naive classifier.

Other ML techniques were also employed. In Kim et al. (2019),
LDA, a classical linear learning method, within a hierarchical
classification framework achieved an accuracy of 90.8% in
distinguishing FTD from AD, 86.9% between bvFTD and PPA,
and 92.1% for nfvPPA vs svPPA. In Bouts et al. (2018) elastic
net regression was used in a multiparametric model, achieving an
accuracy of 77.7% (AUC = 0.81) for FTD vs. AD differentiation by
integrating structural, diffusion tensor, and resting-state functional
MRI measures.

3.6 Comparative analysis of ML techniques

A comparative analysis of ML techniques reveals distinct
strengths and limitations in their application to the differential
diagnosis of FTD (Table 4). Different models vary in terms of
accuracy, interpretability, computational demands, and suitability
for clinical implementation. DL models achieve high accuracy,
particularly with neuroimaging data, but require large datasets
and computational resources. In contrast, traditional ML methods
such as SVMs, RF, and gradient boosting demonstrate strong
performance with structured data like cognitive assessments and
multimodal data. These models often require feature engineering
but provide robust classification capabilities with more manageable
computational demands. These variations highlight the importance
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FIGURE 2

Frequency of ML approaches used across the included studies grouped by macro-categories.

TABLE 4 Comparative analysis of ML techniques.

ML technique Accuracy
range

Pros Cons Common data
modalities

SVMs 60%–100% Robust for high-dimensional data; good
with small datasets

Limited interpretability; performance
depends on feature selection

MRI, EEG, cognitive,
multimodal

DL 86%–94.6% Learns patterns automatically; excels
with imaging data

Needs large datasets; high computational cost MRI, EEG, FDG-PET

Random Forests 93.2%–97.7% Handles missing data; interpretable;
robust

Requires tuning; less effective for very
high-dimensional data

EEG, cognitive, clinical

Gradient Boosting 82%–91.1% High predictive power; effective with
structured datasets

Prone to overfitting; computationally
intensive

MRI, clinical, demographics

Naive Bayes 62.39%–98.8% Fast, simple, good for small datasets Assumes feature independence FDG-PET, cognitive

KNN 91%–92.46% Simple; good for small datasets Sensitive to class imbalance; poor with
high-dimensional data

EEG, Eye-tracking

LDA 86.9%–92.1% Efficient, interpretable Assumes linear separability; limited
performance with complex data

MRI

Elastic net
regression

77.7% Reduces overfitting; effective for feature
selection

Limited use in complex, non-linear
problems; requires hyperparameter tuning

MRI

of dataset composition, preprocessing, and feature selection in
optimizing model performance.

4 Discussion

This systematic review underscores the potential of ML
techniques in improving the differential diagnosis of FTD, a critical
challenge in clinical neurology.

Traditional diagnostic methods often rely on clinical
assessments and neuropsychological tests, which may not
capture subtle early-stage differences between these conditions
(Bron et al., 2015; Vieira et al., 2017; Korolev et al., 2016). Early
and accurate diagnosis and differentiation between FTD and other
types of dementia, such as AD and PDD, are therefore essential for
appropriate treatment planning and patient care. Indeed, different

dementia types have distinct pathophysiological mechanisms and
may respond differently to treatments.

By leveraging diverse data modalities such as neuroimaging
and neuropsychological assessments, ML models offer a powerful
tool for identifying subtle, disease-specific patterns that traditional
methods may overlook. As it emerges from the revised papers,
the performance of the ML algorithms often depends on
the employed model and the data analyzed. Therefore the
choice of the classification methodology can play a critical
role in enhancing diagnostic performance across various types
of dementia.

The ML techniques applied across the included studies are
characterized by a predominance of SVMs and an increasing
adoption of DL methods. SVMs have demonstrated consistent
effectiveness in differentiating between FTD, AD, and HCs. The
performance variation found across studies likely derives from
heterogeneity in data sources, sample sizes, and features used.
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While SVMs have remained a dominant choice due to their
consistent effectiveness, recent years have seen a growing interest
in DL models. These models, particularly those leveraging raw
neuroimaging data, excel in identifying intricate patterns. This
places them as competitive for multi-class tasks essential for
real-world scenarios where clinicians need to differentiate among
multiple neurodegenerative diseases. Notably, although several
studies used DL approaches for multi-class classification, the
highest accuracies are found in binary tasks (Nguyen et al., 2023;
Hu et al., 2021).

Random Forests and Naive Bayes classifiers have demonstrated
strong performance in binary classifications, with reported
accuracies as high as 98.8% for FTD vs. AD, especially with
neuroimaging data (Díaz-Álvarez et al., 2022; Miltiadous et al.,
2021). However, these methods often lack the scalability and
adaptability of DLmodels for complex datasets and were frequently
outperformed by both DL techniques and SVMs. KNN algorithms
also performed well, but one study reported that their efficacy is
less robust than other approaches Garcia-Gutierrez et al. (2022);
Díaz-Álvarez et al. (2022); Miltiadous et al. (2021); Rostamikia et al.
(2024).

Regarding the features used by the ML studies analyzed in
the review, integrating multimodal data, such as demographic,
clinical, cognitive, structural and functional neuroimaging, and
cerebrospinal fluid biomarker features, has been shown to improve
diagnostic accuracy (Pérez-Millan et al., 2024; Bouts et al., 2018;
Maito et al., 2023; Birba et al., 2022; García-Gutierrez et al., 2022;
Sadeghi et al., 2024).

The application of ML approaches in the differential diagnosis
of FTD from other types of dementia has shown great potential,
particularly in the context of early diagnosis. Recent ML research in
diagnosis has shifted from classifying a specific brain disease against
controls to focusing on differential diagnosis. While earlier studies
primarily relied on neuroimaging as a data source, current efforts
emphasize the need of integrating multimodal data.

Although the reviewed studies demonstrate significant
progress, several limitations exist. As reported in Table 1, many
studies have small sample sizes, whichmay limit the generalizability
of the models (Miltiadous et al., 2021; Garn et al., 2017; Wang
et al., 2024; Birba et al., 2022; Lage et al., 2021; Raamana et al.,
2014; Rostamikia et al., 2024; Ajra et al., 2023; Lal et al., 2024;
Bouts et al., 2018). Class imbalance (Rahman and Davis, 2013)
is another common issue found across the included articles.
AD is consistently overrepresented compared to FTD and its
subtypes, which can bias models toward better performance in
AD classification. Recent research used GANs to address class
imbalance in AD diagnosis. GANs have reconstructed missing
PET images, improving classification performance on imbalanced
datasets (Hu et al., 2021), and GAN-based oversampling methods
have significantly enhanced brain disease diagnosis accuracy
(Rezaei et al., 2020). Unsupervised GAN approaches detect AD
at various stages by reconstructing adjacent brain MRI slices,
achieving high diagnostic accuracy (Han et al., 2022). Additionally,
GANs can generate synthetic brain MRI and PET images for
different AD stages, addressing limited data in developing robust
automated diagnosis models (Islam and Zhang, 2020). An
interesting finding of our review is the prevalence of bvFTD in

the examined sample. Further exploring different variants could
providemore comprehensive insights into the differential diagnosis
of FTD subtypes. Furthermore, the integration of longitudinal
data could also improve the understanding of disease progression
and enhance predictive modeling. Moreover, ethnic diversity
represents a significant concern, as most studies rely on datasets
from North America and Europe, with only a few incorporating
data from Asia, Latin America, or other regions. This bias limits
the generalizability of findings, potentially reducing diagnostic
accuracy for diverse populations. Data source variability represents
another challenge, particularly in MRI and PET-based studies,
where different imaging protocols across centers can introduce
inconsistencies. Although some papers implement harmonization
techniques, many do not explicitly address these discrepancies,
potentially impacting model performance.

In the context of clinical implementation, ML models must
balance accuracy, interpretability, and computational efficiency.
SVMs, RF, and LDA are the most clinically feasible due to their
moderate computational requirements and interpretability, making
them suitable for decision-support systems. Gradient boosting
techniques, while effective, require careful tuning to prevent
overfitting. Deep learning models, despite their accuracy, are
challenging due to their black-box nature, high data demands,
and computational cost, limiting their immediate integration into
clinical practice. In this regard, the development of XAI techniques
such as SHAP and LIME will be crucial for clinical adoption, as
clinicians require transparency in decision-making processes. In
our review, only two studies employed XAI techniques (Lal et al.,
2024; Ma et al., 2024). XAI techniques can help elucidate how
models make decisions, highlighting the most influential features
and enabling clinicians to validate model outputs (Tjoa and Guan,
2020; Chaddad et al., 2023). XAI models can be broadly categorized
into two approaches: model-agnostic (Jahan et al., 2023; Guan
et al., 2022; Yousefzadeh et al., 2024) and model-specific (Umeda-
Kameyama et al., 2021; Jahan et al., 2023).Model-agnosticmethods,
such as SHAP and LIME, provide general insights into model
predictions by attributing outcomes to input feature contributions.
Although SHAP quantifies feature importance, it remains in
many respects a “black-box” method that often fails to highlight
the interactions between features that drive model decisions
(Al Olaimat et al., 2023; Brusini et al., 2024). In brain MRI analysis,
for instance, SHAP identifies key features but does not always
provide a clear, intuitive sense of how these features merge to shape
predictions (Jahan et al., 2023). While model-agnostic techniques
offer flexibility across diverse model types, model-specific methods
focus on providing transparency and interpretability directly linked
to individual AI models, particularly in DL and complex ML
algorithms. Techniques like Layer-wise Relevance Propagation
(LRP) (Bach et al., 2015) analyze contributions of individual
neurons to final decisions, and Grad-CAM (Gradient-weighted
Class Activation Mapping) (Selvaraju et al., 2017), visualizes areas
of input that are important for predictions in CNN. These methods
enhance the trust and effectiveness of AI systems by making their
operations transparent and justifiable.

Additionally, a critical next step in advancing ML-based FTD
diagnosis is real-world validation through prospective clinical
trials. While many studies demonstrate high diagnostic accuracy
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using retrospective datasets, the true clinical applicability of
these models remains uncertain without validation in real-
world settings. Future studies should focus on integrating ML
models into clinical workflows and testing their performance
in prospective patient cohorts to ensure their robustness and
clinical applicability. Moreover, prospective validation will enable
clinicians to evaluate the practical challenges of implementing ML
models in routine practice. Developing standardized protocols for
real-world evaluation will be essential in bridging the gap between
ML advancements and their clinical use for FTD diagnosis.

In summary, exploiting various data modalities and advanced
algorithms, ML models can enhance diagnostic accuracy, leading
to timely interventions and better patient outcomes. Addressing
current limitations through standardization, larger datasets,
and XAI will be essential for translating these advances into
clinical practice.

5 Conclusions

This systematic review highlights significant advancements
in applying ML techniques to differentiate FTD from other
neurodegenerative conditions. To our knowledge, this is the first
review to systematically evaluate machine learning algorithms
specifically tailored to distinguish between FTD subtypes and
to differentiate FTD from other neurodegenerative conditions,
addressing a gap in the literature. The use of SVMs and deep
learning algorithms, particularly CNNs, consistently achieved high
diagnostic accuracy, showing particular promise in leveraging
neuroimaging data for distinguishing FTD from AD and HCs.
The integration of multimodal data, such as structural and
functional neuroimaging, and neuropsychological assessments, has
improved diagnostic performance by capturing complementary
features across different domains of brain function. Despite
these advancements, challenges such as small sample sizes, class
imbalance, and lack of standardization limit the generalizability
of current models. Future studies should prioritize creating
and analyzing large, diverse, multi-center datasets to reduce
bias and enhance generalizability. Standardized data collection
protocols should focus on harmonizing imaging sequences,
EEG preprocessing pipelines, and neuropsychological test
administration to ensure consistency. Incorporating longitudinal
data could provide insights into disease progression, enabling the
development of models that predict both diagnosis and prognosis.

The development of XAI techniques could introduce
transparency in ML models, increasing their interpretability and
trustworthiness for clinical decision-making. To facilitate the
transition from research to clinical practice, interdisciplinary
collaboration between AI researchers, neurologists, and imaging
experts is essential. Establishing standardized protocols and
ensuring regulatory compliance will be crucial to successfully
integrating ML-based diagnostics into routine healthcare.
Additionally, ML-based medical tools must undergo rigorous
regulatory approval processes, such as those required by the U.S.
Food and Drug Administration (FDA) and European Conformity
(CE)marking, to ensure safety, efficacy, and reliability in real-world
clinical settings. Ethical considerations, including patient privacy,

data security, and bias mitigation, should also be addressed to
promote responsible AI application in neurology. Overall, ML
approaches have shown promise in improving early and accurate
diagnosis of FTD, potentially leading to timely interventions and
better patient outcomes. Nevertheless, their success hinges on
overcoming current challenges. Collaborative, interdisciplinary
efforts combining methodological innovation with robust clinical
validation will be essential for translating these advancements into
the real-world applications.
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